This study used spatial autoregression(SAR)model and geographically weighted regression(GWR)model to model the spatial patterns of farmland density and its temporal change in Gucheng County,Hubei Province,China in 199...This study used spatial autoregression(SAR)model and geographically weighted regression(GWR)model to model the spatial patterns of farmland density and its temporal change in Gucheng County,Hubei Province,China in 1999 and 2009,and discussed the difference between global and local spatial autocorrelations in terms of spatial heterogeneity and non-stationarity.Results showed that strong spatial positive correlations existed in the spatial distributions of farmland density,its temporal change and the driving factors,and the coefficients of spatial autocorrelations decreased as the spatial lag distance increased.SAR models revealed the global spatial relations between dependent and independent variables,while the GWR model showed the spatially varying fitting degree and local weighting coefficients of driving factors and farmland indices(i.e.,farmland density and temporal change).The GWR model has smooth process when constructing the farmland spatial model.The coefficients of GWR model can show the accurate influence degrees of different driving factors on the farmland at different geographical locations.The performance indices of GWR model showed that GWR model produced more accurate simulation results than other models at different times,and the improvement precision of GWR model was obvious.The global and local farmland models used in this study showed different characteristics in the spatial distributions of farmland indices at different scales,which may provide the theoretical basis for farmland protection from the influence of different driving factors.展开更多
This paper studies the relationship between accessibility and housing prices in Dalian by using an improved geographically weighted regression model and house prices, traffic, remote sensing images, etc. Multi-source ...This paper studies the relationship between accessibility and housing prices in Dalian by using an improved geographically weighted regression model and house prices, traffic, remote sensing images, etc. Multi-source data improves the accuracy of the spatial differentiation that reflects the impact of traffic accessibility on house prices. The results are as follows: first, the average house price is 12 436 yuan(RMB)/m^2, and reveals a declining trend from coastal areas to inland areas. The exception was Guilin Street, which demonstrates a local peak of house prices that decreases from the center of the street to its periphery. Second, the accessibility value is 33 minutes on average, excluding northern and eastern fringe areas, which was over 50 minutes. Third, the significant spatial correlation coefficient between accessibility and house prices is 0.423, and the coefficient increases in the southeastern direction. The strongest impact of accessibility on house prices is in the southeastern coast, and can be seen in the Lehua, Yingke, and Hushan communities, while the weakest impact is in the northwestern fringe, and can be seen in the Yingchengzi, Xixiaomo, and Daheishi community areas.展开更多
Drug use (DU), particularly injecting drug use (IDU) has been the main route of transmission and spread of Human Immunodeficiency Virus (HIV)/Acquired Immune Deficiency Syndrome (AIDSJ among injecting drug use...Drug use (DU), particularly injecting drug use (IDU) has been the main route of transmission and spread of Human Immunodeficiency Virus (HIV)/Acquired Immune Deficiency Syndrome (AIDSJ among injecting drug users (IDUs)[1]. Previous studies have proven that needles or cottons sharing during drug injection were major risk factors for HIV/AIDS transmission at the personal level[z4]. Being a social behavioral issue, HIV/AIDS related risk factors should be far beyond the personal level. Therefore, studies on HIV/AIDS related risk factors should focus not only on the individual factors, but also on the association between HIV/AIDS cases and macroscopic-factors, such as economic status, transportation, health care services, etc[1]. The impact of the macroscopic-factors on HIV/AIDS status might be either positive or negative, which are potentially reflected in promoting, delaying or detecting HIV/AIDS epidemics.展开更多
Aquatic habitat assessments encompass large and small wadeable streams which vary from many meters wide to ephemeral. Differences in stream sizes within or across watersheds, however, may lead to incompatibility of da...Aquatic habitat assessments encompass large and small wadeable streams which vary from many meters wide to ephemeral. Differences in stream sizes within or across watersheds, however, may lead to incompatibility of data at varying spatial scales. Specifically, issues caused by moving between scales on large and small streams are not typically addressed by many forms of statistical analysis, making the comparison of large (>30 m wetted width) and small stream (<10 m wetted width) habitat assessments difficult. Geographically weighted regression (GWR) may provide avenues for efficiency and needed insight into stream habitat data by addressing issues caused by moving between scales. This study examined the ability of GWR to consistently model stream substrate on both large and small wadeable streams at an equivalent resolution. We performed GWR on two groups of 60 randomly selected substrate patches from large and small streams and used depth measurements to model substrate. Our large and small stream substrate models responded equally well to GWR. Results showed no statistically significant difference between GWR R<sup>2 </sup>values of large and small stream streams. Results also provided a much needed method for comparison of large and small wadeable streams. Our results have merit for aquatic resource managers, because they demonstrate ability to spatially model and compare substrate on large and small streams. Using depth to guide substrate modeling by geographically weighted regression has a variety of applications which may help manage, monitor stream health, and interpret substrate change over time.展开更多
Spatial models are effective in obtaining local details on grassland biomass,and their accuracy has important practical significance for the stable management of grasses and livestock.To this end,the present study uti...Spatial models are effective in obtaining local details on grassland biomass,and their accuracy has important practical significance for the stable management of grasses and livestock.To this end,the present study utilized measured quadrat data of grass yield across different regions in the main growing season of temperate grasslands in Ningxia of China(August 2020),combined with hydrometeorology,elevation,net primary productivity(NPP),and other auxiliary data over the same period.Accordingly,non-stationary characteristics of the spatial scale,and the effects of influencing factors on grass yield were analyzed using a mixed geographically weighted regression(MGWR)model.The results showed that the model was suitable for correlation analysis.The spatial scale of ratio resident-area index(PRI)was the largest,followed by the digital elevation model,NPP,distance from gully,distance from river,average July rainfall,and daily temperature range;whereas the spatial scales of night light,distance from roads,and relative humidity(RH)were the most limited.All influencing factors maintained positive and negative effects on grass yield,save for the strictly negative effect of RH.The regression results revealed a multiscale differential spatial response regularity of different influencing factors on grass yield.Regression parameters revealed that the results of Ordinary least squares(OLS)(Adjusted R^(2)=0.642)and geographically weighted regression(GWR)(Adjusted R^(2)=0.797)models were worse than those of MGWR(Adjusted R^(2)=0.889)models.Based on the results of the RMSE and radius index,the simulation effect also was MGWR>GWR>OLS models.Ultimately,the MGWR model held the strongest prediction performance(R^(2)=0.8306).Spatially,the grass yield was high in the south and west,and low in the north and east of the study area.The results of this study provide a new technical support for rapid and accurate estimation of grassland yield to dynamically adjust grazing decision in the semi-arid loess hilly region.展开更多
为分析建成环境对公共自行车出行模式的影响,文章结合公共自行车运营数据和建成环境数据,以公共自行车站点为中心建立缓冲区并提取缓冲区内兴趣点(point of interest,POI),在考虑POI规模的基础上划分站点类型;根据站点类型对出行起讫点(...为分析建成环境对公共自行车出行模式的影响,文章结合公共自行车运营数据和建成环境数据,以公共自行车站点为中心建立缓冲区并提取缓冲区内兴趣点(point of interest,POI),在考虑POI规模的基础上划分站点类型;根据站点类型对出行起讫点(origin-destination,OD)分类,以OD类型确定公共自行车出行模式,使用地理加权回归(geographically weighted regression,GWR)模型,分析建成环境对公共自行车出行模式的影响;以昆明市为例进行实证分析。结果表明:昆明市公共自行车出行模式可划分为16种,OD皆为住宅主导型和公司(企业)主导型站点的出行模式约占69.26%;建成环境对不同出行模式的影响效应存在差异;土地利用混合度是公共自行车出行模式的主要影响因素。研究结果可为公共自行车布局优化及运营管理提供参考。展开更多
基金Under the auspices of National Natural Science Foundation of China(No.40601073,41101192,41201571)Fundamental Research Funds for the Central Universities(No.2011PY112,2011QC041,2011QC091)Huazhong Agricultural University Scientific&Technological Self-innovation Foundation(No.2011SC21)
文摘This study used spatial autoregression(SAR)model and geographically weighted regression(GWR)model to model the spatial patterns of farmland density and its temporal change in Gucheng County,Hubei Province,China in 1999 and 2009,and discussed the difference between global and local spatial autocorrelations in terms of spatial heterogeneity and non-stationarity.Results showed that strong spatial positive correlations existed in the spatial distributions of farmland density,its temporal change and the driving factors,and the coefficients of spatial autocorrelations decreased as the spatial lag distance increased.SAR models revealed the global spatial relations between dependent and independent variables,while the GWR model showed the spatially varying fitting degree and local weighting coefficients of driving factors and farmland indices(i.e.,farmland density and temporal change).The GWR model has smooth process when constructing the farmland spatial model.The coefficients of GWR model can show the accurate influence degrees of different driving factors on the farmland at different geographical locations.The performance indices of GWR model showed that GWR model produced more accurate simulation results than other models at different times,and the improvement precision of GWR model was obvious.The global and local farmland models used in this study showed different characteristics in the spatial distributions of farmland indices at different scales,which may provide the theoretical basis for farmland protection from the influence of different driving factors.
基金Under the auspices of National Natural Science Foundation of China(No.41471140,41771178)Liaoning Province Outstanding Youth Program(No.LJQ2015058)
文摘This paper studies the relationship between accessibility and housing prices in Dalian by using an improved geographically weighted regression model and house prices, traffic, remote sensing images, etc. Multi-source data improves the accuracy of the spatial differentiation that reflects the impact of traffic accessibility on house prices. The results are as follows: first, the average house price is 12 436 yuan(RMB)/m^2, and reveals a declining trend from coastal areas to inland areas. The exception was Guilin Street, which demonstrates a local peak of house prices that decreases from the center of the street to its periphery. Second, the accessibility value is 33 minutes on average, excluding northern and eastern fringe areas, which was over 50 minutes. Third, the significant spatial correlation coefficient between accessibility and house prices is 0.423, and the coefficient increases in the southeastern direction. The strongest impact of accessibility on house prices is in the southeastern coast, and can be seen in the Lehua, Yingke, and Hushan communities, while the weakest impact is in the northwestern fringe, and can be seen in the Yingchengzi, Xixiaomo, and Daheishi community areas.
基金supported by the National Scientific Research Mega-Project under the 12th Five-Year Plan of China(2012ZX10001001)
文摘Drug use (DU), particularly injecting drug use (IDU) has been the main route of transmission and spread of Human Immunodeficiency Virus (HIV)/Acquired Immune Deficiency Syndrome (AIDSJ among injecting drug users (IDUs)[1]. Previous studies have proven that needles or cottons sharing during drug injection were major risk factors for HIV/AIDS transmission at the personal level[z4]. Being a social behavioral issue, HIV/AIDS related risk factors should be far beyond the personal level. Therefore, studies on HIV/AIDS related risk factors should focus not only on the individual factors, but also on the association between HIV/AIDS cases and macroscopic-factors, such as economic status, transportation, health care services, etc[1]. The impact of the macroscopic-factors on HIV/AIDS status might be either positive or negative, which are potentially reflected in promoting, delaying or detecting HIV/AIDS epidemics.
文摘Aquatic habitat assessments encompass large and small wadeable streams which vary from many meters wide to ephemeral. Differences in stream sizes within or across watersheds, however, may lead to incompatibility of data at varying spatial scales. Specifically, issues caused by moving between scales on large and small streams are not typically addressed by many forms of statistical analysis, making the comparison of large (>30 m wetted width) and small stream (<10 m wetted width) habitat assessments difficult. Geographically weighted regression (GWR) may provide avenues for efficiency and needed insight into stream habitat data by addressing issues caused by moving between scales. This study examined the ability of GWR to consistently model stream substrate on both large and small wadeable streams at an equivalent resolution. We performed GWR on two groups of 60 randomly selected substrate patches from large and small streams and used depth measurements to model substrate. Our large and small stream substrate models responded equally well to GWR. Results showed no statistically significant difference between GWR R<sup>2 </sup>values of large and small stream streams. Results also provided a much needed method for comparison of large and small wadeable streams. Our results have merit for aquatic resource managers, because they demonstrate ability to spatially model and compare substrate on large and small streams. Using depth to guide substrate modeling by geographically weighted regression has a variety of applications which may help manage, monitor stream health, and interpret substrate change over time.
文摘Spatial models are effective in obtaining local details on grassland biomass,and their accuracy has important practical significance for the stable management of grasses and livestock.To this end,the present study utilized measured quadrat data of grass yield across different regions in the main growing season of temperate grasslands in Ningxia of China(August 2020),combined with hydrometeorology,elevation,net primary productivity(NPP),and other auxiliary data over the same period.Accordingly,non-stationary characteristics of the spatial scale,and the effects of influencing factors on grass yield were analyzed using a mixed geographically weighted regression(MGWR)model.The results showed that the model was suitable for correlation analysis.The spatial scale of ratio resident-area index(PRI)was the largest,followed by the digital elevation model,NPP,distance from gully,distance from river,average July rainfall,and daily temperature range;whereas the spatial scales of night light,distance from roads,and relative humidity(RH)were the most limited.All influencing factors maintained positive and negative effects on grass yield,save for the strictly negative effect of RH.The regression results revealed a multiscale differential spatial response regularity of different influencing factors on grass yield.Regression parameters revealed that the results of Ordinary least squares(OLS)(Adjusted R^(2)=0.642)and geographically weighted regression(GWR)(Adjusted R^(2)=0.797)models were worse than those of MGWR(Adjusted R^(2)=0.889)models.Based on the results of the RMSE and radius index,the simulation effect also was MGWR>GWR>OLS models.Ultimately,the MGWR model held the strongest prediction performance(R^(2)=0.8306).Spatially,the grass yield was high in the south and west,and low in the north and east of the study area.The results of this study provide a new technical support for rapid and accurate estimation of grassland yield to dynamically adjust grazing decision in the semi-arid loess hilly region.
文摘为分析建成环境对公共自行车出行模式的影响,文章结合公共自行车运营数据和建成环境数据,以公共自行车站点为中心建立缓冲区并提取缓冲区内兴趣点(point of interest,POI),在考虑POI规模的基础上划分站点类型;根据站点类型对出行起讫点(origin-destination,OD)分类,以OD类型确定公共自行车出行模式,使用地理加权回归(geographically weighted regression,GWR)模型,分析建成环境对公共自行车出行模式的影响;以昆明市为例进行实证分析。结果表明:昆明市公共自行车出行模式可划分为16种,OD皆为住宅主导型和公司(企业)主导型站点的出行模式约占69.26%;建成环境对不同出行模式的影响效应存在差异;土地利用混合度是公共自行车出行模式的主要影响因素。研究结果可为公共自行车布局优化及运营管理提供参考。