期刊文献+
共找到71篇文章
< 1 2 4 >
每页显示 20 50 100
Multiscale Feature Fusion for Gesture Recognition Using Commodity Millimeter-Wave Radar
1
作者 Lingsheng Li Weiqing Bai Chong Han 《Computers, Materials & Continua》 SCIE EI 2024年第10期1613-1640,共28页
Gestures are one of the most natural and intuitive approach for human-computer interaction.Compared with traditional camera-based or wearable sensors-based solutions,gesture recognition using the millimeter wave radar... Gestures are one of the most natural and intuitive approach for human-computer interaction.Compared with traditional camera-based or wearable sensors-based solutions,gesture recognition using the millimeter wave radar has attracted growing attention for its characteristics of contact-free,privacy-preserving and less environmentdependence.Although there have been many recent studies on hand gesture recognition,the existing hand gesture recognition methods still have recognition accuracy and generalization ability shortcomings in shortrange applications.In this paper,we present a hand gesture recognition method named multiscale feature fusion(MSFF)to accurately identify micro hand gestures.In MSFF,not only the overall action recognition of the palm but also the subtle movements of the fingers are taken into account.Specifically,we adopt hand gesture multiangle Doppler-time and gesture trajectory range-angle map multi-feature fusion to comprehensively extract hand gesture features and fuse high-level deep neural networks to make it pay more attention to subtle finger movements.We evaluate the proposed method using data collected from 10 users and our proposed solution achieves an average recognition accuracy of 99.7%.Extensive experiments on a public mmWave gesture dataset demonstrate the superior effectiveness of the proposed system. 展开更多
关键词 gesture recognition millimeter-wave(mmWave)radar radio frequency(RF)sensing human-computer interaction multiscale feature fusion
下载PDF
Virtual Keyboard:A Real-Time Hand Gesture Recognition-Based Character Input System Using LSTM and Mediapipe Holistic
2
作者 Bijon Mallik Md Abdur Rahim +2 位作者 Abu Saleh Musa Miah Keun Soo Yun Jungpil Shin 《Computer Systems Science & Engineering》 2024年第2期555-570,共16页
In the digital age,non-touch communication technologies are reshaping human-device interactions and raising security concerns.A major challenge in current technology is the misinterpretation of gestures by sensors and... In the digital age,non-touch communication technologies are reshaping human-device interactions and raising security concerns.A major challenge in current technology is the misinterpretation of gestures by sensors and cameras,often caused by environmental factors.This issue has spurred the need for advanced data processing methods to achieve more accurate gesture recognition and predictions.Our study presents a novel virtual keyboard allowing character input via distinct hand gestures,focusing on two key aspects:hand gesture recognition and character input mechanisms.We developed a novel model with LSTM and fully connected layers for enhanced sequential data processing and hand gesture recognition.We also integrated CNN,max-pooling,and dropout layers for improved spatial feature extraction.This model architecture processes both temporal and spatial aspects of hand gestures,using LSTM to extract complex patterns from frame sequences for a comprehensive understanding of input data.Our unique dataset,essential for training the model,includes 1,662 landmarks from dynamic hand gestures,33 postures,and 468 face landmarks,all captured in real-time using advanced pose estimation.The model demonstrated high accuracy,achieving 98.52%in hand gesture recognition and over 97%in character input across different scenarios.Its excellent performance in real-time testing underlines its practicality and effectiveness,marking a significant advancement in enhancing human-device interactions in the digital age. 展开更多
关键词 Hand gesture recognition M.P.holistic open CV virtual keyboard LSTM human-computer interaction
下载PDF
A Survey of Gesture Recognition Using Frequency Modulated Continuous Wave Radar
3
作者 Xinran Qiu Junhao Liu +3 位作者 Lulu Song Haofei Teng Jiaqi Zhang Zhengjie Wang 《Journal of Computer and Communications》 2024年第6期115-134,共20页
With technology advances and human requirements increasing, human-computer interaction plays an important role in our daily lives. Among these interactions, gesture-based recognition offers a natural and intuitive use... With technology advances and human requirements increasing, human-computer interaction plays an important role in our daily lives. Among these interactions, gesture-based recognition offers a natural and intuitive user experience that does not require physical contact and is becoming increasingly prevalent across various fields. Gesture recognition systems based on Frequency Modulated Continuous Wave (FMCW) millimeter-wave radar are receiving widespread attention due to their ability to operate without wearable sensors, their robustness to environmental factors, and the excellent penetrative ability of radar signals. This paper first reviews the current main gesture recognition applications. Subsequently, we introduce the system of gesture recognition based on FMCW radar and provide a general framework for gesture recognition, including gesture data acquisition, data preprocessing, and classification methods. We then discuss typical applications of gesture recognition systems and summarize the performance of these systems in terms of experimental environment, signal acquisition, signal processing, and classification methods. Specifically, we focus our study on four typical gesture recognition systems, including air-writing recognition, gesture command recognition, sign language recognition, and text input recognition. Finally, this paper addresses the challenges and unresolved problems in FMCW radar-based gesture recognition and provides insights into potential future research directions. 展开更多
关键词 Millimeter-Wave Radar gesture recognition Human-Computer Interaction Feature Extraction
下载PDF
A Novel Machine Learning-Based Hand Gesture Recognition Using HCI on IoT Assisted Cloud Platform 被引量:1
4
作者 Saurabh Adhikari Tushar Kanti Gangopadhayay +4 位作者 Souvik Pal D.Akila Mamoona Humayun Majed Alfayad N.Z.Jhanjhi 《Computer Systems Science & Engineering》 SCIE EI 2023年第8期2123-2140,共18页
Machine learning is a technique for analyzing data that aids the construction of mathematical models.Because of the growth of the Internet of Things(IoT)and wearable sensor devices,gesture interfaces are becoming a mo... Machine learning is a technique for analyzing data that aids the construction of mathematical models.Because of the growth of the Internet of Things(IoT)and wearable sensor devices,gesture interfaces are becoming a more natural and expedient human-machine interaction method.This type of artificial intelligence that requires minimal or no direct human intervention in decision-making is predicated on the ability of intelligent systems to self-train and detect patterns.The rise of touch-free applications and the number of deaf people have increased the significance of hand gesture recognition.Potential applications of hand gesture recognition research span from online gaming to surgical robotics.The location of the hands,the alignment of the fingers,and the hand-to-body posture are the fundamental components of hierarchical emotions in gestures.Linguistic gestures may be difficult to distinguish from nonsensical motions in the field of gesture recognition.Linguistic gestures may be difficult to distinguish from nonsensical motions in the field of gesture recognition.In this scenario,it may be difficult to overcome segmentation uncertainty caused by accidental hand motions or trembling.When a user performs the same dynamic gesture,the hand shapes and speeds of each user,as well as those often generated by the same user,vary.A machine-learning-based Gesture Recognition Framework(ML-GRF)for recognizing the beginning and end of a gesture sequence in a continuous stream of data is suggested to solve the problem of distinguishing between meaningful dynamic gestures and scattered generation.We have recommended using a similarity matching-based gesture classification approach to reduce the overall computing cost associated with identifying actions,and we have shown how an efficient feature extraction method can be used to reduce the thousands of single gesture information to four binary digit gesture codes.The findings from the simulation support the accuracy,precision,gesture recognition,sensitivity,and efficiency rates.The Machine Learning-based Gesture Recognition Framework(ML-GRF)had an accuracy rate of 98.97%,a precision rate of 97.65%,a gesture recognition rate of 98.04%,a sensitivity rate of 96.99%,and an efficiency rate of 95.12%. 展开更多
关键词 Machine learning gesture recognition framework accuracy rate precision rate gesture recognition rate sensitivity rate efficiency rate
下载PDF
A Novel SE-CNN Attention Architecture for sEMG-Based Hand Gesture Recognition 被引量:3
5
作者 Zhengyuan Xu Junxiao Yu +4 位作者 Wentao Xiang Songsheng Zhu Mubashir Hussain Bin Liu Jianqing Li 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第1期157-177,共21页
In this article,to reduce the complexity and improve the generalization ability of current gesture recognition systems,we propose a novel SE-CNN attention architecture for sEMG-based hand gesture recognition.The propo... In this article,to reduce the complexity and improve the generalization ability of current gesture recognition systems,we propose a novel SE-CNN attention architecture for sEMG-based hand gesture recognition.The proposed algorithm introduces a temporal squeeze-and-excite block into a simple CNN architecture and then utilizes it to recalibrate the weights of the feature outputs from the convolutional layer.By enhancing important features while suppressing useless ones,the model realizes gesture recognition efficiently.The last procedure of the proposed algorithm is utilizing a simple attention mechanism to enhance the learned representations of sEMG signals to performmulti-channel sEMG-based gesture recognition tasks.To evaluate the effectiveness and accuracy of the proposed algorithm,we conduct experiments involving multi-gesture datasets Ninapro DB4 and Ninapro DB5 for both inter-session validation and subject-wise cross-validation.After a series of comparisons with the previous models,the proposed algorithm effectively increases the robustness with improved gesture recognition performance and generalization ability. 展开更多
关键词 Hand gesture recognition SEMG CNN temporal squeeze-and-excite ATTENTION
下载PDF
Appearance Based Dynamic Hand Gesture Recognition Using 3D Separable Convolutional Neural Network
6
作者 Muhammad Rizwan Sana Ul Haq +4 位作者 Noor Gul Muhammad Asif Syed Muslim Shah Tariqullah Jan Naveed Ahmad 《Computers, Materials & Continua》 SCIE EI 2023年第7期1213-1247,共35页
Appearance-based dynamic Hand Gesture Recognition(HGR)remains a prominent area of research in Human-Computer Interaction(HCI).Numerous environmental and computational constraints limit its real-time deployment.In addi... Appearance-based dynamic Hand Gesture Recognition(HGR)remains a prominent area of research in Human-Computer Interaction(HCI).Numerous environmental and computational constraints limit its real-time deployment.In addition,the performance of a model decreases as the subject’s distance from the camera increases.This study proposes a 3D separable Convolutional Neural Network(CNN),considering the model’s computa-tional complexity and recognition accuracy.The 20BN-Jester dataset was used to train the model for six gesture classes.After achieving the best offline recognition accuracy of 94.39%,the model was deployed in real-time while considering the subject’s attention,the instant of performing a gesture,and the subject’s distance from the camera.Despite being discussed in numerous research articles,the distance factor remains unresolved in real-time deployment,which leads to degraded recognition results.In the proposed approach,the distance calculation substantially improves the classification performance by reducing the impact of the subject’s distance from the camera.Additionally,the capability of feature extraction,degree of relevance,and statistical significance of the proposed model against other state-of-the-art models were validated using t-distributed Stochastic Neighbor Embedding(t-SNE),Mathew’s Correlation Coefficient(MCC),and the McNemar test,respectively.We observed that the proposed model exhibits state-of-the-art outcomes and a comparatively high significance level. 展开更多
关键词 3D separable CNN computational complexity hand gesture recognition human-computer interaction
下载PDF
A Hybrid Model Based on ResNet and GCN for sEMG-Based Gesture Recognition
7
作者 Xianjing Xu Haiyan Jiang 《Journal of Beijing Institute of Technology》 EI CAS 2023年第2期219-229,共11页
The surface electromyography(sEMG)is one of the basic processing techniques to the gesture recognition because of its inherent advantages of easy collection and non-invasion.However,limited by feature extraction and c... The surface electromyography(sEMG)is one of the basic processing techniques to the gesture recognition because of its inherent advantages of easy collection and non-invasion.However,limited by feature extraction and classifier selection,the adaptability and accuracy of the conventional machine learning still need to promote with the increase of the input dimension and the number of output classifications.Moreover,due to the different characteristics of sEMG data and image data,the conventional convolutional neural network(CNN)have yet to fit sEMG signals.In this paper,a novel hybrid model combining CNN with the graph convolutional network(GCN)was constructed to improve the performance of the gesture recognition.Based on the characteristics of sEMG signal,GCN was introduced into the model through a joint voting network to extract the muscle synergy feature of the sEMG signal.Such strategy optimizes the structure and convolution kernel parameters of the residual network(ResNet)with the classification accuracy on the NinaPro DBl up to 90.07%.The experimental results and comparisons confirm the superiority of the proposed hybrid model for gesture recognition from the sEMG signals. 展开更多
关键词 deep learning graph convolutional network(GCN) gesture recognition residual net-work(ResNet) surface electromyographic(sEMG)signals
下载PDF
Multimodal Spatiotemporal Feature Map for Dynamic Gesture Recognition
8
作者 Xiaorui Zhang Xianglong Zeng +2 位作者 Wei Sun Yongjun Ren Tong Xu 《Computer Systems Science & Engineering》 SCIE EI 2023年第7期671-686,共16页
Gesture recognition technology enables machines to read human gestures and has significant application prospects in the fields of human-computer interaction and sign language translation.Existing researches usually us... Gesture recognition technology enables machines to read human gestures and has significant application prospects in the fields of human-computer interaction and sign language translation.Existing researches usually use convolutional neural networks to extract features directly from raw gesture data for gesture recognition,but the networks are affected by much interference information in the input data and thus fit to some unimportant features.In this paper,we proposed a novel method for encoding spatio-temporal information,which can enhance the key features required for gesture recognition,such as shape,structure,contour,position and hand motion of gestures,thereby improving the accuracy of gesture recognition.This encoding method can encode arbitrarily multiple frames of gesture data into a single frame of the spatio-temporal feature map and use the spatio-temporal feature map as the input to the neural network.This can guide the model to fit important features while avoiding the use of complex recurrent network structures to extract temporal features.In addition,we designed two sub-networks and trained the model using a sub-network pre-training strategy that trains the sub-networks first and then the entire network,so as to avoid the subnetworks focusing too much on the information of a single category feature and being overly influenced by each other’s features.Experimental results on two public gesture datasets show that the proposed spatio-temporal information encoding method achieves advanced accuracy. 展开更多
关键词 Dynamic gesture recognition spatio-temporal information encoding multimodal input pre-training score fusion
下载PDF
Hand Gesture Recognition for Disabled People Using Bayesian Optimization with Transfer Learning
9
作者 Fadwa Alrowais Radwa Marzouk +1 位作者 Fahd N.Al-Wesabi Anwer Mustafa Hilal 《Intelligent Automation & Soft Computing》 SCIE 2023年第6期3325-3342,共18页
Sign language recognition can be treated as one of the efficient solu-tions for disabled people to communicate with others.It helps them to convey the required data by the use of sign language with no issues.The lates... Sign language recognition can be treated as one of the efficient solu-tions for disabled people to communicate with others.It helps them to convey the required data by the use of sign language with no issues.The latest develop-ments in computer vision and image processing techniques can be accurately uti-lized for the sign recognition process by disabled people.American Sign Language(ASL)detection was challenging because of the enhancing intraclass similarity and higher complexity.This article develops a new Bayesian Optimiza-tion with Deep Learning-Driven Hand Gesture Recognition Based Sign Language Communication(BODL-HGRSLC)for Disabled People.The BODL-HGRSLC technique aims to recognize the hand gestures for disabled people’s communica-tion.The presented BODL-HGRSLC technique integrates the concepts of compu-ter vision(CV)and DL models.In the presented BODL-HGRSLC technique,a deep convolutional neural network-based residual network(ResNet)model is applied for feature extraction.Besides,the presented BODL-HGRSLC model uses Bayesian optimization for the hyperparameter tuning process.At last,a bidir-ectional gated recurrent unit(BiGRU)model is exploited for the HGR procedure.A wide range of experiments was conducted to demonstrate the enhanced perfor-mance of the presented BODL-HGRSLC model.The comprehensive comparison study reported the improvements of the BODL-HGRSLC model over other DL models with maximum accuracy of 99.75%. 展开更多
关键词 Deep learning hand gesture recognition disabled people computer vision bayesian optimization
下载PDF
An Efficient and Robust Hand Gesture Recognition System of Sign Language Employing Finetuned Inception-V3 and Efficientnet-B0 Network
10
作者 Adnan Hussain Sareer Ul Amin +1 位作者 Muhammad Fayaz Sanghyun Seo 《Computer Systems Science & Engineering》 SCIE EI 2023年第9期3509-3525,共17页
Hand Gesture Recognition(HGR)is a promising research area with an extensive range of applications,such as surgery,video game techniques,and sign language translation,where sign language is a complicated structured for... Hand Gesture Recognition(HGR)is a promising research area with an extensive range of applications,such as surgery,video game techniques,and sign language translation,where sign language is a complicated structured form of hand gestures.The fundamental building blocks of structured expressions in sign language are the arrangement of the fingers,the orientation of the hand,and the hand’s position concerning the body.The importance of HGR has increased due to the increasing number of touchless applications and the rapid growth of the hearing-impaired population.Therefore,real-time HGR is one of the most effective interaction methods between computers and humans.Developing a user-free interface with good recognition performance should be the goal of real-time HGR systems.Nowadays,Convolutional Neural Network(CNN)shows great recognition rates for different image-level classification tasks.It is challenging to train deep CNN networks like VGG-16,VGG-19,Inception-v3,and Efficientnet-B0 from scratch because only some significant labeled image datasets are available for static hand gesture images.However,an efficient and robust hand gesture recognition system of sign language employing finetuned Inception-v3 and Efficientnet-Bo network is proposed to identify hand gestures using a comparative small HGR dataset.Experiments show that Inception-v3 achieved 90%accuracy and 0.93%precision,0.91%recall,and 0.90%f1-score,respectively,while EfficientNet-B0 achieved 99%accuracy and 0.98%,0.97%,0.98%,precision,recall,and f1-score respectively. 展开更多
关键词 Pretrained CNN hand gesture recognition transfer learning
下载PDF
Home Automation-Based Health Assessment Along Gesture Recognition via Inertial Sensors
11
作者 Hammad Rustam Muhammad Muneeb +4 位作者 Suliman A.Alsuhibany Yazeed Yasin Ghadi Tamara Al Shloul Ahmad Jalal Jeongmin Park 《Computers, Materials & Continua》 SCIE EI 2023年第4期2331-2346,共16页
Hand gesture recognition (HGR) is used in a numerous applications,including medical health-care, industrial purpose and sports detection.We have developed a real-time hand gesture recognition system using inertialsens... Hand gesture recognition (HGR) is used in a numerous applications,including medical health-care, industrial purpose and sports detection.We have developed a real-time hand gesture recognition system using inertialsensors for the smart home application. Developing such a model facilitatesthe medical health field (elders or disabled ones). Home automation has alsobeen proven to be a tremendous benefit for the elderly and disabled. Residentsare admitted to smart homes for comfort, luxury, improved quality of life,and protection against intrusion and burglars. This paper proposes a novelsystem that uses principal component analysis, linear discrimination analysisfeature extraction, and random forest as a classifier to improveHGRaccuracy.We have achieved an accuracy of 94% over the publicly benchmarked HGRdataset. The proposed system can be used to detect hand gestures in thehealthcare industry as well as in the industrial and educational sectors. 展开更多
关键词 Genetic algorithm human locomotion activity recognition human–computer interaction human gestures recognition principal hand gestures recognition inertial sensors principal component analysis linear discriminant analysis stochastic neighbor embedding
下载PDF
Dynamic Hand Gesture Recognition Based on Short-Term Sampling Neural Networks 被引量:12
12
作者 Wenjin Zhang Jiacun Wang Fangping Lan 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第1期110-120,共11页
Hand gestures are a natural way for human-robot interaction.Vision based dynamic hand gesture recognition has become a hot research topic due to its various applications.This paper presents a novel deep learning netwo... Hand gestures are a natural way for human-robot interaction.Vision based dynamic hand gesture recognition has become a hot research topic due to its various applications.This paper presents a novel deep learning network for hand gesture recognition.The network integrates several well-proved modules together to learn both short-term and long-term features from video inputs and meanwhile avoid intensive computation.To learn short-term features,each video input is segmented into a fixed number of frame groups.A frame is randomly selected from each group and represented as an RGB image as well as an optical flow snapshot.These two entities are fused and fed into a convolutional neural network(Conv Net)for feature extraction.The Conv Nets for all groups share parameters.To learn longterm features,outputs from all Conv Nets are fed into a long short-term memory(LSTM)network,by which a final classification result is predicted.The new model has been tested with two popular hand gesture datasets,namely the Jester dataset and Nvidia dataset.Comparing with other models,our model produced very competitive results.The robustness of the new model has also been proved with an augmented dataset with enhanced diversity of hand gestures. 展开更多
关键词 Convolutional neural network(ConvNet) hand gesture recognition long short-term memory(LSTM)network short-term sampling transfer learning
下载PDF
Vision Based Hand Gesture Recognition Using 3D Shape Context 被引量:7
13
作者 Chen Zhu Jianyu Yang +1 位作者 Zhanpeng Shao Chunping Liu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第9期1600-1613,共14页
Hand gesture recognition is a popular topic in computer vision and makes human-computer interaction more flexible and convenient.The representation of hand gestures is critical for recognition.In this paper,we propose... Hand gesture recognition is a popular topic in computer vision and makes human-computer interaction more flexible and convenient.The representation of hand gestures is critical for recognition.In this paper,we propose a new method to measure the similarity between hand gestures and exploit it for hand gesture recognition.The depth maps of hand gestures captured via the Kinect sensors are used in our method,where the 3D hand shapes can be segmented from the cluttered backgrounds.To extract the pattern of salient 3D shape features,we propose a new descriptor-3D Shape Context,for 3D hand gesture representation.The 3D Shape Context information of each 3D point is obtained in multiple scales because both local shape context and global shape distribution are necessary for recognition.The description of all the 3D points constructs the hand gesture representation,and hand gesture recognition is explored via dynamic time warping algorithm.Extensive experiments are conducted on multiple benchmark datasets.The experimental results verify that the proposed method is robust to noise,articulated variations,and rigid transformations.Our method outperforms state-of-the-art methods in the comparisons of accuracy and efficiency. 展开更多
关键词 3D shape context depth map hand shape segmentation hand gesture recognition human-computer interaction
下载PDF
Multi-modal Gesture Recognition using Integrated Model of Motion, Audio and Video 被引量:3
14
作者 GOUTSU Yusuke KOBAYASHI Takaki +4 位作者 OBARA Junya KUSAJIMA Ikuo TAKEICHI Kazunari TAKANO Wataru NAKAMURA Yoshihiko 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第4期657-665,共9页
Gesture recognition is used in many practical applications such as human-robot interaction, medical rehabilitation and sign language. With increasing motion sensor development, multiple data sources have become availa... Gesture recognition is used in many practical applications such as human-robot interaction, medical rehabilitation and sign language. With increasing motion sensor development, multiple data sources have become available, which leads to the rise of multi-modal gesture recognition. Since our previous approach to gesture recognition depends on a unimodal system, it is difficult to classify similar motion patterns. In order to solve this problem, a novel approach which integrates motion, audio and video models is proposed by using dataset captured by Kinect. The proposed system can recognize observed gestures by using three models. Recognition results of three models are integrated by using the proposed framework and the output becomes the final result. The motion and audio models are learned by using Hidden Markov Model. Random Forest which is the video classifier is used to learn the video model. In the experiments to test the performances of the proposed system, the motion and audio models most suitable for gesture recognition are chosen by varying feature vectors and learning methods. Additionally, the unimodal and multi-modal models are compared with respect to recognition accuracy. All the experiments are conducted on dataset provided by the competition organizer of MMGRC, which is a workshop for Multi-Modal Gesture Recognition Challenge. The comparison results show that the multi-modal model composed of three models scores the highest recognition rate. This improvement of recognition accuracy means that the complementary relationship among three models improves the accuracy of gesture recognition. The proposed system provides the application technology to understand human actions of daily life more precisely. 展开更多
关键词 gesture recognition multi-modal integration hidden Markov model random forests
下载PDF
Dynamic Hand Gesture Recognition Using 3D-CNN and LSTM Networks 被引量:3
15
作者 Muneeb Ur Rehman Fawad Ahmed +4 位作者 Muhammad Attique Khan Usman Tariq Faisal Abdulaziz Alfouzan Nouf M.Alzahrani Jawad Ahmad 《Computers, Materials & Continua》 SCIE EI 2022年第3期4675-4690,共16页
Recognition of dynamic hand gestures in real-time is a difficult task because the system can never know when or from where the gesture starts and ends in a video stream.Many researchers have been working on visionbase... Recognition of dynamic hand gestures in real-time is a difficult task because the system can never know when or from where the gesture starts and ends in a video stream.Many researchers have been working on visionbased gesture recognition due to its various applications.This paper proposes a deep learning architecture based on the combination of a 3D Convolutional Neural Network(3D-CNN)and a Long Short-Term Memory(LSTM)network.The proposed architecture extracts spatial-temporal information from video sequences input while avoiding extensive computation.The 3D-CNN is used for the extraction of spectral and spatial features which are then given to the LSTM network through which classification is carried out.The proposed model is a light-weight architecture with only 3.7 million training parameters.The model has been evaluated on 15 classes from the 20BN-jester dataset available publicly.The model was trained on 2000 video-clips per class which were separated into 80%training and 20%validation sets.An accuracy of 99%and 97%was achieved on training and testing data,respectively.We further show that the combination of 3D-CNN with LSTM gives superior results as compared to MobileNetv2+LSTM. 展开更多
关键词 Convolutional neural networks 3D-CNN LSTM SPATIOTEMPORAL jester real-time hand gesture recognition
下载PDF
WiFi CSI Gesture Recognition Based on Parallel LSTM-FCN Deep Space-Time Neural Network 被引量:2
16
作者 Zhiling Tang Qianqian Liu +2 位作者 Minjie Wu Wenjing Chen Jingwen Huang 《China Communications》 SCIE CSCD 2021年第3期205-215,共11页
In this study,we developed a system based on deep space–time neural networks for gesture recognition.When users change or the number of gesture categories increases,the accuracy of gesture recognition decreases consi... In this study,we developed a system based on deep space–time neural networks for gesture recognition.When users change or the number of gesture categories increases,the accuracy of gesture recognition decreases considerably because most gesture recognition systems cannot accommodate both user differentiation and gesture diversity.To overcome the limitations of existing methods,we designed a onedimensional parallel long short-term memory–fully convolutional network(LSTM–FCN)model to extract gesture features of different dimensions.LSTM can learn complex time dynamic information,whereas FCN can predict gestures efficiently by extracting the deep,abstract features of gestures in the spatial dimension.In the experiment,50 types of gestures of five users were collected and evaluated.The experimental results demonstrate the effectiveness of this system and robustness to various gestures and individual changes.Statistical analysis of the recognition results indicated that an average accuracy of approximately 98.9% was achieved. 展开更多
关键词 signal and information processing parallel LSTM-FCN neural network deep learning gesture recognition wireless channel state information
下载PDF
Multi-Person Device-Free Gesture Recognition Using mmWave Signals 被引量:1
17
作者 Jie Wang Zhouhua Ran +3 位作者 Qinghua Gao Xiaorui Ma Miao Pan Kaiping Xue 《China Communications》 SCIE CSCD 2021年第2期186-199,共14页
Device-free gesture recognition is an emerging wireless sensing technique which could recognize gestures by analyzing its influence on surrounding wireless signals,it may empower wireless networks with the augmented s... Device-free gesture recognition is an emerging wireless sensing technique which could recognize gestures by analyzing its influence on surrounding wireless signals,it may empower wireless networks with the augmented sensing ability.Researchers have made great achievements for singleperson device-free gesture recognition.However,when multiple persons conduct gestures simultaneously,the received signals will be mixed together,and thus traditional methods would not work well anymore.Moreover,the anonymity of persons and the change in the surrounding environment would cause feature shift and mismatch,and thus the recognition accuracy would degrade remarkably.To address these problems,we explore and exploit the diversity of spatial information and propose a multidimensional analysis method to separate the gesture feature of each person using a focusing sensing strategy.Meanwhile,we also present a deep-learning based robust device free gesture recognition framework,which leverages an adversarial approach to extract robust gesture feature that is insensitive to the change of persons and environment.Furthermore,we also develop a 77GHz mmWave prototype system and evaluate the proposed methods extensively.Experimental results reveal that the proposed system can achieve average accuracies of 93%and 84%when 10 gestures are conducted in Received:Jun.18,2020 Revised:Aug.06,2020 Editor:Ning Ge different environments by two and four persons simultaneously,respectively. 展开更多
关键词 device-free gesture recognition wireless sensing multi-person deep-learning
下载PDF
Hand Gesture Recognition by Accelerometer-Based Cluster Dynamic Time Warping 被引量:1
18
作者 王琳琳 夏侯士戟 《Journal of Donghua University(English Edition)》 EI CAS 2017年第4期551-555,共5页
Aiming at the diversity of hand gesture traces by different people,the article presents novel method called cluster dynamic time warping( CDTW),which is based on the main axis classification and sample clustering of i... Aiming at the diversity of hand gesture traces by different people,the article presents novel method called cluster dynamic time warping( CDTW),which is based on the main axis classification and sample clustering of individuals. This method shows good performance on reducing the complexity of recognition and strong robustness of individuals. Data acquisition is implemented on a triaxial accelerometer with 100 Hz sampling frequency. A database of 2400 traces was created by ten subjects for the system testing and evaluation. The overall accuracy was found to be 98. 84% for user independent gesture recognition and 96. 7% for user dependent gesture recognition,higher than dynamic time warping( DTW),derivative DTW( DDTW) and piecewise DTW( PDTW) methods.Computation cost of CDTW in this project has been reduced 11 520 times compared with DTW. 展开更多
关键词 main axis classification sample clustering dynamic time warping(DTW) gesture recognition
下载PDF
Active Appearance Model Based Hand Gesture Recognition 被引量:1
19
作者 滕晓龙 于威威 刘重庆 《Journal of Donghua University(English Edition)》 EI CAS 2005年第4期67-71,共5页
This paper addresses the application of hand gesture recognition in monocular image sequences using Active Appearance Model (AAM), For this work, the proposed algorithm is composed of constricting AAMs and fitting t... This paper addresses the application of hand gesture recognition in monocular image sequences using Active Appearance Model (AAM), For this work, the proposed algorithm is composed of constricting AAMs and fitting the models to the interest region. In training stage, according to the manual labeled feature points, the relative AAM is constructed and the corresponding average feature is obtained. In recognition stage, the interesting hand gesture region is firstly segmented by skin and movement cues. Secondly, the models are fitted to the image that includes the hand gesture, and the relative features are extracted. Thirdly, the classification is done by comparing the extracted features and average features. 30 different gestures of Chinese sign language are applied for testing the effectiveness of the method. The Experimental results are given indicating good performance of the algorithm. 展开更多
关键词 human-machine interaction hand gesture recognition AAM sign language.
下载PDF
Hand Gesture Recognition Based on Improved FRNN 被引量:1
20
作者 滕晓龙 王向阳 刘重庆 《Journal of Donghua University(English Edition)》 EI CAS 2005年第5期47-52,共6页
The trained Gaussian mixture model is used to make skincolour segmentation for the input image sequences. The hand gesture region is extracted, and the relative normalization images are obtained by interpolation opera... The trained Gaussian mixture model is used to make skincolour segmentation for the input image sequences. The hand gesture region is extracted, and the relative normalization images are obtained by interpolation operation. To solve the proem of hand gesture recognition, Fuzzy-Rough based nearest neighbour(RNN) algorithm is applied for classification. For avoiding the costly compute, an improved nearest neighbour classification algorithm based on fuzzy-rough set theory (FRNNC) is proposed. The algorithm employs the represented cluster points instead of the whole training samples, and takes the hand gesture data's fuzziness and the roughness into account, so the campute spending is decreased and the recognition rate is increased. The 30 gestures in Chinese sign language alphabet are used for approving the effectiveness of the proposed algorithm. The recognition rate is 94.96%, which is better than that of KNN (K nearest neighbor)and Fuzzy- KNN (Fuzzy K nearest neighbor). 展开更多
关键词 Fuzzy-Rough set edit nearest neighbour algorithm hand gesture recognition
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部