Taking AuCu3-type sublattice system as an example, three discoveries have been presented: First, the third barrier hindering the progress in metal materials science is that researchers have got used to recognizing exp...Taking AuCu3-type sublattice system as an example, three discoveries have been presented: First, the third barrier hindering the progress in metal materials science is that researchers have got used to recognizing experimental phenomena of alloy phase transitions during extremely slow variation in temperature by equilibrium thinking mode and then taking erroneous knowledge of experimental phenomena as selected information for establishing Gibbs energy function and so-called equilibrium phase diagram. Second, the equilibrium holographic network phase diagrams of AuCu3-type sublattice system may be used to describe systematic correlativity of the composition?temperature-dependent alloy gene arranging structures and complete thermodynamic properties, and to be a standard for studying experimental subequilibrium order-disorder transition. Third, the equilibrium transition of each alloy is a homogeneous single-phase rather than a heterogeneous two-phase, and there exists a single-phase boundary curve without two-phase region of the ordered and disordered phases; the composition and temperature of the top point on the phase-boundary curve are far away from the ones of the critical point of the AuCu3 compound.展开更多
Taking Au3Cu-type sublattice system as an example, three discoveries have been presented. First, the fourth barrier to hinder the progress of metal materials science is that today’s researchers do not understand that...Taking Au3Cu-type sublattice system as an example, three discoveries have been presented. First, the fourth barrier to hinder the progress of metal materials science is that today’s researchers do not understand that the Gibbs energy function of an alloy phase should be derived from Gibbs energy partition function constructed of alloy gene sequence and their Gibbs energy sequence. Second, the six rules for establishing alloy gene Gibbs energy partition function have been discovered, and it has been specially proved that the probabilities of structure units occupied at the Gibbs energy levels in the degeneracy factor for calculating configuration entropy should be degenerated as ones of component atoms occupied at the lattice points. Third, the main characteristics unexpected by today’s researchers are as follows. There exists a single-phase boundary curve without two-phase region coexisting by the ordered and disordered phases. The composition and temperature of the top point on the phase-boundary curve are far away from those of the critical point of the Au3Cu compound; At 0 K, the composition of the lowest point on the composition-dependent Gibbs energy curve is notably deviated from that of the Au3Cu compounds. The theoretical limit composition range of long range ordered Au3Cu-type alloys is determined by the first jumping order degree.展开更多
According to the quasi paraboloid rule, a computer program was developed and the Gibbs free energy functions of some compounds in Sialon system were assessed and predicted. It makes the theoretical design of the Sial...According to the quasi paraboloid rule, a computer program was developed and the Gibbs free energy functions of some compounds in Sialon system were assessed and predicted. It makes the theoretical design of the Sialon materials possible.展开更多
For consideration of both the eccentric rotatable rigid body and the translational rigid body, the dynamic model of the underwater glider is derived. Dynamical behaviors are also studied based on the model and can be ...For consideration of both the eccentric rotatable rigid body and the translational rigid body, the dynamic model of the underwater glider is derived. Dynamical behaviors are also studied based on the model and can be used as the guidance to underwater gliders design. Gibbs function of the underwater glider system is derived first, and then the nonlinear dynamic model is obtained by use of Appell equations. The relationships between dynamic behaviors and design parameters are studied by solving the dynamic model. The spiral motion, swerving motion in three dimensions and the saw-tooth motion of the underwater glider in vertical plane are studied. Lake trials are carried out to validate the dynamic model.展开更多
The thermodynamic properties of linear protein solutions are discussed by a statistical me-chanics theory with a lattice model. The numerical results show that the Gibbs function of the solution decreases, and the pro...The thermodynamic properties of linear protein solutions are discussed by a statistical me-chanics theory with a lattice model. The numerical results show that the Gibbs function of the solution decreases, and the protein chemical potential is enhanced with increase of the protein concentration for dilute solutions. The influences of chain length and temperature on the Gibbs function of the solution as well as the protein chemical potential are analyzed.As an application of the theory, the chemical potentials of some mutants of type I antifreeze proteins are computed and discussed.展开更多
A statistical thermodynamic theory of linear protein solutions was proposed with the aid of a lattice model and applied to type Ⅰ antifreeze protein(AFPI) solutions.The numerical results for several AFPI solutions ...A statistical thermodynamic theory of linear protein solutions was proposed with the aid of a lattice model and applied to type Ⅰ antifreeze protein(AFPI) solutions.The numerical results for several AFPI solutions show that the Gibbs function of the solution has a minimum at a certain protein concentration,but the protein chemical potential increases with increasing the concentration.The influences of temperature and protein chain length on the AFPI chemical potential were also discussed.The evaluation for the colligative depression of the freezing point confirms that the antifreeze action should be recognized as non-colligative.The theoretical deduction for the concentration dependence of the thermal hysteresis activity coincides qualitatively with the previous experimental and theoretical results.展开更多
Standard treatments of thermodynamic equilibrium are incomplete. They do not take account of all factors determining equilibrium, cannot explain why many systems do not reach equilibrium and do not discuss the questio...Standard treatments of thermodynamic equilibrium are incomplete. They do not take account of all factors determining equilibrium, cannot explain why many systems do not reach equilibrium and do not discuss the questions of reaching and maintaining equilibrium. The arguments presented here provide a single physical definition of thermodynamic equilibrium that accounts for all factors determining thermodynamic equilibrium for mixtures of combustible gases and air. Based on the standard delrmition of thermodynamic equilibrium, the MBD (Maxwell Boltzmann distribution) and a simple molecular model lead to three possible types of equilibrium. The regions of temperature pressure and composition for each type of equilibrium are defined by the measured values of ignition temperatures and the explosive and flammability limits. How this definition of thermodynamic equilibrium can be extended to all molecular systems is discussed in the following papers.展开更多
Thermodynamic analysis of the possibility of silver nanocrystalline preparation by high energy milling silver oxide was investigated. The molar Gibbs free energy function of mechanically activated samples was calculat...Thermodynamic analysis of the possibility of silver nanocrystalline preparation by high energy milling silver oxide was investigated. The molar Gibbs free energy function of mechanically activated samples was calculated from the structural defects such as amorphization, dislocation and surface energy. According to the molar Gibbs free energy function, the equilibrium temperature of mechanical reduction of silver oxide milled for 21 h was estimated at about 304 K. Consequently, at this temperature silver oxide cannot be stable and will transform to silver during the milling.展开更多
基金Project(51071181)supported by the National Natural Science Foundation of ChinaProject(2013FJ4043)supported by the Natural Science Foundation of Hunan Province,China
文摘Taking AuCu3-type sublattice system as an example, three discoveries have been presented: First, the third barrier hindering the progress in metal materials science is that researchers have got used to recognizing experimental phenomena of alloy phase transitions during extremely slow variation in temperature by equilibrium thinking mode and then taking erroneous knowledge of experimental phenomena as selected information for establishing Gibbs energy function and so-called equilibrium phase diagram. Second, the equilibrium holographic network phase diagrams of AuCu3-type sublattice system may be used to describe systematic correlativity of the composition?temperature-dependent alloy gene arranging structures and complete thermodynamic properties, and to be a standard for studying experimental subequilibrium order-disorder transition. Third, the equilibrium transition of each alloy is a homogeneous single-phase rather than a heterogeneous two-phase, and there exists a single-phase boundary curve without two-phase region of the ordered and disordered phases; the composition and temperature of the top point on the phase-boundary curve are far away from the ones of the critical point of the AuCu3 compound.
基金Project(51071181)supported by the National Natural Science Foundation of ChinaProject(2013FJ4043)supported by the Natural Science Foundation of Hunan Province,China
文摘Taking Au3Cu-type sublattice system as an example, three discoveries have been presented. First, the fourth barrier to hinder the progress of metal materials science is that today’s researchers do not understand that the Gibbs energy function of an alloy phase should be derived from Gibbs energy partition function constructed of alloy gene sequence and their Gibbs energy sequence. Second, the six rules for establishing alloy gene Gibbs energy partition function have been discovered, and it has been specially proved that the probabilities of structure units occupied at the Gibbs energy levels in the degeneracy factor for calculating configuration entropy should be degenerated as ones of component atoms occupied at the lattice points. Third, the main characteristics unexpected by today’s researchers are as follows. There exists a single-phase boundary curve without two-phase region coexisting by the ordered and disordered phases. The composition and temperature of the top point on the phase-boundary curve are far away from those of the critical point of the Au3Cu compound; At 0 K, the composition of the lowest point on the composition-dependent Gibbs energy curve is notably deviated from that of the Au3Cu compounds. The theoretical limit composition range of long range ordered Au3Cu-type alloys is determined by the first jumping order degree.
文摘According to the quasi paraboloid rule, a computer program was developed and the Gibbs free energy functions of some compounds in Sialon system were assessed and predicted. It makes the theoretical design of the Sialon materials possible.
基金supported by the National Natural Science Foundation of China (Grant No.50835006)the Natural Science Foundation of Tianjin (Grant No.09JCZDJC23400)
文摘For consideration of both the eccentric rotatable rigid body and the translational rigid body, the dynamic model of the underwater glider is derived. Dynamical behaviors are also studied based on the model and can be used as the guidance to underwater gliders design. Gibbs function of the underwater glider system is derived first, and then the nonlinear dynamic model is obtained by use of Appell equations. The relationships between dynamic behaviors and design parameters are studied by solving the dynamic model. The spiral motion, swerving motion in three dimensions and the saw-tooth motion of the underwater glider in vertical plane are studied. Lake trials are carried out to validate the dynamic model.
基金This work was supported by the National Natural Science Foundation of China (No.10764003 and No.30560039).
文摘The thermodynamic properties of linear protein solutions are discussed by a statistical me-chanics theory with a lattice model. The numerical results show that the Gibbs function of the solution decreases, and the protein chemical potential is enhanced with increase of the protein concentration for dilute solutions. The influences of chain length and temperature on the Gibbs function of the solution as well as the protein chemical potential are analyzed.As an application of the theory, the chemical potentials of some mutants of type I antifreeze proteins are computed and discussed.
基金Supported by the National Natural Science Foundation of China(Nos.10764003,30560039)the Special Fund for Basic Scientific Research of Central Colleges,North China Institute of Science and Technology for Nationalities(No.JCB1201A)
文摘A statistical thermodynamic theory of linear protein solutions was proposed with the aid of a lattice model and applied to type Ⅰ antifreeze protein(AFPI) solutions.The numerical results for several AFPI solutions show that the Gibbs function of the solution has a minimum at a certain protein concentration,but the protein chemical potential increases with increasing the concentration.The influences of temperature and protein chain length on the AFPI chemical potential were also discussed.The evaluation for the colligative depression of the freezing point confirms that the antifreeze action should be recognized as non-colligative.The theoretical deduction for the concentration dependence of the thermal hysteresis activity coincides qualitatively with the previous experimental and theoretical results.
文摘Standard treatments of thermodynamic equilibrium are incomplete. They do not take account of all factors determining equilibrium, cannot explain why many systems do not reach equilibrium and do not discuss the questions of reaching and maintaining equilibrium. The arguments presented here provide a single physical definition of thermodynamic equilibrium that accounts for all factors determining thermodynamic equilibrium for mixtures of combustible gases and air. Based on the standard delrmition of thermodynamic equilibrium, the MBD (Maxwell Boltzmann distribution) and a simple molecular model lead to three possible types of equilibrium. The regions of temperature pressure and composition for each type of equilibrium are defined by the measured values of ignition temperatures and the explosive and flammability limits. How this definition of thermodynamic equilibrium can be extended to all molecular systems is discussed in the following papers.
文摘Thermodynamic analysis of the possibility of silver nanocrystalline preparation by high energy milling silver oxide was investigated. The molar Gibbs free energy function of mechanically activated samples was calculated from the structural defects such as amorphization, dislocation and surface energy. According to the molar Gibbs free energy function, the equilibrium temperature of mechanical reduction of silver oxide milled for 21 h was estimated at about 304 K. Consequently, at this temperature silver oxide cannot be stable and will transform to silver during the milling.