Land surface temperature(LST) directly affects the energy balance of terrestrial surface systems and impacts regional resources, ecosystem evolution, and ecosystem structures. Xinjiang Uygur Autonomous Region is locat...Land surface temperature(LST) directly affects the energy balance of terrestrial surface systems and impacts regional resources, ecosystem evolution, and ecosystem structures. Xinjiang Uygur Autonomous Region is located at the arid Northwest China and is extremely sensitive to climate change. There is an urgent need to understand the distribution patterns of LST in this area and quantitatively measure the nature and intensity of the impacts of the major driving factors from a spatial perspective, as well as elucidate the formation mechanisms. In this study, we used the MOD11C3 LST product developed on the basis of Moderate Resolution Imaging Spectroradiometer(MODIS) to conduct regression analysis and determine the spatiotemporal variation and differentiation pattern of LST in Xinjiang from 2000 to 2020. We analyzed the driving mechanisms of spatial heterogeneity of LST in Xinjiang and the six geomorphic zones(the Altay Mountains, Junggar Basin, Tianshan Mountains, Tarim Basin, Turpan-Hami(Tuha) Basin, and Pakakuna Mountain Group) using geographical detector(Geodetector) and geographically weighted regression(GWR) models. The warming rate of LST in Xinjiang during the study period was 0.24℃/10a, and the spatial distribution pattern of LST had obvious topographic imprints, with 87.20% of the warming zone located in the Gobi desert and areas with frequent human activities, and the cooling zone mainly located in the mountainous areas. The seasonal LST in Xinjiang was at a cooling rate of 0.09℃/10a in autumn, and showed a warming trend in other seasons. Digital elevation model(DEM), latitude, wind speed, precipitation, normalized difference vegetation index(NDVI), and sunshine duration in the single-factor and interactive detections were the key factors driving the LST changes. The direction and intensity of each major driving factor on the spatial variations of LST in the study area were heterogeneous. The negative feedback effect of DEM on the spatial differentiation of LST was the strongest. Lower latitudes, lower vegetation coverage, lower levels of precipitation, and longer sunshine duration increased LST. Unused land was the main heat source landscape, water body was the most important heat sink landscape, grassland and forest land were the land use and land cover(LULC) types with the most prominent heat sink effect, and there were significant differences in different geomorphic zones due to the influences of their vegetation types, climatic conditions, soil types, and human activities. The findings will help to facilitate sustainable climate change management, analyze local climate and environmental patterns, and improve land management strategies in Xinjiang and other arid areas.展开更多
The identification of dominant driving factors for different ecosystem services(ESs)is crucial for ecological conservation and sustainable development.However,the spatial heterogeneity of the dominant driving factors ...The identification of dominant driving factors for different ecosystem services(ESs)is crucial for ecological conservation and sustainable development.However,the spatial heterogeneity of the dominant driving factors affecting various ESs has not been adequately elucidated,particularly in ecologically fragile regions.This study employed the integrated valuation of ESs and trade-offs(InVEST)model to evaluate four ESs,namely,water yield(WY),soil conservation(SC),habitat quality(HQ),and carbon storage(CS),and then to identify the dominant driving factors of spatiotemporal differentiation of ES and further to characterize the spatial heterogeneity characteristics of the dominant driving factors in the eco-fragile areas of the upper Yellow River,China from 2000 to 2020.The results demonstrated that WY exhibited northeast-high and northwest-low patterns in the upper Yellow River region,while high values of SC and CS were distributed in central forested areas and a high value of HQ was distributed in vast grassland areas.The CS,WY,and SC exhibited decreasing trends over time.The most critical factors affecting WY,SC,HQ,and CS were the actual evapotranspiration,precipitation,slope,and normalized difference vegetation index,respectively.In addition,the effects of different factors on various ESs exhibited spatial heterogeneity.These results could provide spatial decision support for eco-protection and rehabilitation in ecologically fragile areas.展开更多
There are substantial spatial variations in the relationships between catch-per-unit-effort(CPUE) and oceanographic conditions with respect to pelagic species. This study examines the monthly spatiotemporal distributi...There are substantial spatial variations in the relationships between catch-per-unit-effort(CPUE) and oceanographic conditions with respect to pelagic species. This study examines the monthly spatiotemporal distribution of CPUE of the neon flying squid, Ommastrephes bartramii, in the Northwest Pacific from July to November during 2004–2013, and analyzes the relationships with oceanographic conditions using a generalized additive model(GAM) and geographically weighted regression(GWR) model. The results show that most of the squids were harvested in waters with sea surface temperature(SST) between 7.6 and 24.6℃, chlorophyll-a(Chl-a) concentration below 1.0 mgm^(-3), sea surface salinity(SSS) between 32.7 and 34.6, and sea surface height(SSH) between-12.8 and 28.4 cm. The monthly spatial distribution patterns of O. bartramii predicted using GAM and GWR models are similar to observed patterns for all months. There are notable variations in the local coefficients of GWR, indicating the presence of spatial non-stationarity in the relationship between O. bartramii CPUE and oceanographic conditions. The statistical results show that there were nearly equal positive and negative coefficients for Chl-a, more positive than negative coefficients for SST, and more negative than positive coefficients for SSS and SSH. The overall accuracies of the hot spots predicted by GWR exceed 60%(except for October), indicating a good performance of this model and its improvement over GAM. Our study provides a better understanding of the ecological dynamics of O. bartramii CPUE and makes it possible to use GWR to study the spatially nonstationary characteristics of other pelagic species.展开更多
为分析建成环境对公共自行车出行模式的影响,文章结合公共自行车运营数据和建成环境数据,以公共自行车站点为中心建立缓冲区并提取缓冲区内兴趣点(point of interest,POI),在考虑POI规模的基础上划分站点类型;根据站点类型对出行起讫点(...为分析建成环境对公共自行车出行模式的影响,文章结合公共自行车运营数据和建成环境数据,以公共自行车站点为中心建立缓冲区并提取缓冲区内兴趣点(point of interest,POI),在考虑POI规模的基础上划分站点类型;根据站点类型对出行起讫点(origin-destination,OD)分类,以OD类型确定公共自行车出行模式,使用地理加权回归(geographically weighted regression,GWR)模型,分析建成环境对公共自行车出行模式的影响;以昆明市为例进行实证分析。结果表明:昆明市公共自行车出行模式可划分为16种,OD皆为住宅主导型和公司(企业)主导型站点的出行模式约占69.26%;建成环境对不同出行模式的影响效应存在差异;土地利用混合度是公共自行车出行模式的主要影响因素。研究结果可为公共自行车布局优化及运营管理提供参考。展开更多
基金supported by the Third Xinjiang Scientific Expedition Program(2021xjkk0801).
文摘Land surface temperature(LST) directly affects the energy balance of terrestrial surface systems and impacts regional resources, ecosystem evolution, and ecosystem structures. Xinjiang Uygur Autonomous Region is located at the arid Northwest China and is extremely sensitive to climate change. There is an urgent need to understand the distribution patterns of LST in this area and quantitatively measure the nature and intensity of the impacts of the major driving factors from a spatial perspective, as well as elucidate the formation mechanisms. In this study, we used the MOD11C3 LST product developed on the basis of Moderate Resolution Imaging Spectroradiometer(MODIS) to conduct regression analysis and determine the spatiotemporal variation and differentiation pattern of LST in Xinjiang from 2000 to 2020. We analyzed the driving mechanisms of spatial heterogeneity of LST in Xinjiang and the six geomorphic zones(the Altay Mountains, Junggar Basin, Tianshan Mountains, Tarim Basin, Turpan-Hami(Tuha) Basin, and Pakakuna Mountain Group) using geographical detector(Geodetector) and geographically weighted regression(GWR) models. The warming rate of LST in Xinjiang during the study period was 0.24℃/10a, and the spatial distribution pattern of LST had obvious topographic imprints, with 87.20% of the warming zone located in the Gobi desert and areas with frequent human activities, and the cooling zone mainly located in the mountainous areas. The seasonal LST in Xinjiang was at a cooling rate of 0.09℃/10a in autumn, and showed a warming trend in other seasons. Digital elevation model(DEM), latitude, wind speed, precipitation, normalized difference vegetation index(NDVI), and sunshine duration in the single-factor and interactive detections were the key factors driving the LST changes. The direction and intensity of each major driving factor on the spatial variations of LST in the study area were heterogeneous. The negative feedback effect of DEM on the spatial differentiation of LST was the strongest. Lower latitudes, lower vegetation coverage, lower levels of precipitation, and longer sunshine duration increased LST. Unused land was the main heat source landscape, water body was the most important heat sink landscape, grassland and forest land were the land use and land cover(LULC) types with the most prominent heat sink effect, and there were significant differences in different geomorphic zones due to the influences of their vegetation types, climatic conditions, soil types, and human activities. The findings will help to facilitate sustainable climate change management, analyze local climate and environmental patterns, and improve land management strategies in Xinjiang and other arid areas.
基金Under the auspices of National Natural Science Foundation of China (No.41977402,41977194)。
文摘The identification of dominant driving factors for different ecosystem services(ESs)is crucial for ecological conservation and sustainable development.However,the spatial heterogeneity of the dominant driving factors affecting various ESs has not been adequately elucidated,particularly in ecologically fragile regions.This study employed the integrated valuation of ESs and trade-offs(InVEST)model to evaluate four ESs,namely,water yield(WY),soil conservation(SC),habitat quality(HQ),and carbon storage(CS),and then to identify the dominant driving factors of spatiotemporal differentiation of ES and further to characterize the spatial heterogeneity characteristics of the dominant driving factors in the eco-fragile areas of the upper Yellow River,China from 2000 to 2020.The results demonstrated that WY exhibited northeast-high and northwest-low patterns in the upper Yellow River region,while high values of SC and CS were distributed in central forested areas and a high value of HQ was distributed in vast grassland areas.The CS,WY,and SC exhibited decreasing trends over time.The most critical factors affecting WY,SC,HQ,and CS were the actual evapotranspiration,precipitation,slope,and normalized difference vegetation index,respectively.In addition,the effects of different factors on various ESs exhibited spatial heterogeneity.These results could provide spatial decision support for eco-protection and rehabilitation in ecologically fragile areas.
基金financially supported by the National Natural Science Foundation of China (No. 41406146)Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, China (No. 20171A02)
文摘There are substantial spatial variations in the relationships between catch-per-unit-effort(CPUE) and oceanographic conditions with respect to pelagic species. This study examines the monthly spatiotemporal distribution of CPUE of the neon flying squid, Ommastrephes bartramii, in the Northwest Pacific from July to November during 2004–2013, and analyzes the relationships with oceanographic conditions using a generalized additive model(GAM) and geographically weighted regression(GWR) model. The results show that most of the squids were harvested in waters with sea surface temperature(SST) between 7.6 and 24.6℃, chlorophyll-a(Chl-a) concentration below 1.0 mgm^(-3), sea surface salinity(SSS) between 32.7 and 34.6, and sea surface height(SSH) between-12.8 and 28.4 cm. The monthly spatial distribution patterns of O. bartramii predicted using GAM and GWR models are similar to observed patterns for all months. There are notable variations in the local coefficients of GWR, indicating the presence of spatial non-stationarity in the relationship between O. bartramii CPUE and oceanographic conditions. The statistical results show that there were nearly equal positive and negative coefficients for Chl-a, more positive than negative coefficients for SST, and more negative than positive coefficients for SSS and SSH. The overall accuracies of the hot spots predicted by GWR exceed 60%(except for October), indicating a good performance of this model and its improvement over GAM. Our study provides a better understanding of the ecological dynamics of O. bartramii CPUE and makes it possible to use GWR to study the spatially nonstationary characteristics of other pelagic species.
文摘为分析建成环境对公共自行车出行模式的影响,文章结合公共自行车运营数据和建成环境数据,以公共自行车站点为中心建立缓冲区并提取缓冲区内兴趣点(point of interest,POI),在考虑POI规模的基础上划分站点类型;根据站点类型对出行起讫点(origin-destination,OD)分类,以OD类型确定公共自行车出行模式,使用地理加权回归(geographically weighted regression,GWR)模型,分析建成环境对公共自行车出行模式的影响;以昆明市为例进行实证分析。结果表明:昆明市公共自行车出行模式可划分为16种,OD皆为住宅主导型和公司(企业)主导型站点的出行模式约占69.26%;建成环境对不同出行模式的影响效应存在差异;土地利用混合度是公共自行车出行模式的主要影响因素。研究结果可为公共自行车布局优化及运营管理提供参考。