期刊文献+
共找到2,022篇文章
< 1 2 102 >
每页显示 20 50 100
Biogeology. Biosphere from the Archean to Technogene
1
作者 Rudko G. 《Journal of Geological Resource and Engineering》 2016年第1期12-28,共17页
Biogeological history of the Earth was considered as a process of continuous transformation and permanent adaptation from original forms of life to its current state. The development of life on Earth arose under the c... Biogeological history of the Earth was considered as a process of continuous transformation and permanent adaptation from original forms of life to its current state. The development of life on Earth arose under the conditions of changes in geological processes, chemical composition of the atmosphere and the aquatic environment during the periods between global catastrophes. As a result, more than 3.8 billion years were needed to form anthropogenic system "man--geological and adjacent environment", which transformed the biosphere according to human needs, creating a precedent of inconsistency between human needs and biosphere resources. The main scenarios of human and biosphere development were determined in the result of technogene. Scenarios of technogene progress and human role under conditions of intense transformation of the biosphere due to anthropogenic activities were investigated as well. 展开更多
关键词 BIOSPHERE BIOTA GEODYNAMICS geological environment environmental safety environmental disaster stratigraphic unit.
下载PDF
Preliminary research and scheme design of deep underground in situ geo-information detection experiment for Geology in Time
2
作者 Heping Xie Ru Zhang +13 位作者 Zetian Zhang Yinshuang Ai Jianhui Deng Yun Chen Yong Zhou Mingchuan Li Liqiang Liu Mingzhong Gao Zeqian Yang Weiqiang Ling Heng Gao Qijun Hao Kun Xiao Chendi Lou 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第1期1-13,共13页
The deep earth,deep sea,and deep space are the main parts of the national“three deep”strategy,which is in the forefront of the strategic deployment clearly defined in China’s 14th Five-Year Plan(2021-2025)and the L... The deep earth,deep sea,and deep space are the main parts of the national“three deep”strategy,which is in the forefront of the strategic deployment clearly defined in China’s 14th Five-Year Plan(2021-2025)and the Long-Range Objectives Through the Year 2035.It is important to reveal the evolutionary process and mechanism of deep tectonics to understand the earth’s past,present and future.The academic con-notation of Geology in Time has been given for the first time,which refers to the multi-field evolution response process of geological bodies at different time and spatial scales caused by geological processes inside and outside the Earth.Based on the deep in situ detection space and the unique geological envi-ronment of China Jinping Underground Laboratory,the scientific issue of the correlation mechanism and law between deep internal time-varying and shallow geological response is given attention.Innovative research and frontier exploration on deep underground in situ geo-information detection experiments for Geology in Time are designed to be carried out,which will have the potential to explore the driving force of Geology in Time,reveal essential laws of deep earth science,and explore innovative technologies in deep underground engineering. 展开更多
关键词 Deep underground geology in Time China Jinping Underground Laboratory In situ detection
下载PDF
Planning and construction of Xiong’an New Area(city of over 5 million people):Contributions of China’s geologists and urban geology
3
作者 Bo Han Zhen Ma +9 位作者 Liang-jun Lin Hong-wei Liu Yi-hang Gao Yu-bo Xia Hai-tao Li Xu Guo Feng Ma Yu-shan Wang Ya-long Zhou Hong-qiang Li 《China Geology》 CAS CSCD 2024年第3期382-408,共27页
China established Xiong’an New Area in Hebei Province in 2017,which is planned to accommodate about 5 million people,aiming to relieve Beijing City of the functions non-essential to its role as China’s capital and t... China established Xiong’an New Area in Hebei Province in 2017,which is planned to accommodate about 5 million people,aiming to relieve Beijing City of the functions non-essential to its role as China’s capital and to expedite the coordinated development of the Beijing-Tianjin-Hebei region.From 2017 to 2021,the China Geological Survey(CGS)took the lead in multi-factor urban geological surveys involving space,resources,environments,and disasters according to the general requirements of“global vision,international standards,distinctive Chinese features,and future-oriented goals”in Xiong’an New Area,identifying the engineering geologic conditions and geologic environmental challenges of this area.The achievements also include a 3D engineering geological structure model for the whole area,along with“one city proper and five clusters”,insights into the ecology and the background endowment of natural resources like land,geothermal resources,groundwater,and wetland of the area before engineering construction,a comprehensive monitoring network of resources and environments in the area,and the“Transparent Xiong’an”geological information platform that is open,shared,dynamically updated,and three-dimensionally visualized.China’s geologists and urban geology have played a significant role in the urban planning and construction of Xiong’an New Area,providing whole-process geological solutions for urban planning,construction,operation and management.The future urban construction of Xiong’an New Area will necessitate the theoretical and technical support of earth system science(ESS)from various aspects,and the purpose is to enhance the resilience of the new type of city and to provide support for the green,low-carbon,and sustainable development of this area. 展开更多
关键词 Low Carbon New City Planning and construction Land Geothermal resources Groundwater Wetland Underground space Geologic disasters Site stability Natural resource Ecosystem Geological safety Transparent Xiong’an Resilient city Xiong’an New Area
下载PDF
Exploration of the Construction of the Civic and Political Education in Engineering Geology Course
4
作者 Dingyuan Luo 《Journal of Contemporary Educational Research》 2024年第2期14-18,共5页
The purpose of this paper is to discuss the integration of the elements of civic and political education into the engineering geology course to improve students’ideological and moral qualities.It is proposed that by ... The purpose of this paper is to discuss the integration of the elements of civic and political education into the engineering geology course to improve students’ideological and moral qualities.It is proposed that by integrating elements of civic and political education,students are guided to form a positive attitude toward engineering practice as well as correct values and ethics.With regard to the teaching design and implementation of the course,the implementation paths of teacher team building,careful teaching design,innovative teaching methods,and the integration of civic and politics in practical teaching are proposed to summarize the significance of integrating the elements of civic and political education in the construction of the engineering geology course.It is pointed out that this integration not only improves the quality of the course,but also provides a reference for the civic and political education of other similar professional courses.This integration not only focuses on the teaching of professional knowledge,but also pays more attention to the cultivation of students’ideology and morality,which provides a model and guidance for shaping new talents with all-round development. 展开更多
关键词 Engineering geology Civic and political education Implementation approach
下载PDF
Geology:2013年四川芦山地震:中国四川盆地山脉前缘盲断层产生的地震灾害
5
作者 徐文杰 Wang M M +1 位作者 Dong J Shaw J H 《国际地震动态》 2015年第3期2-2,共1页
2014年8月Geology杂志发表了一篇“2013年四川芦山地震:中国四川盆地山脉前缘盲断层产生的地震灾害”(The 2013Lushan earthquake:Implications for seismic hazards posed by the Range Front blind thrust in the Sichuan Basin,Ch... 2014年8月Geology杂志发表了一篇“2013年四川芦山地震:中国四川盆地山脉前缘盲断层产生的地震灾害”(The 2013Lushan earthquake:Implications for seismic hazards posed by the Range Front blind thrust in the Sichuan Basin,China)的文章. 展开更多
关键词 地震灾害 geology 聚合板块 posed BLIND THRUST 研究难度 三维模型 反射剖面 汶川
下载PDF
Petroleum geology features and research developments of hydrocarbon accumulation in deep petroliferous basins 被引量:35
6
作者 Xiong-Qi Pang Cheng-Zao Jia Wen-Yang Wang 《Petroleum Science》 SCIE CAS CSCD 2015年第1期1-53,共53页
As petroleum exploration advances and as most of the oil-gas reservoirs in shallow layers have been explored, petroleum exploration starts to move toward deep basins, which has become an inevitable choice. In this pap... As petroleum exploration advances and as most of the oil-gas reservoirs in shallow layers have been explored, petroleum exploration starts to move toward deep basins, which has become an inevitable choice. In this paper, the petroleum geology features and research progress on oil-gas reservoirs in deep petroliferous basins across the world are characterized by using the latest results of worldwide deep petroleum exploration. Research has demonstrated that the deep petroleum shows ten major geological features. (1) While oil-gas reservoirs have been discovered in many different types of deep petroliferous basins, most have been discovered in low heat flux deep basins. (2) Many types of petroliferous traps are developed in deep basins, and tight oil-gas reservoirs in deep basin traps are arousing increasing attention. (3) Deep petroleum normally has more natural gas than liquid oil, and the natural gas ratio increases with the burial depth. (4) The residual organic matter in deep source rocks reduces but the hydrocarbon expulsion rate and efficiency increase with the burial depth. (5) There are many types of rocks in deep hydrocarbon reservoirs, and most are clastic rocks and carbonates. (6) The age of deep hydrocarbon reservoirs is widely different, but those recently discovered are pre- dominantly Paleogene and Upper Paleozoic. (7) The porosity and permeability of deep hydrocarbon reservoirs differ widely, but they vary in a regular way with lithology and burial depth. (8) The temperatures of deep oil-gas reservoirs are widely different, but they typically vary with the burial depth and basin geothermal gradient. (9) The pressures of deep oil-gas reservoirs differ significantly, but they typically vary with burial depth, genesis, and evolu- tion period. (10) Deep oil-gas reservoirs may exist with or without a cap, and those without a cap are typically of unconventional genesis. Over the past decade, six major steps have been made in the understanding of deep hydrocarbon reservoir formation. (1) Deep petroleum in petroliferous basins has multiple sources and many dif- ferent genetic mechanisms. (2) There are high-porosity, high-permeability reservoirs in deep basins, the formation of which is associated with tectonic events and subsurface fluid movement. (3) Capillary pressure differences inside and outside the target reservoir are the principal driving force of hydrocarbon enrichment in deep basins. (4) There are three dynamic boundaries for deep oil-gas reservoirs; a buoyancy-controlled threshold, hydrocarbon accumulation limits, and the upper limit of hydrocarbon generation. (5) The formation and distribution of deep hydrocarbon res- ervoirs are controlled by free, limited, and bound fluid dynamic fields. And (6) tight conventional, tight deep, tight superimposed, and related reconstructed hydrocarbon reservoirs formed in deep-limited fluid dynamic fields have great resource potential and vast scope for exploration. Compared with middle-shallow strata, the petroleum geology and accumulation in deep basins are more complex, which overlap the feature of basin evolution in different stages. We recommend that further study should pay more attention to four aspects: (1) identification of deep petroleum sources and evaluation of their relative contributions; (2) preservation conditions and genetic mechanisms of deep high-quality reservoirs with high permeability and high porosity; (3) facies feature and transformation of deep petroleum and their potential distribution; and (4) economic feasibility evaluation of deep tight petroleum exploration and development. 展开更多
关键词 Petroliferous basin Deep petroleum geology features Hydrocarbon accumulation Petroleum exploration Petroleum resources
下载PDF
Mineralization Styles and Genesis of the Yinkeng Au-Ag-Pb-Zn-Cu-Mn Polymetallic Orefield, Southern Jiangxi Province, SE China: Evidence from Geology, Fluid Inclusions, Isotopes and Chronology 被引量:14
7
作者 FENG Chengyou LI Daxin +2 位作者 ZENG Zailin ZHANG Dequan SHE Hongquan 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2014年第3期825-844,共20页
The Yinkeng orefield in Yudu County,Jiangxi Province,SE China,is a zone of concentrated Au-Ag-Pb-Zn-Cu-Mn polymetallic ores.Based on summing up basic geology and ore geology of the orefieid,the polymetallic deposits i... The Yinkeng orefield in Yudu County,Jiangxi Province,SE China,is a zone of concentrated Au-Ag-Pb-Zn-Cu-Mn polymetallic ores.Based on summing up basic geology and ore geology of the orefieid,the polymetallic deposits in the orefield have been divided into seven major substyles according to their occurring positions and control factors.The ore-forming fluid inclusion styles in the orefield include those of two-phase fluid,liquid CO2-bearing three-phase and daughter mineral-bearing multi-phase.The homogenization temperatures range from 382° to 122℃,falling into five clusters of 370° to 390°,300° to 360°,230° to 300°,210° to 290° and 120° to 200°,and the clusters of 300° to 360°,230° to 300° and 120° to 200° are three major mineralization stages,with fluid salinity peaks from 4.14% to 7.31%,2.07% to 7.31% and 0.53% to 3.90%,respectively.The ore-forming fluids are mainly type of NaCl-H2O with medium to high density (0.74-1.02 g/cm3),or CO2-bearing NaCl-H2O with medium to low density (0.18-0.79 g/cm3).The fluid salinity and density both show a decline tendency with decreasing temperature.According to the measurement and calculation of Hand O-isotopic compositions in the quartz of the quartz-sulfide veins,δDV-SMOW of the ore-forming fluid is from-84‰ to-54‰,and δ18OV-SMOW of that is from 6.75‰ to 9.21‰,indicating a magmatic fluid.The δ34SV-CDT of sulfides in the ores fall into two groups,one is from-4.4‰ to 2.2‰ with average of-1.42‰,and the other from 18.8‰ to 21.6‰ with average of 19.8‰.The S-isotopic data shows one peak at-4.4‰ to 2.2‰ (meaning-1.42‰) suggesting a simple magmatic sulfur source.The ore Pbisotopic ratios are 206pb/204pb from 17.817 to 17.983,207pb/204pb from 15.470 to 15.620 and 208pb/204pb from 38.072 to 38.481,indicating characteristics of mantle-derived lead.The data show that the major ore deposits in the orefield have a magmatic-hydrothermal genesis and that the SHRIMP zircon age of the granodiorite porphyry,closely related to the mineralization,is 151.2±4.2 Ma (MSWD =1.3),which can represent the formation ages of the ores and intrusion rocks.The study aids understanding of the ore-forming processes of the major metallic ore deposits in the orefield. 展开更多
关键词 Ore geology geochemistry fluid inclusion SHRIMP zircon U-Pb dating ore genesis Carboniferous Jiangxi Province
下载PDF
The geology, structure and mineralisation of the Oyu Tolgoi porphyry copper-gold-molybdenum deposits, Mongolia: A review 被引量:10
8
作者 T.M.(Mike) Porter 《Geoscience Frontiers》 SCIE CAS CSCD 2016年第3期375-407,共33页
The Oyu Tolgoi cluster of seven porphyry Cu-Au-Mo deposits in southern Mongolia,define a narrow,linear,12 km long,almost continuously mineralised trend,which contains in excess of 42 Mt of Cu and1850 t of Au,and is am... The Oyu Tolgoi cluster of seven porphyry Cu-Au-Mo deposits in southern Mongolia,define a narrow,linear,12 km long,almost continuously mineralised trend,which contains in excess of 42 Mt of Cu and1850 t of Au,and is among the largest high grade porphyry Cu-Au deposits in the world.These deposits lie within the Gurvansayhan island-arc terrane,a fault bounded segment of the broader Silurian to Carboniferous Kazakh-Mongol arc,located towards the southern margin of the Central Asian Orogenic Belt,a collage of magmatic arcs that were periodically active from the late Neoproterozoic to PermoTriassic,extending from the Urals Mountains to the Pacific Ocean.Mineralisation at Oyu Tolgoi is associated with multiple,overlapping,intrusions of late Devonian(~372 to 370 Ma) quartzmonzodiorite intruding Devonian(or older) juvenile,probably intra-oceanic arc-related,basaltic lavas and lesser volcaniclastic rocks,unconformably overlain by late Devonian(~370 Ma) basaltic to dacitic pyroclastic and volcano sedimentary rocks.These quartz-monzodiorite intrusions range from earlymineral porphyritic dykes,to larger,linear,syn-,late- and post-mineral dykes and stocks.Ore was deposited within syn-mineral quartz-monzodiorites,but is dominantly hosted by augite basalts and to a lesser degree by overlying dacitic pyroclastic rocks.Following ore deposition,an allochthonous plate of older Devonian(or pre-Devonian) rocks was overthrust and a post-ore biotite granodiorite intruded at~365 Ma.Mineralisation is characterised by varying,telescoped stages of intrusion and alteration.Early A-type quartz veined dykes were followed by Cu-Au mineralisation associated with potassic alteration,mainly K-feldspar in quartz-monzodiorite and biotite-magnetite in basaltic hosts.Downward reflux of cooled,late-magmatic hydrothermal fluid resulted in intense quartz-sericite retrograde alteration in the upper parts of the main syn-mineral intrusions,and an equivalent chlorite-muscovite/illite-hematite assemblage in basaltic host rocks.Uplift,facilitated by syn-mineral longitudinal faulting,brought sections of the porphyry deposit to shallower depths,to be overprinted and upgraded by late stage,shallower,advanced argillic alteration and high sulphidation mineralisation.Key controls on the location,size and grade of the deposit cluster include(i) a long-lived,narrow faulted corridor;(ii) multiple pulses of overlapping intrusion within the same structure;and(iii) enclosing reactive,mafic dominated wall rocks,focussing ore. 展开更多
关键词 Tectonic setting Porphyry copper-gold-molybdenum deposit High sulphidation geology ALTERATION STRUCTURE
下载PDF
Research and Application of In-seam Seismic Survey Technology for Disaster-causing Potential Geology Anomalous Body in Coal Seam 被引量:6
9
作者 TENG Jiwen LI Songying +10 位作者 JIA Mingkui LIAN Jie LIU Honglei LIU Guodong WANG Wei Volker SCHAPE FENG Lei YAO Xiaoshuai WANG Kang YAN Yafen ZHANG Wanpeng 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2020年第1期10-26,共17页
In order to effectively detect potential geology anomalous bodies in coal bearing formation,such as coal seam thickness variation,small faults,goafs and collapse columns,and provide scientific guidance for safe and ef... In order to effectively detect potential geology anomalous bodies in coal bearing formation,such as coal seam thickness variation,small faults,goafs and collapse columns,and provide scientific guidance for safe and efficient mining,the SUMMIT-II EX explosion-proof seismic slot wave instrument,produced by German DMT Company,was used to detect the underground channel wave with the help of transmission method,reflection method and transflective method.Region area detection experiment in mining face had been carried out thanks to the advantage of channel wave,such as its great dispersion,abundant geology information,strong anti-interference ability and long-distance detecting.The experimental results showed that:(1)Coal seam thickness variation in extremely unstable coal seam has been quantitatively interpreted with an accuracy of more than 80%generally;(2)The faults,goafs and collapse columns could be detected and predicted accurately;(3)Experimental detection of gas enrichment areas,stress concentration regions and water inrush risk zone has been collated;(4)A research system of disaster-causing geology anomalous body detection by in-seam seismic survey has been built,valuable and innovative achievements have been got.Series of innovation obtained for the first time in this study indicated that it was more effective to detect disaster-causing potential geology anomalies by in-seam seismic survey than by ground seismic survey.It had significant scientific value and application prospect under complex coal seam conditions. 展开更多
关键词 in-seam seismic SURVEY technology(ISS) disaster-causing potential geology ANOMALOUS BODY dispersion feature mine geophysical prospecting quantitative interpretation
下载PDF
Major Advances in the Study of the Precambrian Geology and Metallogenesis of the North China Craton:A Review 被引量:10
10
作者 ZHAO Lei ZHU Xiyan ZHAI Mingguo 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2016年第4期1122-1155,共34页
The North China Craton (NCC) is one of the most ancient cratons in the world and records a complex geological evolution since the early Precambrian. In addition to recording major geological events similar to those ... The North China Craton (NCC) is one of the most ancient cratons in the world and records a complex geological evolution since the early Precambrian. In addition to recording major geological events similar to those of other cratons, the NCC also exhibits some unique features such as multi- stage cratonization (late Archaean and Palaeoproterozoic) and long-term rifting during the Meso- Neoproterozoic. The NCC thus provides one of the best examples to address secular changes in geological history and metallogenic epochs in the evolving Earth. We summarize the major geological events and metallogenic systems of the NCC, so that the evolutionary patterns of the NCC can provide a better understanding of the Precambrian NCC and facilitate comparison of the NCC with other ancient continental blocks globally. The NCC experienced three major tectonic cycles during the Precambrian: (1) Neoarchaean crustal growth and stabilization; (2) Palaeoproterozoic rifting-subduction-accretion-collision with imprints of the Great Oxidation Event and (3) Meso-Neoproterozoic multi-stage rifting. A transition from primitive- to modern-style plate tectonics occurred during the early Precambrian to late Proterozoic and is evidenced by the major geological events. Accompanying these major geological events, three major metallogenic systems are identified: (1) the Archaean banded iron formation system; (2) Palaeoproterozoic Cu-Pb-Zn and Mg-B systems and (3) a Mesoproterozoic rare earth element-Fe- Pb-Zn system. The ore-deposit types in each of these metallogenic systems show distinct characteristics and tectonic affinities. 展开更多
关键词 North China Craton geological events METALLOGENESIS CRATONIZATION multi-stage rifting
下载PDF
Conditions of Petroleum Geology of the Qiangtang Basin of the Qinghai-Tibet Plateau 被引量:10
11
作者 ZHAO Zhengzhang LI Yongtie 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2000年第3期661-665,共5页
The Qinghai-Tibet Plateau located in the Tethyan tectonic domain is the best developed region of Mesozoic and Cenozoic marine sediments in China. The Qiangtang basin is the biggest and relatively stable area of the pl... The Qinghai-Tibet Plateau located in the Tethyan tectonic domain is the best developed region of Mesozoic and Cenozoic marine sediments in China. The Qiangtang basin is the biggest and relatively stable area of the plateau. Triassic and Jurassic hydrocarbon source rocks are extensively distributed in the basin. There exist good dolomite and organic reef reservoirs and mudstone and evaporite cap rocks, as well as well-developed structural traps in the basin; in addition destroyed petroleum traps have been discovered. Therefore, the conditions of petroleum geology in the Qiangtang basin are excellent 展开更多
关键词 Qinghai-Tibet Plateau Qiangtang basin conditions of petroleum geology
下载PDF
Clean coal geology in China:Research advance and its future 被引量:7
12
作者 Xiaoshuai Wang Yuegang Tang +1 位作者 Shaoqing Wang Harold HSchobert 《International Journal of Coal Science & Technology》 EI 2020年第2期299-310,共12页
In China,the connection between coal utilization and environmental pollution has been increasingly evident due to the rapid growth in energy consumption.Clean coal technology(CCT)is one of the effective methods to add... In China,the connection between coal utilization and environmental pollution has been increasingly evident due to the rapid growth in energy consumption.Clean coal technology(CCT)is one of the effective methods to address coal-associated pollution.However,CCT needs the practical and theoretical support of clean coal geology(CCG).In this paper,a new definition of CCG is proposed,based on the definitions of coal,coal geology,and CCT,combined with the development of national CCG.CCG is the discipline comprehensively researching the genesis,nature,distribution,cleaning potential,clean utilization and environmental effects of resources(coal,coal bed methane,and other coal-associated resources)that can be cleaned by CCT.The research content of CCG is discussed from different aspects,such as cleaning potential evaluation,geological guarantee for coal mining,ash yields and sulfur contents,trace elements,pollution caused by coal,and mine reclamation.The progress of CCG in China is also briefly divided into four stages and delineated.Finally,scientific problems in CCG are summarized and an outlook for CCG is given. 展开更多
关键词 Clean coal Clean coal geology Research content PROGRESS China
下载PDF
Geology and Geochemistry of the Yangtizishan-Moshishan Metamorphosed Sedimentary Anatase Deposit in Zhenglan Qi,Inner Mongolia:Discovery of a New Genetic Type of Titanium Deposit 被引量:4
13
作者 ZHAO Yiming LI Daxin WU Liangshi CHEN Wenming FENG Chengyou WANG Peihua GAO Xuedong 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2011年第6期1419-1433,共15页
Anatase and its allomorphic mineral rutile have the most prominent economic significance among titanium mineral resources and constitute one of the badly needed mineral resources currently in China. The Yantizishan-Mo... Anatase and its allomorphic mineral rutile have the most prominent economic significance among titanium mineral resources and constitute one of the badly needed mineral resources currently in China. The Yantizishan-Moshishan anatase deposit was formerly referred to as an iron deposit. Based on recent investigation and exploration the authors believe that it is actually a large metamorphosed sedimentary anatase-dominated deposit belonging to a new genetic type. Ore bodies occur in stratoid and lenticular forms in Mesoproterozoic (1751 Ma) schist, metasandstone (metasiltstone), and amphibolite. Rich ores have perthitic structure comprising chiefly interbedded quartz perthite (with disseminated anatase and rutile) and anatase perthite. Ore minerals are mainly anatase and subordinately rutile and ilmenite (±hematite), while nonmetallic minerals are chiefly quartz with a certain amount of anthophyllite and biotite (±garnet). The grain sizes of anatase, ruffle and ilmenite are 0.01-0.1 mm. Rich ores contain 3.14% to 15.46% TiO2. averaging 6.91%, while the low-grade ores have TiO2 content about 1.2%to 2.97%, averaging 1.76%. The ores have relatively high TFe and V contents. Trace elements in anatase and rutile such as Nb and Cr were analyzed by the electron microprobe. According to their relatively low Nb and Cr contents, source anatase and rutile must have come from meta-mafic rocks. Trace elements of the associated ilmenite show relatively high MnO and low MgO contents, just in contrast to those of ilmenite in V-Ti-magnetite ores of magmatic origin. The protoliths of amphibolite wall rocks should be basalt and picrite-basalt. Pertochemical data suggest that the tectonic setting of these rocks belongs to an island arc or a transitional belt between the island arc and oceanic ridge. Silicon isotope study shows that δ30Si values of different anatase ores, quartzite, and schist in this deposit are 0.1‰ to -0.9‰, similar to those of marine hydrothermal exhalative sedimentary deposits. All of these geological and geochemical characteristics of the ore deposit suggest that the anatase ores and amphibolite are products of submarine basic volcanism. The ores had chemical precipitation features, but were later subjected to regional intermediate (or somewhat lower) grade metamorphism (1158 Ma). Rutile was formed mainly in the process of this metamorphism. The ore belt locally underwent hydrothermal modification during the emplacement of Late Yanshanian granite (118 Ma). 展开更多
关键词 geology geochemistry anatase deposit new type Yangtizishan-Moshishan Inner Mongolia
下载PDF
The Status Quo and Outlook of Chinese Coal Geology and Exploration Technologies 被引量:4
14
作者 XU Shuishi CHENG Aiguo CAO Daiyong 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2008年第3期697-708,共12页
Coal is China's dominant energy resource. Coal geological exploration is the basis of sustainable development of coal industry. Since the late 1990s, the advances in Chinese coal geology and exploration techniques ha... Coal is China's dominant energy resource. Coal geological exploration is the basis of sustainable development of coal industry. Since the late 1990s, the advances in Chinese coal geology and exploration techniques have been shown in the following aspects. (1) The basic research of coal geology has changed from traditional geological studies to earth system science; (2) Breakthroughs have been achieved in integrated exploration techniques for coal resources; (3) Evaluation of coal and coalbed methane resources provides important basis for macropolicy making for China's coal industry and construction of large coal bases; (4) Significant advances have been made in using information technology in coal geological exploration and 3S (GPS, GIS, RS) technology. For the present and a period of time in the future, major tasks of Chinese coal geological technology are as follows: (1) solving resources replacement problem in eastern China and geological problems of deep mining; (2) solving problem of integrated coal exploration of complex regions in energy bases of central China, and resources problems induced by coal exploitation; (3) making efforts to enhance the level of geological research and resources evaluation of coal-accumulation basins in western China; (4) strengthening geological research of clean coal technologies; (5) strengthening geological research of the problems in modern coal mining and safe production; (6) promoting information technology in coal resources and major geological investigations. 展开更多
关键词 China coal geology coal geological exploration coal resources
下载PDF
Acoustic-Physical Properties of Calcareous Seafloor Soils and Their Significance in Engineering Geology 被引量:5
15
作者 卢博 李赶先 黄韶健 《China Ocean Engineering》 SCIE EI 2000年第3期361-370,共10页
The basic features and acoustic-physical properties of calcareous seafloor soils in the tropic sea area are obviously different from those of sediments mainly composed of terrigenous materials in the South China Sea. ... The basic features and acoustic-physical properties of calcareous seafloor soils in the tropic sea area are obviously different from those of sediments mainly composed of terrigenous materials in the South China Sea. Generally calcareous soils, composed of carbonate particles of marine organism remains. have the characteristics of high water content, high porosity, low wet density, high sound velocity and greatly varied comprehensive strength. Recognizing the differences between calcareous soils and terrigenous sediments and engineering geologic significance of calcareous soils is crucial for seafloor geologic research and geotechnical survey for pile-jacket platform foundation design. 展开更多
关键词 South China Sea calcareous soil acoustic-physical properties engineering geology
下载PDF
Development of a multiple level underground limestone mine from geology through mine planning 被引量:3
16
作者 Christopher Newman David Newman Robert Dupuy 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2020年第1期63-67,共5页
The development of a multiple level underground mine is a complex task in which geology,engineering,ground control,and unit operations are integrated into a single mine design.The components are interdependent and mus... The development of a multiple level underground mine is a complex task in which geology,engineering,ground control,and unit operations are integrated into a single mine design.The components are interdependent and must function cohesively to ensure a profitable underground mining operation.To optimize reserve recovery,mine planning should begin from the lowest level and progress up.This limits any misjudgments or oversights of a given level affecting the underlying levels and ensures the ability to maximize recovery from each level.Mine planning should start with the exploration and characterization of the geologic setting.Once the reserve geology and quality is well understood,then mine planning can begin with respect to the following:(1)orientation of mine works with respect to horizontal stress;(2)access to the reserve;(3)determination of opening widths;(4)selection of back,floor horizons and pillar centers;(5)selection of development and secondary mining heights;(6)appropriate inter-burden thicknesses;and(7)examining the stability of the multiple level mine through numerical modeling.The multiple level mine design process and decisions are presented through a case history example.The theme is that there is one opportunity to"get it right"and many chances to overlook a small aspect within the design that will plague the mine throughout all levels and through the entirety of its operating life. 展开更多
关键词 LIMESTONE Mine planning geology MULTIPLE LEVEL Rock MECHANICS
下载PDF
Deep seabed mining:Frontiers in engineering geology and environment 被引量:3
17
作者 Xingsen Guo Ning Fan +4 位作者 Yihan Liu Xiaolei Liu Zekun Wang Xiaotian Xie Yonggang Jia 《International Journal of Coal Science & Technology》 EI CAS CSCD 2023年第2期1-31,共31页
Ocean mining activities have been ongoing for nearly 70 years,making great contributions to industrialization.Given the increasing demand for energy,along with the restructuring of the energy supply catalyzed by effor... Ocean mining activities have been ongoing for nearly 70 years,making great contributions to industrialization.Given the increasing demand for energy,along with the restructuring of the energy supply catalyzed by efforts to achieve a low-carbon economy,deep seabed mining will play an important role in addressing energy-and resource-related problems in the future.However,deep seabed mining remains in the exploratory stage,with many challenges presented by the high-pressure,low-temperature,and complex geologic and hydrodynamic environments in deep-sea mining areas,which are inaccessible to human activities.Thus,considerable efforts are required to ensure sustainable,economic,reliable,and safe deep seabed mining.This study reviews the latest advances in marine engineering geology and the environment related to deep-sea min-ing activities,presents a bibliometric analysis of the development of ocean mineral resources since the 1950s,summarizes the development,theory,and issues related to techniques for the three stages of ocean mining(i.e.,exploration,extraction,and closure),and discusses the engineering geology environment,geological disasters,in-situ monitoring techniques,envi-ronmental protection requirements,and environmental effects in detail.Finally,this paper gives some key conclusions and future perspectives to provide insights for subsequent studies and commercial mining operations. 展开更多
关键词 Deep seabed mining Marine engineering geology Geological disasters ENVIRONMENT TECHNIQUES
下载PDF
Advances in Structural Geology and Tectonics in the Late 20th Century: A Review 被引量:3
18
作者 DONG Shuwen ZHENG Yadong +1 位作者 CHEN Xuanhua SHI Jing 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2006年第3期349-375,共27页
Based on analyses of the share of documents of structural geology and tectonics in the GeoRef system over 100 years in the last century, and the historical change of international (31 years) and domestic (16 years... Based on analyses of the share of documents of structural geology and tectonics in the GeoRef system over 100 years in the last century, and the historical change of international (31 years) and domestic (16 years) document counts of various topics in structural geology and tectonics, the position of structural geology and tectonics in the geosciences is evaluated and the major advaces in fields of plate tectonics, continental dynamics and global dynamics are reviewed. Our attention mainly focuses on the advances in studies of structural analysis, deformation mechanisms and rheology of rocks, contractional tectonics and late- and post-orogenic extensional collapse in orogens, large-scale strikeslip faults and indentation-extrusion tectonics, active tectonics and natural hazards. The relationships of structural geology and tectonics with petrology and geochronology are also discussed in terms of intersection of scientific disciplines. Finally, some suggestions are proposed for the further development of structural geology and tectonics in China. 展开更多
关键词 plate tectonics RHEOLOGY structural geology continental dynamics document statistics
下载PDF
Development history and prospect of remote sensing technology in coal geology of China 被引量:4
19
作者 Kelong Tan Junwei Qiao 《International Journal of Coal Science & Technology》 EI 2020年第2期311-319,共9页
Coal remote sensing technology was founded in the period of coal resources survey after the founding of People’s Republic of China.Aerophoto Grammetry&Remote Sensing Bureau of China National Administration of Coa... Coal remote sensing technology was founded in the period of coal resources survey after the founding of People’s Republic of China.Aerophoto Grammetry&Remote Sensing Bureau of China National Administration of Coal Geology was established,specializing in the application and promotion of coal remote sensing technology.With the rapid development of coal geological exploration in China,coal remote sensing technology has evolved from coal geology based survey to comprehensive survey that factors in resources,environment,ecology and so on.This paper summarizes the general situation,theories,development process,key research and future of remote sensing technology for coal mining in China.Spanning over 50 years,the history of China’s coal remote sensing technology can be divided into five stages:aero-geological mapping,coal remote sensing theory experimental research,application research and promotion,architecture planning and productionisation,“3S”technology integration and application.This paper expounds the main technical progress,application fields,major projects and major achievements in various historical periods,and points out that the coal remote sensing has entered a unified development stage of“Aviation,Aerospace and Ground”,with a focus on high-resolution remote sensing,hyperspectral remote sensing,radar remote sensing,“3S”technology integration and multi-means comprehensive exploration and evaluation.In the future,coal remote sensing technology will develop rapidly in data mass,technology integration,evaluation intelligence,integration application programming,system visualization,etc.Coal remote sensing technology has entered the industrial development from technology application. 展开更多
关键词 Remote sensing Coal remote sensing Coal geology INDUSTRIALIZATION
下载PDF
The Geology and Tectonic Settings of China's Mineral Deposits by Franco Pirajno 被引量:5
20
作者 Yanjing Chen 《Geoscience Frontiers》 SCIE CAS CSCD 2013年第4期477-477,共1页
China is the third largest country in the world, with a land area of about 9.6 million km2. It is endowed with abundant mineral resources, and the metal mining activity can be traced back to ca. 8000 years ago. Howeve... China is the third largest country in the world, with a land area of about 9.6 million km2. It is endowed with abundant mineral resources, and the metal mining activity can be traced back to ca. 8000 years ago. However, due to language barrier, little has been known about the geology and tectonics to the outside world until 1980s. In the last three decades, a great deal of knowledge has been gained, enhanced by a vigorous cooperation between Chinese and Western geologists. Research papers about geological, geochemical, and geochronological features of mineral deposits of China are widely published and cited in international journals. A comprehen- sive and comprehensible English literature that summarises the features of mineral deposits in China, however, is still lacking. 展开更多
关键词 WORK this The geology and Tectonic Settings of China’s Mineral Deposits by Franco Pirajno
下载PDF
上一页 1 2 102 下一页 到第
使用帮助 返回顶部