The searches for large-gap quantum spin Hall insulators are important for both practical and fundamental inter- ests. In this work, we present a theoretical observation of the two-dimensional fully fluorinated stanene...The searches for large-gap quantum spin Hall insulators are important for both practical and fundamental inter- ests. In this work, we present a theoretical observation of the two-dimensional fully fluorinated stanene (SnF) by means of density functional theory. Remarkably, a significant spin-orbit coupling is observed for the SnF monolayer in the valence band at the F point, with a considerable indirect band gap of 278 meV. The direct gap of the SnF monolayer is at the F point, which is slightly larger by as much as 381 meV. In addition, the elastic modulus of the SnF monolayer is about 20J/m^2, which is comparable with the in-plane stiffness of black phos- phorus monolayer along the x-direction (~28.94 J/m^2). Finally, the optical properties of stanene, SnF monolayer and stanene/SnF bilayer are calculated, in which the stanene/SnF bilayer is supposed to be an attractive sunlight absorber.展开更多
基金Supported by the Science Foundation of Nanjing University of Posts and Telecommunications under Grant No NY215064the China Postdoctoral Science Foundation under Grant No 2015M581824the Jiangsu Post-doctoral Foundation under Grant No1501070B
文摘The searches for large-gap quantum spin Hall insulators are important for both practical and fundamental inter- ests. In this work, we present a theoretical observation of the two-dimensional fully fluorinated stanene (SnF) by means of density functional theory. Remarkably, a significant spin-orbit coupling is observed for the SnF monolayer in the valence band at the F point, with a considerable indirect band gap of 278 meV. The direct gap of the SnF monolayer is at the F point, which is slightly larger by as much as 381 meV. In addition, the elastic modulus of the SnF monolayer is about 20J/m^2, which is comparable with the in-plane stiffness of black phos- phorus monolayer along the x-direction (~28.94 J/m^2). Finally, the optical properties of stanene, SnF monolayer and stanene/SnF bilayer are calculated, in which the stanene/SnF bilayer is supposed to be an attractive sunlight absorber.