Since 1988,great efforts and enthusiasm had been paid by applied geochemists in the implementation of global geochemical mapping through the International Geological Correlation Program's Projects 259 and 360,and the...Since 1988,great efforts and enthusiasm had been paid by applied geochemists in the implementation of global geochemical mapping through the International Geological Correlation Program's Projects 259 and 360,and the Task Group on‘Global Geochemical Baselines' established by the International Union of Geological Sciences(IUGS),in collaboration with the International Association of Geochemistry(IAGC).But how to use extremely low-density sampling to obtain a global picture of the distribution of most elements in the periodic table in a reasonably short time is still a great challenge faced by the applied geochemistry community.It will depend on the continuous development of new mapping concept,and the advisable and courageous innovation of methodology for searching other suitable sample media and sampling layout.Based on the encouragement results obtained from the representativeness study of delta sediments conducted at the mouth of Yangtze River,and at the mouths of its four major tributary,it is expected to broadly apply the geochemical fractal self-similarity nature to main rivers and their estuaries with catchments up to hundreds of thousands or over a million square kilometers in the world.With this new mapping concept,a new outlines of a Global Geochemical Mapping Program was advanced and the establishment of an International Research Center of Global Geochemical Mapping was also suggested to facilitate the programs implementations.展开更多
The development of geochemical mapping progressed from local geochemical prospecting through regional geochemical exploration and regional geochemical mapping to national and global geochemical mapping. This paper dis...The development of geochemical mapping progressed from local geochemical prospecting through regional geochemical exploration and regional geochemical mapping to national and global geochemical mapping. This paper discusses the evolution of aims, ideas and methodology of geochemical mapping in Western countries, Russia and China. The sophistication of geochemical mapping methodology will make great contributions to solving resources and environmental problems in the 21^st century.展开更多
More than 40 national and regional geochemical mapping projects in the world carried out from 1973 to 1988 do not conform to common standards. In particular they have many analytical deficiencies. In the period 1988 t...More than 40 national and regional geochemical mapping projects in the world carried out from 1973 to 1988 do not conform to common standards. In particular they have many analytical deficiencies. In the period 1988 to 1992, the International Geochemical Mapping project (Project 259 of UNESCO's IGCP Program) prepared recommendations designed to standardize geochemical mapping methods. The analytical requirements are an essential component of the overall recommendations. They included the following: 71 elements should be analyzed in future mapping projects; the detection limits of trace and ultratrace elements must be lower than the corresponding crustal abundances; and the Chinese GSD and Canadian STSD standard sample series should be used for the correlation of global data. A proposal was also made to collect 5000 composite samples, at very low sampling densities to cover the whole Earth's land surface. In 1997 an IUGS Working Group on Global Geochemical Baselines was formed to continue the work which began with IGCP 259. From 1997 up to now, new progress has been made especially in China and FOREGS countries under the aegis of this working group, including the study of suitable sampling media, development of a multi-element analytical system, new proficiency test for selection of competent laboratories and role of wide-spaced mapping in mineral exploration. One of the major problems awaiting solution has been the inability of many laboratories to meet the IGCP recommendations to generate high quality geochemical maps. Fortunately several laboratories in China and Europe have demonstrated an ability to meet the requirements and they will be well placed to render technical assistance to other countries.展开更多
The 1∶1000000 geochemical mapping of Zambia provides catchment sediment geochemical data for 58elements including Au from 746 sediment samples at 736 sampling sites,corresponding to a sampling density of about one si...The 1∶1000000 geochemical mapping of Zambia provides catchment sediment geochemical data for 58elements including Au from 746 sediment samples at 736 sampling sites,corresponding to a sampling density of about one site per 1000 km2.Under strict quality control using field duplicates,certified reference materials,and analytical replicate samples,the Au was determined by Inductively Coupled Plasma Mass Spectrometry(ICP-MS).The detection limit of Au was 0.20×10^(-9).The 95%range(2.5%–97.5%)of Au concentrations was from 0.24×10^(-9) to 1.36×10^(-9),and the median value was 0.40×10^(-9).The most noticeable Au distribution patterns shown on the map are mainly located between Lusaka and Ndola(Lufilian Arc Belt).In addition,several high Au value areas occurred in Mansa,Muyombe,Chipata,and Livingstone.The spatial distribution patterns of Au in tectonic units,drainage basins,and geomorphological landscapes could be related to the Lufilian Arc Belt and Bangweulu Block.The Au concentrations show metallogenic belts between Muyombe and Mbala areas,between Mansa and Ndola areas,and between Lusaka and Kasempa areas.展开更多
Six national-scale,or near national-scale,geochemical data sets for soils or stream sediments exist for the United States.The earliest of these,here termed the 'Shacklette' data set,was generated by a U.S. Geologica...Six national-scale,or near national-scale,geochemical data sets for soils or stream sediments exist for the United States.The earliest of these,here termed the 'Shacklette' data set,was generated by a U.S. Geological Survey(USGS) project conducted from 1961 to 1975.This project used soil collected from a depth of about 20 cm as the sampling medium at 1323 sites throughout the conterminous U.S.The National Uranium Resource Evaluation Hydrogeochemical and Stream Sediment Reconnaissance(NUREHSSR) Program of the U.S.Department of Energy was conducted from 1975 to 1984 and collected either stream sediments,lake sediments,or soils at more than 378,000 sites in both the conterminous U.S.and Alaska.The sampled area represented about 65%of the nation.The Natural Resources Conservation Service(NRCS),from 1978 to 1982,collected samples from multiple soil horizons at sites within the major crop-growing regions of the conterminous U.S.This data set contains analyses of more than 3000 samples.The National Geochemical Survey,a USGS project conducted from 1997 to 2009,used a subset of the NURE-HSSR archival samples as its starting point and then collected primarily stream sediments, with occasional soils,in the parts of the U.S.not covered by the NURE-HSSR Program.This data set contains chemical analyses for more than 70,000 samples.The USGS,in collaboration with the Mexican Geological Survey and the Geological Survey of Canada,initiated soil sampling for the North American Soil Geochemical Landscapes Project in 2007.Sampling of three horizons or depths at more than 4800 sites in the U.S.was completed in 2010,and chemical analyses are currently ongoing.The NRCS initiated a project in the 1990s to analyze the various soil horizons from selected pedons throughout the U.S.This data set currently contains data from more than 1400 sites.This paper(1) discusses each data set in terms of its purpose,sample collection protocols,and analytical methods;and(2) evaluates each data set in terms of its appropriateness as a national-scale geochemical database and its usefulness for nationalscale geochemical mapping.展开更多
Thinly laminated siltstone and sandy siltstone are major components of the Upper Permian Brushy Canyon Formation, west Texas and south New Mexico. These rocks have been variously interpreted as the deposits of low-den...Thinly laminated siltstone and sandy siltstone are major components of the Upper Permian Brushy Canyon Formation, west Texas and south New Mexico. These rocks have been variously interpreted as the deposits of low-density turbidity currents or as windblown sediment deposited over water. Nevertheless, all models agreed that this lithology was deposited without subsequent reworking by bottom currents or burrowing organisms. These siltstones, thus, are ideal test units for quantitatively estimating hydraulic properties of the flows that formed them. In particular, the Zr/Ti ratio was tested as a geochemical proxy for flow size and transport distance. In situ geochemical abundance and grain size of particles with contrasting susceptibility to erosion—Zr- and Ti-rich particles—were mapped and measured by X-ray fluorescence analytical microscopy, μXRF. Lamination thickness was measured from Fe fluorescence intensity, which increased sharply at the top of each layer. Within the same sample, zircon grains were systematically finer than rutilated quartz grains. Zr/Ti fluorescence ratio positively correlated with lamination thickness, not particle sizes. In other words, Zr/Ti fluorescence ratio fluctuations resulted from variations in mineral abundance. Therefore, variations of Zr/Ti fluorescence ratio in these siltstones are likely caused by fluctuations in the intensity of erosional events rather than transport distance. High Zr/Ti ratios and thick laminations reflect periods of enhanced erosion. The average wind velocity during typical events was estimated to be at least 150 km?hr<sup>?1</sup>, or the equivalent of a Category 1 hurricane. The method used here could be applied to both outcrop and subsurface strata correlation.展开更多
Tanzania is located in eastern Africa with a predominantly agricultural ecomomy,the potential for developing and utilizing cultivated land are promising,but scientific guidance is required.B,Zn and Se are essential mi...Tanzania is located in eastern Africa with a predominantly agricultural ecomomy,the potential for developing and utilizing cultivated land are promising,but scientific guidance is required.B,Zn and Se are essential micronutrients for plants and human body with crucial biological functions,in particular,Se is significant for human health and considered as“the king of anti-cancer”.As these elements required by human or plants are mainly absorbed from soil directly or indirectly,therefore,it is important to understand the contents and distributions of them in the soil of cultivated land for guiding agricultural production.In this work,low-density geochemical survey at the scale of 1∶1000000 was carried out in Tanzania,and the results show that the concentrations of B,Zn and Se in stream sediments are low and their distributions are heterogeneous.According to the distributions of geological units,the existing cultivated land resources can be divided into five regions in Tanzania.Compared with the national background values,the concentrations of B,Zn and Se are insufficient overall but enriched locally in these regions.In general,element concentrations in stream sediments and soil have a positive correlation because of their similar sources,which is essential in agriculture application.Based on the information provided by low-density geochemical data and maps,the Se-sufficient and Se-rich regions were delineated in Tanzania,where can be used to develop Se-rich industries.Finally,this paper believes that geochemical survey is a powerful tool for cultivated land evaluation,agriculture management and land development.展开更多
The resources and environmental problems are the two most fundamental issues facing all nations in the world. Everything in and on the Earth - minerals, animals and plants -is made from one, or generally some combinat...The resources and environmental problems are the two most fundamental issues facing all nations in the world. Everything in and on the Earth - minerals, animals and plants -is made from one, or generally some combination of, chemical elements, which are scientifically listed in the periodic table. Thus it is important to understand the present abundance and spatial distribution of all the elements across the Earth's surface. Such kinds of data can only be obtained at present and for the foreseeable future by on-earth geochemical mapping at all scales. The 30-year efforts made by Chinese geochemists in carrying out multi-element, multi-media, multi-scale geochemical mapping projects to delineate 39-76 element distribution at home and abroad culminated in a successful case of high- quality geochemical data acquirement. The new idea for a four-level plan for global geochemical mapping was advanced to obtain global data in the foreseeable future and the collection of updated geochemical information. Such information needs to be easily accessible not only by the science community, but also by industry, agriculture, governments, and even individuals, by all who would make an effort to promote sustainable riving on our planet. The concept of a Digital Element Earth (DEE) fulfills the aims.展开更多
Elemental concentration distributions in space have been analyzed using different approaches. These analyses are of great significance for the quantitative characterization of various kinds of distribution patterns. F...Elemental concentration distributions in space have been analyzed using different approaches. These analyses are of great significance for the quantitative characterization of various kinds of distribution patterns. Fractal and multi-fractal methods have been extensively applied to this topic. Traditionally, approximately linear-fractal laws have been regarded as useful tools for characterizing the self-similarities of element concentrations. But, in nature, it is not always easy to find perfect linear fractal laws. In this paper the parabolic fractal model is used. First a two dimensional multiplicative multi-fractal cascade model is used to study the concentration patterns. The results show the parabolic fractal (PF) properties of the concentrations and the validity of non-linear fractal analysis. By dividing the studied area into four sub-areas it was possible to show that each part follows a non-linear parabolic fractal law and that the dispersion within each part varies. The ratio of the polynomial coefficients of the fitted parabolic curves can reflect, to some degree, the relative concentration and dispersal distribution patterns. This can provide new insight into the ore-forming potential in space. The parabofic fractal evaluations of ore-forming potential for the four suhareas are in good agreement with field investigation work and geochemical mapping results based on analysis of the original data.展开更多
Geochemical maps are of great value in mineral exploration.Integrated geochemical anomaly maps provide comprehensive information about mapping assemblages of element concentrations to possible types of mineralization/...Geochemical maps are of great value in mineral exploration.Integrated geochemical anomaly maps provide comprehensive information about mapping assemblages of element concentrations to possible types of mineralization/ore,but vary depending on expert's knowledge and experience.This paper aims to test the capability of deep neural networks to delineate integrated anomaly based on a case study of the Zhaojikou Pb-Zn deposit,Southeast China.Three hundred fifty two samples were collected,and each sample consisted of 26 variables covering elemental composition,geological,and tectonic information.At first,generative adversarial networks were adopted for data augmentation.Then,DNN was trained on sets of synthetic and real data to identify an integrated anomaly.Finally,the results of DNN analyses were visualized in probability maps and compared with traditional anomaly maps to check its performance.Results showed that the average accuracy of the validation set was 94.76%.The probability maps showed that newly-identified integrated anomalous areas had a probability of above 75%in the northeast zones.It also showed that DNN models that used big data not only successfully recognized the anomalous areas identified on traditional geochemical element maps,but also discovered new anomalous areas,not picked up by the elemental anomaly maps previously.展开更多
The chemical and physical properties of soil are critical factors that affect human health. The current geochemical study is designed to evaluate the concentrations of heavy metals (Cr, Pb, and Zn) in the soil in Iowa...The chemical and physical properties of soil are critical factors that affect human health. The current geochemical study is designed to evaluate the concentrations of heavy metals (Cr, Pb, and Zn) in the soil in Iowa (IA), Kansas (KS), and Nebraska (NE). The basic descriptive statistical results suggest that there are some limited levels of the heavy metals in the soils that come from anthropogenic inputs. The results of three environmental metrics, the enrichment factor (EF), geoaccumulation (Igeo), and potential ecological risk (PERI), have been calculated, evaluated, and compared. EF values show that soils contain minimal enrichment of Cr, Pb, and Zn in the study area. In addition, PERI values presented low risk with Cr, Pb, and Zn. However, Igeo </span><span style="font-family:Verdana;">values showed no contamination of Cr, Pb, and Zn in the study area. These results suggest that the elevated levels of these heavy metals are dominated by the historic agricultural inputs derived from long-term anthropogenic applications, especially in the regions with extensive human activities, which means that soil is the sink for heavy metals released into the environment.展开更多
基金the China Geological Survey and the Ministry of Science and Technology for financial support(CGS 1212010911036,SinoProbe-04)support the new outline of global geochemical mapping programmeto the institutes and organizations which support the establishment of IRCGM in Langfang China.
文摘Since 1988,great efforts and enthusiasm had been paid by applied geochemists in the implementation of global geochemical mapping through the International Geological Correlation Program's Projects 259 and 360,and the Task Group on‘Global Geochemical Baselines' established by the International Union of Geological Sciences(IUGS),in collaboration with the International Association of Geochemistry(IAGC).But how to use extremely low-density sampling to obtain a global picture of the distribution of most elements in the periodic table in a reasonably short time is still a great challenge faced by the applied geochemistry community.It will depend on the continuous development of new mapping concept,and the advisable and courageous innovation of methodology for searching other suitable sample media and sampling layout.Based on the encouragement results obtained from the representativeness study of delta sediments conducted at the mouth of Yangtze River,and at the mouths of its four major tributary,it is expected to broadly apply the geochemical fractal self-similarity nature to main rivers and their estuaries with catchments up to hundreds of thousands or over a million square kilometers in the world.With this new mapping concept,a new outlines of a Global Geochemical Mapping Program was advanced and the establishment of an International Research Center of Global Geochemical Mapping was also suggested to facilitate the programs implementations.
文摘The development of geochemical mapping progressed from local geochemical prospecting through regional geochemical exploration and regional geochemical mapping to national and global geochemical mapping. This paper discusses the evolution of aims, ideas and methodology of geochemical mapping in Western countries, Russia and China. The sophistication of geochemical mapping methodology will make great contributions to solving resources and environmental problems in the 21^st century.
文摘More than 40 national and regional geochemical mapping projects in the world carried out from 1973 to 1988 do not conform to common standards. In particular they have many analytical deficiencies. In the period 1988 to 1992, the International Geochemical Mapping project (Project 259 of UNESCO's IGCP Program) prepared recommendations designed to standardize geochemical mapping methods. The analytical requirements are an essential component of the overall recommendations. They included the following: 71 elements should be analyzed in future mapping projects; the detection limits of trace and ultratrace elements must be lower than the corresponding crustal abundances; and the Chinese GSD and Canadian STSD standard sample series should be used for the correlation of global data. A proposal was also made to collect 5000 composite samples, at very low sampling densities to cover the whole Earth's land surface. In 1997 an IUGS Working Group on Global Geochemical Baselines was formed to continue the work which began with IGCP 259. From 1997 up to now, new progress has been made especially in China and FOREGS countries under the aegis of this working group, including the study of suitable sampling media, development of a multi-element analytical system, new proficiency test for selection of competent laboratories and role of wide-spaced mapping in mineral exploration. One of the major problems awaiting solution has been the inability of many laboratories to meet the IGCP recommendations to generate high quality geochemical maps. Fortunately several laboratories in China and Europe have demonstrated an ability to meet the requirements and they will be well placed to render technical assistance to other countries.
基金financially supported by the Sino-Zambian Cooperation in Geological and Geochemical Mapping(2012–2015)the China-Aid Airborne Geophysical Survey and Geochemical and Geological Mapping Technical Cooperation Project(2015–2019)the geological investigation project of the China Geological Survey(DD20201150,DD20201148,DD20190439)。
文摘The 1∶1000000 geochemical mapping of Zambia provides catchment sediment geochemical data for 58elements including Au from 746 sediment samples at 736 sampling sites,corresponding to a sampling density of about one site per 1000 km2.Under strict quality control using field duplicates,certified reference materials,and analytical replicate samples,the Au was determined by Inductively Coupled Plasma Mass Spectrometry(ICP-MS).The detection limit of Au was 0.20×10^(-9).The 95%range(2.5%–97.5%)of Au concentrations was from 0.24×10^(-9) to 1.36×10^(-9),and the median value was 0.40×10^(-9).The most noticeable Au distribution patterns shown on the map are mainly located between Lusaka and Ndola(Lufilian Arc Belt).In addition,several high Au value areas occurred in Mansa,Muyombe,Chipata,and Livingstone.The spatial distribution patterns of Au in tectonic units,drainage basins,and geomorphological landscapes could be related to the Lufilian Arc Belt and Bangweulu Block.The Au concentrations show metallogenic belts between Muyombe and Mbala areas,between Mansa and Ndola areas,and between Lusaka and Kasempa areas.
文摘Six national-scale,or near national-scale,geochemical data sets for soils or stream sediments exist for the United States.The earliest of these,here termed the 'Shacklette' data set,was generated by a U.S. Geological Survey(USGS) project conducted from 1961 to 1975.This project used soil collected from a depth of about 20 cm as the sampling medium at 1323 sites throughout the conterminous U.S.The National Uranium Resource Evaluation Hydrogeochemical and Stream Sediment Reconnaissance(NUREHSSR) Program of the U.S.Department of Energy was conducted from 1975 to 1984 and collected either stream sediments,lake sediments,or soils at more than 378,000 sites in both the conterminous U.S.and Alaska.The sampled area represented about 65%of the nation.The Natural Resources Conservation Service(NRCS),from 1978 to 1982,collected samples from multiple soil horizons at sites within the major crop-growing regions of the conterminous U.S.This data set contains analyses of more than 3000 samples.The National Geochemical Survey,a USGS project conducted from 1997 to 2009,used a subset of the NURE-HSSR archival samples as its starting point and then collected primarily stream sediments, with occasional soils,in the parts of the U.S.not covered by the NURE-HSSR Program.This data set contains chemical analyses for more than 70,000 samples.The USGS,in collaboration with the Mexican Geological Survey and the Geological Survey of Canada,initiated soil sampling for the North American Soil Geochemical Landscapes Project in 2007.Sampling of three horizons or depths at more than 4800 sites in the U.S.was completed in 2010,and chemical analyses are currently ongoing.The NRCS initiated a project in the 1990s to analyze the various soil horizons from selected pedons throughout the U.S.This data set currently contains data from more than 1400 sites.This paper(1) discusses each data set in terms of its purpose,sample collection protocols,and analytical methods;and(2) evaluates each data set in terms of its appropriateness as a national-scale geochemical database and its usefulness for nationalscale geochemical mapping.
文摘Thinly laminated siltstone and sandy siltstone are major components of the Upper Permian Brushy Canyon Formation, west Texas and south New Mexico. These rocks have been variously interpreted as the deposits of low-density turbidity currents or as windblown sediment deposited over water. Nevertheless, all models agreed that this lithology was deposited without subsequent reworking by bottom currents or burrowing organisms. These siltstones, thus, are ideal test units for quantitatively estimating hydraulic properties of the flows that formed them. In particular, the Zr/Ti ratio was tested as a geochemical proxy for flow size and transport distance. In situ geochemical abundance and grain size of particles with contrasting susceptibility to erosion—Zr- and Ti-rich particles—were mapped and measured by X-ray fluorescence analytical microscopy, μXRF. Lamination thickness was measured from Fe fluorescence intensity, which increased sharply at the top of each layer. Within the same sample, zircon grains were systematically finer than rutilated quartz grains. Zr/Ti fluorescence ratio positively correlated with lamination thickness, not particle sizes. In other words, Zr/Ti fluorescence ratio fluctuations resulted from variations in mineral abundance. Therefore, variations of Zr/Ti fluorescence ratio in these siltstones are likely caused by fluctuations in the intensity of erosional events rather than transport distance. High Zr/Ti ratios and thick laminations reflect periods of enhanced erosion. The average wind velocity during typical events was estimated to be at least 150 km?hr<sup>?1</sup>, or the equivalent of a Category 1 hurricane. The method used here could be applied to both outcrop and subsurface strata correlation.
基金the cooperation projects between China Geological Survey and geological survey institutions of Africa(DD20190439,DD20160108,DD20221801)。
文摘Tanzania is located in eastern Africa with a predominantly agricultural ecomomy,the potential for developing and utilizing cultivated land are promising,but scientific guidance is required.B,Zn and Se are essential micronutrients for plants and human body with crucial biological functions,in particular,Se is significant for human health and considered as“the king of anti-cancer”.As these elements required by human or plants are mainly absorbed from soil directly or indirectly,therefore,it is important to understand the contents and distributions of them in the soil of cultivated land for guiding agricultural production.In this work,low-density geochemical survey at the scale of 1∶1000000 was carried out in Tanzania,and the results show that the concentrations of B,Zn and Se in stream sediments are low and their distributions are heterogeneous.According to the distributions of geological units,the existing cultivated land resources can be divided into five regions in Tanzania.Compared with the national background values,the concentrations of B,Zn and Se are insufficient overall but enriched locally in these regions.In general,element concentrations in stream sediments and soil have a positive correlation because of their similar sources,which is essential in agriculture application.Based on the information provided by low-density geochemical data and maps,the Se-sufficient and Se-rich regions were delineated in Tanzania,where can be used to develop Se-rich industries.Finally,this paper believes that geochemical survey is a powerful tool for cultivated land evaluation,agriculture management and land development.
基金the Ministry of Land and Resources,China Geological Survey and the Ministry of Science and Technology for the research funding of the projects:SinoProbe 04,NSFC 40673066973 Project 2007CB411406the CGS project of 76 elements geochemical mapping of South China
文摘The resources and environmental problems are the two most fundamental issues facing all nations in the world. Everything in and on the Earth - minerals, animals and plants -is made from one, or generally some combination of, chemical elements, which are scientifically listed in the periodic table. Thus it is important to understand the present abundance and spatial distribution of all the elements across the Earth's surface. Such kinds of data can only be obtained at present and for the foreseeable future by on-earth geochemical mapping at all scales. The 30-year efforts made by Chinese geochemists in carrying out multi-element, multi-media, multi-scale geochemical mapping projects to delineate 39-76 element distribution at home and abroad culminated in a successful case of high- quality geochemical data acquirement. The new idea for a four-level plan for global geochemical mapping was advanced to obtain global data in the foreseeable future and the collection of updated geochemical information. Such information needs to be easily accessible not only by the science community, but also by industry, agriculture, governments, and even individuals, by all who would make an effort to promote sustainable riving on our planet. The concept of a Digital Element Earth (DEE) fulfills the aims.
基金Projects 40502029, 40472146 and 40373003 supported by the Natural Science Foundation of ChinaGPMR2007-11 by the Key Lab of GeologicalProcesses and Mineral Resources
文摘Elemental concentration distributions in space have been analyzed using different approaches. These analyses are of great significance for the quantitative characterization of various kinds of distribution patterns. Fractal and multi-fractal methods have been extensively applied to this topic. Traditionally, approximately linear-fractal laws have been regarded as useful tools for characterizing the self-similarities of element concentrations. But, in nature, it is not always easy to find perfect linear fractal laws. In this paper the parabolic fractal model is used. First a two dimensional multiplicative multi-fractal cascade model is used to study the concentration patterns. The results show the parabolic fractal (PF) properties of the concentrations and the validity of non-linear fractal analysis. By dividing the studied area into four sub-areas it was possible to show that each part follows a non-linear parabolic fractal law and that the dispersion within each part varies. The ratio of the polynomial coefficients of the fitted parabolic curves can reflect, to some degree, the relative concentration and dispersal distribution patterns. This can provide new insight into the ore-forming potential in space. The parabofic fractal evaluations of ore-forming potential for the four suhareas are in good agreement with field investigation work and geochemical mapping results based on analysis of the original data.
基金supported by NFSC Funds(Grant Nos.41902071 and 42011530173)the Doctoral Research Start-up Fund,East China University of Technology(DHBK2019313)。
文摘Geochemical maps are of great value in mineral exploration.Integrated geochemical anomaly maps provide comprehensive information about mapping assemblages of element concentrations to possible types of mineralization/ore,but vary depending on expert's knowledge and experience.This paper aims to test the capability of deep neural networks to delineate integrated anomaly based on a case study of the Zhaojikou Pb-Zn deposit,Southeast China.Three hundred fifty two samples were collected,and each sample consisted of 26 variables covering elemental composition,geological,and tectonic information.At first,generative adversarial networks were adopted for data augmentation.Then,DNN was trained on sets of synthetic and real data to identify an integrated anomaly.Finally,the results of DNN analyses were visualized in probability maps and compared with traditional anomaly maps to check its performance.Results showed that the average accuracy of the validation set was 94.76%.The probability maps showed that newly-identified integrated anomalous areas had a probability of above 75%in the northeast zones.It also showed that DNN models that used big data not only successfully recognized the anomalous areas identified on traditional geochemical element maps,but also discovered new anomalous areas,not picked up by the elemental anomaly maps previously.
文摘The chemical and physical properties of soil are critical factors that affect human health. The current geochemical study is designed to evaluate the concentrations of heavy metals (Cr, Pb, and Zn) in the soil in Iowa (IA), Kansas (KS), and Nebraska (NE). The basic descriptive statistical results suggest that there are some limited levels of the heavy metals in the soils that come from anthropogenic inputs. The results of three environmental metrics, the enrichment factor (EF), geoaccumulation (Igeo), and potential ecological risk (PERI), have been calculated, evaluated, and compared. EF values show that soils contain minimal enrichment of Cr, Pb, and Zn in the study area. In addition, PERI values presented low risk with Cr, Pb, and Zn. However, Igeo </span><span style="font-family:Verdana;">values showed no contamination of Cr, Pb, and Zn in the study area. These results suggest that the elevated levels of these heavy metals are dominated by the historic agricultural inputs derived from long-term anthropogenic applications, especially in the regions with extensive human activities, which means that soil is the sink for heavy metals released into the environment.