期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
THE SCHUR CONVEXITY OF GINI MEAN VALUES IN THE SENSE OF HARMONIC MEAN 被引量:4
1
作者 夏卫锋 褚玉明 《Acta Mathematica Scientia》 SCIE CSCD 2011年第3期1103-1112,共10页
We prove that the Gini mean values S(a,b; x,y) are Schur harmonic convex with respect to (x,y)∈(0,∞)×(0,∞) if and only if (a, b) ∈{(a, b):a≥0,a ≥ b,a+b+1≥0}∪{(a,b):b≥0,b≥a,a+b+1≥0} ... We prove that the Gini mean values S(a,b; x,y) are Schur harmonic convex with respect to (x,y)∈(0,∞)×(0,∞) if and only if (a, b) ∈{(a, b):a≥0,a ≥ b,a+b+1≥0}∪{(a,b):b≥0,b≥a,a+b+1≥0} and Schur harmonic concave with respect to (x,y) ∈ (0,∞)×(0,∞) if and only if (a,b)∈{(a,b):a≤0,b≤0,a|b|1≤0}. 展开更多
关键词 gini mean values Schur convex Schur harmonic convex
下载PDF
Solution of an open problem for Schur convexity or concavity of the Gini mean values 被引量:3
2
作者 CHU YuMing XIA WeiFeng 《Science China Mathematics》 SCIE 2009年第10期2099-2106,共8页
The Schur convexity or concavity problem of the Gini mean values S(a, b; x, y) with respect to (x, y) ∈ (0, ∞) × (0, ∞) for fixed (a, b) ∈ ? × ? is still open. In this paper, we prove that S(a, b; x, y) ... The Schur convexity or concavity problem of the Gini mean values S(a, b; x, y) with respect to (x, y) ∈ (0, ∞) × (0, ∞) for fixed (a, b) ∈ ? × ? is still open. In this paper, we prove that S(a, b; x, y) is Schur convex with respect to (x, y) ∈ (0, ∞) × (0, ∞) if and only if (a, b) ∈ {(a, b): a ? 0, b ? 0, a + b ? 1}, and Schur concave with respect to (x, y) ∈ (0, ∞) × (0, ∞) if and only if (a, b) ∈ {(a, b): b ? 0, b ? a, a + b ? 1} ∩ {(a, b): a ? 0, a ? b, a + b ? 1}. 展开更多
关键词 gini mean values Schur convex Schur concave 26D15 26D99 26B25
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部