Wireless Sensor Networks (WSNs) have inherent and unique characteristics rather than traditional networks. They have many different constraints, such as computational power, storage capacity, energy supply and etc;of ...Wireless Sensor Networks (WSNs) have inherent and unique characteristics rather than traditional networks. They have many different constraints, such as computational power, storage capacity, energy supply and etc;of course the most important issue is their energy constraint. Energy aware routing protocol is very important in WSN, but routing protocol which only considers energy has not efficient performance. Therefore considering other parameters beside energy efficiency is crucial for protocols efficiency. Depending on sensor network application, different parameters can be considered for its protocols. Congestion management can affect routing protocol performance. Congestion occurrence in network nodes leads to increasing packet loss and energy consumption. Another parameter which affects routing protocol efficiency is providing fairness in nodes energy consumption. When fairness is not considered in routing process, network will be partitioned very soon and then the network performance will be decreased. In this paper a Tree based Energy and Congestion Aware Routing Protocol (TECARP) is proposed. The proposed protocol is an energy efficient routing protocol which tries to manage congestion and to provide fairness in network. Simulation results shown in this paper imply that the TECARP has achieved its goals.展开更多
Energy aware routing protocols can be classified into energy saver and energy manager. Energy saver protocols decrease energy consumption totally. Most of them try to find the shortest path between source and destinat...Energy aware routing protocols can be classified into energy saver and energy manager. Energy saver protocols decrease energy consumption totally. Most of them try to find the shortest path between source and destination to reduce energy consumption. But energy manager protocols balance energy consumption in network to avoid network partitioning. Finding best route only based on energy balancing consideration may lead to long path with high delay and decreases network lifetime. On the other hand, finding best route only with the shortest distance consideration may lead to network partitioning. This paper improves SEER [1] routing protocol. Traditional SEER is only energy saver and has poor idea about energy balancing. Our proposed protocol, named BEAR, considers energy balancing and optimal distance both. It finds a fair tradeoff between energy balancing and optimal distance by learning automata concept. We simulate and evaluate routing protocols by Glomosim [2] simulator.展开更多
In order to minimize the energy consumption in the discovery of the routing path, this paper introduces a novel concept of effective transmission (ET) that ensures each forwarding node is not only farther from the s...In order to minimize the energy consumption in the discovery of the routing path, this paper introduces a novel concept of effective transmission (ET) that ensures each forwarding node is not only farther from the source node, but also nearer to the destination node with respect to its sender, An energ-aware routing protocol based on ET is proposed. It enables the energy consumption for each hop to be the least for the transmission. The simulation results show the routing protocol is effective in the performance of energy consumption comparing with some other routing protocols.展开更多
Wireless Sensor Networks (WSNs) are used in different civilian, military, and industrial applications. Recently, many routing protocols have been proposed attempting to find suitable routes to transmit data. In this p...Wireless Sensor Networks (WSNs) are used in different civilian, military, and industrial applications. Recently, many routing protocols have been proposed attempting to find suitable routes to transmit data. In this paper we propose a Fuzzy Energy Aware tree-based Routing (FEAR) protocol that aims to enhance existing tree-based routing protocols and prolong the network’s life time by considering sensors’ limited energy. The design and implementation of the new protocol is based on cross-layer structure where information from different layers are utilized to achieve the best power saving. Each node maintains a list of its neighbors in order to use neighbors’links in addition to the parent-child links. The protocol is tested and compared with other tree-based protocols and the simulation results show that FEAR protocol is more energy-efficient than comparable protocols. According to the results FEAR protocol saves up to 70.5% in the number of generated control messages and up to 55.08% in the consumed power.展开更多
In this article, a routing protocol EARP (Energy Aware Routing Protocol) with the terminal node is proposed, to deal with the impact of the limited energy resources of Cognitive Radio Networks on the whole network rou...In this article, a routing protocol EARP (Energy Aware Routing Protocol) with the terminal node is proposed, to deal with the impact of the limited energy resources of Cognitive Radio Networks on the whole network routing. The protocol allows choosing the route from the neighbor nodes in different transmission paths, according to energy consumption of a single node and the full path. If the path breaks, the protocol will increase local routing maintenance strategy. It effectively reduces the retransmission caused by the situation, and improves the routing efficiency. It also can prevent the link transmission process selecting the fault route due to the energy depletion. Through simulation experiments compared with the LEACH (Low Energy Adaptive Clustering Hierarchy) routing protocol, the results showed that in the same experimental environment, the proposed EARP could obviously balance the load, protect low energy nodes, prolong the network survival time and reduce packet loss rate and packet delay of data delivery. So it can improve the energy consumption of sensing node and provide routing capabilities.展开更多
Recently, location-based routings in wireless sensor networks (WSNs) are attracting a lot of interest in the research community, especially because of its scalability. In location-based routing, the network size is sc...Recently, location-based routings in wireless sensor networks (WSNs) are attracting a lot of interest in the research community, especially because of its scalability. In location-based routing, the network size is scalable without increasing the signalling overhead as routing decisions are inherently localized. Here, each node is aware of its position in the network through some positioning device like GPS and uses this information in the routing mechanism. In this paper, we first discuss the basics of WSNs including the architecture of the network, energy consumption for the components of a typical sensor node, and draw a detailed picture of classification of location-based routing protocols. Then, we present a systematic and comprehensive taxonomy of location-based routing protocols, mostly for sensor networks. All the schemes are subsequently discussed in depth. Finally, we conclude the paper with some insights on potential research directions for location-based routing in WSNs.展开更多
Energy conservation is an essential and critical requirement for a wireless sensor network with battery oper-ated nodes intended for long term operations. Prior work has described different approaches to routing proto...Energy conservation is an essential and critical requirement for a wireless sensor network with battery oper-ated nodes intended for long term operations. Prior work has described different approaches to routing protocol designs that achieve energy efficiency in a wireless sensor network. Several of these works involve variations of mote-to-mote routing (flat routing) while some make use of leader nodes in clusters to perform routing (hierarchical routing). A key question then arises as to how the performance of an energy-aware, flat routing protocol compare with that of one based on hierarchical routing. This paper demonstrates a hierarchical routing protocol design that can conserve significant energy in its setup phase as well as during its steady state data dissemination phase. This paper describes the design of this protocol and evaluates its performance against existing energy-aware flat routing protocols. Simulation results show that it exhibits competitive performance against the flat routing protocols.展开更多
由电池供应电量的无线通信网络中,数据需要通过作为路由的中间节点进行传输,所以这些中间节点的能量消耗对整个网络的生存有很大的影响。本文从延长网络生存时间的目的出发,提出了一种能量优化的编码感知路由协议COER(Coding-aware base...由电池供应电量的无线通信网络中,数据需要通过作为路由的中间节点进行传输,所以这些中间节点的能量消耗对整个网络的生存有很大的影响。本文从延长网络生存时间的目的出发,提出了一种能量优化的编码感知路由协议COER(Coding-aware based Optimal Energy Routing),利用能量门限值以及相对剩余能量来均衡网络节点能量的消耗,同时用网络编码来减少能量的消耗,并将两者统一来实现网络能量的优化。仿真结果表明:COER能够减少传输能耗,均衡网络能量消耗,延长网络生存时间。展开更多
文摘Wireless Sensor Networks (WSNs) have inherent and unique characteristics rather than traditional networks. They have many different constraints, such as computational power, storage capacity, energy supply and etc;of course the most important issue is their energy constraint. Energy aware routing protocol is very important in WSN, but routing protocol which only considers energy has not efficient performance. Therefore considering other parameters beside energy efficiency is crucial for protocols efficiency. Depending on sensor network application, different parameters can be considered for its protocols. Congestion management can affect routing protocol performance. Congestion occurrence in network nodes leads to increasing packet loss and energy consumption. Another parameter which affects routing protocol efficiency is providing fairness in nodes energy consumption. When fairness is not considered in routing process, network will be partitioned very soon and then the network performance will be decreased. In this paper a Tree based Energy and Congestion Aware Routing Protocol (TECARP) is proposed. The proposed protocol is an energy efficient routing protocol which tries to manage congestion and to provide fairness in network. Simulation results shown in this paper imply that the TECARP has achieved its goals.
文摘Energy aware routing protocols can be classified into energy saver and energy manager. Energy saver protocols decrease energy consumption totally. Most of them try to find the shortest path between source and destination to reduce energy consumption. But energy manager protocols balance energy consumption in network to avoid network partitioning. Finding best route only based on energy balancing consideration may lead to long path with high delay and decreases network lifetime. On the other hand, finding best route only with the shortest distance consideration may lead to network partitioning. This paper improves SEER [1] routing protocol. Traditional SEER is only energy saver and has poor idea about energy balancing. Our proposed protocol, named BEAR, considers energy balancing and optimal distance both. It finds a fair tradeoff between energy balancing and optimal distance by learning automata concept. We simulate and evaluate routing protocols by Glomosim [2] simulator.
基金Supported by the National Natural Science Foun-dation of China (60572049) the Natural Science Foundation ofHubei Province of China (2005ABA264)
文摘In order to minimize the energy consumption in the discovery of the routing path, this paper introduces a novel concept of effective transmission (ET) that ensures each forwarding node is not only farther from the source node, but also nearer to the destination node with respect to its sender, An energ-aware routing protocol based on ET is proposed. It enables the energy consumption for each hop to be the least for the transmission. The simulation results show the routing protocol is effective in the performance of energy consumption comparing with some other routing protocols.
文摘Wireless Sensor Networks (WSNs) are used in different civilian, military, and industrial applications. Recently, many routing protocols have been proposed attempting to find suitable routes to transmit data. In this paper we propose a Fuzzy Energy Aware tree-based Routing (FEAR) protocol that aims to enhance existing tree-based routing protocols and prolong the network’s life time by considering sensors’ limited energy. The design and implementation of the new protocol is based on cross-layer structure where information from different layers are utilized to achieve the best power saving. Each node maintains a list of its neighbors in order to use neighbors’links in addition to the parent-child links. The protocol is tested and compared with other tree-based protocols and the simulation results show that FEAR protocol is more energy-efficient than comparable protocols. According to the results FEAR protocol saves up to 70.5% in the number of generated control messages and up to 55.08% in the consumed power.
文摘In this article, a routing protocol EARP (Energy Aware Routing Protocol) with the terminal node is proposed, to deal with the impact of the limited energy resources of Cognitive Radio Networks on the whole network routing. The protocol allows choosing the route from the neighbor nodes in different transmission paths, according to energy consumption of a single node and the full path. If the path breaks, the protocol will increase local routing maintenance strategy. It effectively reduces the retransmission caused by the situation, and improves the routing efficiency. It also can prevent the link transmission process selecting the fault route due to the energy depletion. Through simulation experiments compared with the LEACH (Low Energy Adaptive Clustering Hierarchy) routing protocol, the results showed that in the same experimental environment, the proposed EARP could obviously balance the load, protect low energy nodes, prolong the network survival time and reduce packet loss rate and packet delay of data delivery. So it can improve the energy consumption of sensing node and provide routing capabilities.
文摘Recently, location-based routings in wireless sensor networks (WSNs) are attracting a lot of interest in the research community, especially because of its scalability. In location-based routing, the network size is scalable without increasing the signalling overhead as routing decisions are inherently localized. Here, each node is aware of its position in the network through some positioning device like GPS and uses this information in the routing mechanism. In this paper, we first discuss the basics of WSNs including the architecture of the network, energy consumption for the components of a typical sensor node, and draw a detailed picture of classification of location-based routing protocols. Then, we present a systematic and comprehensive taxonomy of location-based routing protocols, mostly for sensor networks. All the schemes are subsequently discussed in depth. Finally, we conclude the paper with some insights on potential research directions for location-based routing in WSNs.
文摘Energy conservation is an essential and critical requirement for a wireless sensor network with battery oper-ated nodes intended for long term operations. Prior work has described different approaches to routing protocol designs that achieve energy efficiency in a wireless sensor network. Several of these works involve variations of mote-to-mote routing (flat routing) while some make use of leader nodes in clusters to perform routing (hierarchical routing). A key question then arises as to how the performance of an energy-aware, flat routing protocol compare with that of one based on hierarchical routing. This paper demonstrates a hierarchical routing protocol design that can conserve significant energy in its setup phase as well as during its steady state data dissemination phase. This paper describes the design of this protocol and evaluates its performance against existing energy-aware flat routing protocols. Simulation results show that it exhibits competitive performance against the flat routing protocols.
文摘由电池供应电量的无线通信网络中,数据需要通过作为路由的中间节点进行传输,所以这些中间节点的能量消耗对整个网络的生存有很大的影响。本文从延长网络生存时间的目的出发,提出了一种能量优化的编码感知路由协议COER(Coding-aware based Optimal Energy Routing),利用能量门限值以及相对剩余能量来均衡网络节点能量的消耗,同时用网络编码来减少能量的消耗,并将两者统一来实现网络能量的优化。仿真结果表明:COER能够减少传输能耗,均衡网络能量消耗,延长网络生存时间。