期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于Prospect,Liberty和Geosail模型的森林叶面积指数的反演
被引量:
10
1
作者
李海洋
范文义
+1 位作者
于颖
杨曦光
《林业科学》
EI
CAS
CSCD
北大核心
2011年第9期75-81,共7页
针对传统的统计模型方法反演叶面积指数(LAI)具有不稳定、区域不统一性的缺点,本研究从物理机制角度出发,以Prospect,Liberty和Geosail模型为基础,建立查找表从TM影像上反演LAI,并与TRAC实测的LAI比较。结果表明:基于机制模型与查找表...
针对传统的统计模型方法反演叶面积指数(LAI)具有不稳定、区域不统一性的缺点,本研究从物理机制角度出发,以Prospect,Liberty和Geosail模型为基础,建立查找表从TM影像上反演LAI,并与TRAC实测的LAI比较。结果表明:基于机制模型与查找表的方法反演的LAI与实测的LAI有较好的一致性,实测精度达到83.7%。
展开更多
关键词
叶面积指数
TM
查找表
PROSPECT
LIBERTY
geosail
下载PDF
职称材料
基于Geosail模型和SVR算法的叶面积指数遥感反演
被引量:
3
2
作者
杨维
张学霞
赵静瑶
《中国水土保持科学》
CSCD
北大核心
2018年第6期48-55,共8页
叶面积指数(LAI)控制着植物冠层的多种生理和生态过程,是陆地生态、水文模型中不可或缺的植被参数,因此准确反演区域LAI对研究植被与土壤侵蚀具有重要意义。本文以北京地区阔叶林为研究对象,利用Geosail模型模拟LAI和7种植被指数:比值...
叶面积指数(LAI)控制着植物冠层的多种生理和生态过程,是陆地生态、水文模型中不可或缺的植被参数,因此准确反演区域LAI对研究植被与土壤侵蚀具有重要意义。本文以北京地区阔叶林为研究对象,利用Geosail模型模拟LAI和7种植被指数:比值植被指数(RVI)、归一化植被指数(NDVI)、绿波段植被指数(GNDVI)、重归一化植被指数(RDVI)、土壤调整植被指数(SAVI)、调整土壤亮度植被指数(OSAVI)和修正的土壤调整植被指数(MSAVI),并采用支持向量机回归(SVR)算法和4种统计回归方法(线性函数、二次函数、指数函数和对数函数)建立LAI反演模型,同时通过Landsat 8 OLI遥感数据和实测数据验证模型精度。研究表明:1) SVR算法相比其他统计回归方法可以提高LAI反演的模型精度和预测精度; 2) OSAVI指数在LAI反演方面的表现要优于NDVI等指数;3) NDVI指数的建模精度很高,但预测精度较低; 4) OSAVI和SVR算法构建的模型精度和稳定性更好,是LAI反演的优选模型,其预测结果最为精确。因此,基于Geosail模型和SVR算法的反演方法可提高LAI反演精度,为大区域LAI反演的应用提供了新的思路,扩展了Geosail模型、SVR算法和Landsat 8 OLI遥感数据在LAI反演方面的应用潜力。
展开更多
关键词
SVR算法
geosail
模型
叶面积指数
Landsat8OLI
阔叶林
下载PDF
职称材料
题名
基于Prospect,Liberty和Geosail模型的森林叶面积指数的反演
被引量:
10
1
作者
李海洋
范文义
于颖
杨曦光
机构
东北林业大学林学院
出处
《林业科学》
EI
CAS
CSCD
北大核心
2011年第9期75-81,共7页
基金
国家林业局"948"项目(2011-04-80)
文摘
针对传统的统计模型方法反演叶面积指数(LAI)具有不稳定、区域不统一性的缺点,本研究从物理机制角度出发,以Prospect,Liberty和Geosail模型为基础,建立查找表从TM影像上反演LAI,并与TRAC实测的LAI比较。结果表明:基于机制模型与查找表的方法反演的LAI与实测的LAI有较好的一致性,实测精度达到83.7%。
关键词
叶面积指数
TM
查找表
PROSPECT
LIBERTY
geosail
Keywords
leaf area index(LAI)
TM
look-up-table
Prospect
Liberty
geosail
分类号
S757.1 [农业科学—森林经理学]
下载PDF
职称材料
题名
基于Geosail模型和SVR算法的叶面积指数遥感反演
被引量:
3
2
作者
杨维
张学霞
赵静瑶
机构
北京林业大学水土保持学院
出处
《中国水土保持科学》
CSCD
北大核心
2018年第6期48-55,共8页
基金
国家科技支撑计划项目子课题"华北土石山区防护林体系景观格局调控与空间配置技术研究"(2015BAD07B030201)
文摘
叶面积指数(LAI)控制着植物冠层的多种生理和生态过程,是陆地生态、水文模型中不可或缺的植被参数,因此准确反演区域LAI对研究植被与土壤侵蚀具有重要意义。本文以北京地区阔叶林为研究对象,利用Geosail模型模拟LAI和7种植被指数:比值植被指数(RVI)、归一化植被指数(NDVI)、绿波段植被指数(GNDVI)、重归一化植被指数(RDVI)、土壤调整植被指数(SAVI)、调整土壤亮度植被指数(OSAVI)和修正的土壤调整植被指数(MSAVI),并采用支持向量机回归(SVR)算法和4种统计回归方法(线性函数、二次函数、指数函数和对数函数)建立LAI反演模型,同时通过Landsat 8 OLI遥感数据和实测数据验证模型精度。研究表明:1) SVR算法相比其他统计回归方法可以提高LAI反演的模型精度和预测精度; 2) OSAVI指数在LAI反演方面的表现要优于NDVI等指数;3) NDVI指数的建模精度很高,但预测精度较低; 4) OSAVI和SVR算法构建的模型精度和稳定性更好,是LAI反演的优选模型,其预测结果最为精确。因此,基于Geosail模型和SVR算法的反演方法可提高LAI反演精度,为大区域LAI反演的应用提供了新的思路,扩展了Geosail模型、SVR算法和Landsat 8 OLI遥感数据在LAI反演方面的应用潜力。
关键词
SVR算法
geosail
模型
叶面积指数
Landsat8OLI
阔叶林
Keywords
support vector regression algorithm
geosail
model
leaf area index
Landsat 8 OLI
broad-leaved forest
分类号
S771.8 [农业科学—森林工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于Prospect,Liberty和Geosail模型的森林叶面积指数的反演
李海洋
范文义
于颖
杨曦光
《林业科学》
EI
CAS
CSCD
北大核心
2011
10
下载PDF
职称材料
2
基于Geosail模型和SVR算法的叶面积指数遥感反演
杨维
张学霞
赵静瑶
《中国水土保持科学》
CSCD
北大核心
2018
3
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部