The Shicaogou granite has been identified as a magnesian (Fe-number=0.71-0.76), calcic to calc-alkalic (MALI=3.84-5.76) and peraluminous (ASI=1.06-1.13) granite of the syn-collisional S-type, with high SiO2(>71%), ...The Shicaogou granite has been identified as a magnesian (Fe-number=0.71-0.76), calcic to calc-alkalic (MALI=3.84-5.76) and peraluminous (ASI=1.06-1.13) granite of the syn-collisional S-type, with high SiO2(>71%), A12O3 (>13%) and Na2O+K2O (6.28%-7.33%, equal for NaO2 and K2O). Trace element and REE analyses show that the granite is rich in LILE such as of Rb, Sr, Ba and Th, and poor in HFSE like Yb, Y, Zr and Hf. Its Rb/Sr ratio is greater than 1; the contents of Nb and Ta, and the ratio of Nb/Ta as well as the REE geochemical features (e.g. REE abundance, visible fractionation of LREE and HREE and medium to pronounced negative Eu anomalies) are all similar to those of crust-origin, continent-continent syn-collisional granite. Moreover, the granite exhibits almost the same pattern as that of the typical continent-continent syn-collisional granite on the spider diagram and all samples fall within the syn-collisional granite field.The cathodoluminescence (CL) investigations have revealed that the zircon from the Shicaogou granite represents a typical magmatic product characterized by its colorless, transparent and euhedral crystals, and distinct zoning of oscillatory bands. Residual cores of irregular zircon can be found in a few enhedral grains. Trace element studies of the zircon grains, with high contents of P, Y, Hf, Th, U and REE and high ratios of Th/U, obviously positive Ce anomalies and HREE enrichment compared to LREE, also result in the same conclusion.The LA-ICP-MS U-Pb isotopic data from 24 spots of 21 zircon grains demonstrate that 20 spots in the oscillatory zone yield an average weighted 206Pb/238U age of 925±11 Ma, indicating that the Shicaogou granite was formed in the Neoproterozoic. Combined with other Neoproterozoic syn-collisional granites found in the study area, the present geochronological determination can further reveal that collision-amalgamation events could have occurred among some continental blocks in the Qinling orogenic belt during the Neoproterozoic. This in turn provides an accurate chronological constraint on the Neoproterozoic break-up and convergence in the belt.展开更多
Objective The formation and evolution of Songnen massif has always been a hot topic,and the presence of Precambrian basement on the Songnen massif is still controversial:(1)Lacking of Pre-Paleozoic dating results,the ...Objective The formation and evolution of Songnen massif has always been a hot topic,and the presence of Precambrian basement on the Songnen massif is still controversial:(1)Lacking of Pre-Paleozoic dating results,the Precambrian basement on Songnen massif does not extend largely according to the isotopic dating results of core from basement,(2)the existence of gneiss from deep drill holes展开更多
The Precambrian basement rocks in the Bengbu and neighboring areas, located at the southeastern margin of the North China Craton, occur as granulite terrains and xenoliths in the Mesozoic dioritic porphyry.
A suit of metamorphic rocks experienced amphibolite and partly granulite facies metamorphism exposed on the Lhasa block,which are recognized as the basement of the Lhasa block named as Nyainqentanglha Group in the
Objective The Late Paleozoic Southern Tianshan Ocean is usually considered to be the last-closed ocean in the Tianshan Orogeny. However, there is still no consensus if this is indeed the case. Blueschist, eclogite an...Objective The Late Paleozoic Southern Tianshan Ocean is usually considered to be the last-closed ocean in the Tianshan Orogeny. However, there is still no consensus if this is indeed the case. Blueschist, eclogite and ophiolite are present in the Atbashi Range, Kyrgyzstan, which are believed to be the relics of the Southern Tianshan Ocean. New data obtained through Ar-Ar isotopic analysis in this research provide reliable chronological restrictions for this problem.展开更多
The Kuda ophiolite belongs to the early Paleozoic ophiolite belt in Western Kunlun Mountains and is composed of metamorphic peridotites,cumulate peridotites,mafic volcanic rocks and quartzites(Li et al.,
A table tuff interlayer at the bottom of Chang-7 Member of Yanchang Formation,the Ordos Basin,may serve as an indicator for stratigraphic division and correlation.In this study,zircon SHRIMP U-Pb dating was performed ...A table tuff interlayer at the bottom of Chang-7 Member of Yanchang Formation,the Ordos Basin,may serve as an indicator for stratigraphic division and correlation.In this study,zircon SHRIMP U-Pb dating was performed on the tuff at the bottom of Chang-7 Member using samples from wells Luo-36 and Zhuang-211 in the southwest of the basin,which yielded weighted average 206Pb/238U ages of 241.3±2.4 and 239.7±1.7 Ma,respectively.The cathodoluminescence images and the U/Th element ratio of tuff indicate that the zircons are magmatogenic and their ages represent that of the sedimentation age of the tuff at the bottom of Chang-7,which is 239.7–241.3 Ma in age.This finding confirms presence of the Middle Triassic strata at the bottom of Yanchang Formation.Taking previous findings into account,we suggest restricing the Late Triassic Yanchang Formation sensu stricto to the interval from Chang-7 to Chang-1 and assigning the interval from Chang-10 to Chang-8 as the Tongchuan Formation.The tuff at the bottom of the Chang-7 Member of Yanchang Formation represents the sedimentary response to the Qinling orogenic event in the early Indosinian.This tectonic event resulted in major changes in paleogeomorphology and the sedimentary environment of the lake basin during deposition of the Yanchang Formation.During this period,extremely favourable conditions were present for subsequent hydrocarbon generation and pooling of lake basin.展开更多
A strong tectono-magmatic thermal event has been revealed by field observations of granitic, migmatiticand metamorphic rocks in the hinterland of the Dabie Mountains. K-Ar, Ar-Ar and Rb-Sr determinationsshow that the ...A strong tectono-magmatic thermal event has been revealed by field observations of granitic, migmatiticand metamorphic rocks in the hinterland of the Dabie Mountains. K-Ar, Ar-Ar and Rb-Sr determinationsshow that the event took place 133-117 Ma ago (Yanshanian). Contemporaneously, a southwestwardthrust-type ductile shearing at multiple levels occurred in the lower crust or at even deeper levels, suggestingthat the Dabie Mountains region was still under the influence ot strong continent-continent overlappingtectonism of the Yangtze block under the Sino-Korean block at depth. Metamorphic rocks of amphibolitefacies, migmatites and deep structural deformations resulting from this tectonothermal event are now exposedto the surface. The present features of the Dabie Mountains thus have appeared only since ca. 100 Ma B.P. Theblock composed of the Dabie Group is not an uplift or shield which would have undergone a long-continuederosion.展开更多
基金the National NaturalScience Foundation of China(Grant No.140032010-C,49972063)the National Key Basic Research andDevelopment Project of China(Grant No.G1999075508)+3 种基金the Ministry of Education's Teacher Fund(No.40133020)the Natural Science Foundation of Shaanxi Province(2002D03)the Special Foundation of the Department ofEducation of Shaanxi Province(01JK108) the ScienceFoundation of Northwest University.
文摘The Shicaogou granite has been identified as a magnesian (Fe-number=0.71-0.76), calcic to calc-alkalic (MALI=3.84-5.76) and peraluminous (ASI=1.06-1.13) granite of the syn-collisional S-type, with high SiO2(>71%), A12O3 (>13%) and Na2O+K2O (6.28%-7.33%, equal for NaO2 and K2O). Trace element and REE analyses show that the granite is rich in LILE such as of Rb, Sr, Ba and Th, and poor in HFSE like Yb, Y, Zr and Hf. Its Rb/Sr ratio is greater than 1; the contents of Nb and Ta, and the ratio of Nb/Ta as well as the REE geochemical features (e.g. REE abundance, visible fractionation of LREE and HREE and medium to pronounced negative Eu anomalies) are all similar to those of crust-origin, continent-continent syn-collisional granite. Moreover, the granite exhibits almost the same pattern as that of the typical continent-continent syn-collisional granite on the spider diagram and all samples fall within the syn-collisional granite field.The cathodoluminescence (CL) investigations have revealed that the zircon from the Shicaogou granite represents a typical magmatic product characterized by its colorless, transparent and euhedral crystals, and distinct zoning of oscillatory bands. Residual cores of irregular zircon can be found in a few enhedral grains. Trace element studies of the zircon grains, with high contents of P, Y, Hf, Th, U and REE and high ratios of Th/U, obviously positive Ce anomalies and HREE enrichment compared to LREE, also result in the same conclusion.The LA-ICP-MS U-Pb isotopic data from 24 spots of 21 zircon grains demonstrate that 20 spots in the oscillatory zone yield an average weighted 206Pb/238U age of 925±11 Ma, indicating that the Shicaogou granite was formed in the Neoproterozoic. Combined with other Neoproterozoic syn-collisional granites found in the study area, the present geochronological determination can further reveal that collision-amalgamation events could have occurred among some continental blocks in the Qinling orogenic belt during the Neoproterozoic. This in turn provides an accurate chronological constraint on the Neoproterozoic break-up and convergence in the belt.
基金financially supported by China Geological Survey (Grants12120113053900 and DD20160047)
文摘Objective The formation and evolution of Songnen massif has always been a hot topic,and the presence of Precambrian basement on the Songnen massif is still controversial:(1)Lacking of Pre-Paleozoic dating results,the Precambrian basement on Songnen massif does not extend largely according to the isotopic dating results of core from basement,(2)the existence of gneiss from deep drill holes
基金financially supported by the Ph.D Foundation of the Ministry of Education of China(grant No.20133402130008)the National Basic Research Program of China(grant No.2015CB856104)the National Natural Science Foundation of China(grant No.41273036)
文摘The Precambrian basement rocks in the Bengbu and neighboring areas, located at the southeastern margin of the North China Craton, occur as granulite terrains and xenoliths in the Mesozoic dioritic porphyry.
基金funded by grants from the NSF China(No.41572051)the China Geological Survey(No.DD20160022-01)project from Institute of Geology,Chinese Academy of Geological Sciences(J1518)
文摘A suit of metamorphic rocks experienced amphibolite and partly granulite facies metamorphism exposed on the Lhasa block,which are recognized as the basement of the Lhasa block named as Nyainqentanglha Group in the
基金sponsored by the China Geological Survey(grants No.1212011120335 and 12120114006201)
文摘Objective The Late Paleozoic Southern Tianshan Ocean is usually considered to be the last-closed ocean in the Tianshan Orogeny. However, there is still no consensus if this is indeed the case. Blueschist, eclogite and ophiolite are present in the Atbashi Range, Kyrgyzstan, which are believed to be the relics of the Southern Tianshan Ocean. New data obtained through Ar-Ar isotopic analysis in this research provide reliable chronological restrictions for this problem.
基金supported by National Natural Science Foundation Project(grant number 41302051)Shaanxi Province Science Technology Research Development Plan Project(grant number 2014JM2-4037)National Sci-Tech Support Plan Project(grant number 2011BAB06B05-02)
文摘The Kuda ophiolite belongs to the early Paleozoic ophiolite belt in Western Kunlun Mountains and is composed of metamorphic peridotites,cumulate peridotites,mafic volcanic rocks and quartzites(Li et al.,
基金supported by National Science and Technology Major Project(Grant No.2011ZX05044)
文摘A table tuff interlayer at the bottom of Chang-7 Member of Yanchang Formation,the Ordos Basin,may serve as an indicator for stratigraphic division and correlation.In this study,zircon SHRIMP U-Pb dating was performed on the tuff at the bottom of Chang-7 Member using samples from wells Luo-36 and Zhuang-211 in the southwest of the basin,which yielded weighted average 206Pb/238U ages of 241.3±2.4 and 239.7±1.7 Ma,respectively.The cathodoluminescence images and the U/Th element ratio of tuff indicate that the zircons are magmatogenic and their ages represent that of the sedimentation age of the tuff at the bottom of Chang-7,which is 239.7–241.3 Ma in age.This finding confirms presence of the Middle Triassic strata at the bottom of Yanchang Formation.Taking previous findings into account,we suggest restricing the Late Triassic Yanchang Formation sensu stricto to the interval from Chang-7 to Chang-1 and assigning the interval from Chang-10 to Chang-8 as the Tongchuan Formation.The tuff at the bottom of the Chang-7 Member of Yanchang Formation represents the sedimentary response to the Qinling orogenic event in the early Indosinian.This tectonic event resulted in major changes in paleogeomorphology and the sedimentary environment of the lake basin during deposition of the Yanchang Formation.During this period,extremely favourable conditions were present for subsequent hydrocarbon generation and pooling of lake basin.
基金This paper is one of results of the project"Tectono-Magmatic Evolution of the Southern Margin of the Sino-Korean Paraplatform and Their Relationship to Oil and Gas-bearing Basins in Southern North China"(1989).
文摘A strong tectono-magmatic thermal event has been revealed by field observations of granitic, migmatiticand metamorphic rocks in the hinterland of the Dabie Mountains. K-Ar, Ar-Ar and Rb-Sr determinationsshow that the event took place 133-117 Ma ago (Yanshanian). Contemporaneously, a southwestwardthrust-type ductile shearing at multiple levels occurred in the lower crust or at even deeper levels, suggestingthat the Dabie Mountains region was still under the influence ot strong continent-continent overlappingtectonism of the Yangtze block under the Sino-Korean block at depth. Metamorphic rocks of amphibolitefacies, migmatites and deep structural deformations resulting from this tectonothermal event are now exposedto the surface. The present features of the Dabie Mountains thus have appeared only since ca. 100 Ma B.P. Theblock composed of the Dabie Group is not an uplift or shield which would have undergone a long-continuederosion.