期刊文献+
共找到5,662篇文章
< 1 2 250 >
每页显示 20 50 100
Ginsenoside Rb1 induces hepatic stellate cell ferroptosis to alleviate liver fibrosis via the BECN1/SLC7A11 axis
1
作者 Lifan Lin Xinmiao Li +3 位作者 Yifei Li Zhichao Lang Yeping Li Jianjian Zheng 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2024年第5期744-757,共14页
Liver fibrosis is primarily driven by the activation of hepatic stellate cells(HSCs),a process associated with ferroptosis.Ginsenoside Rb1(GRb1),a major active component extracted from Panax ginseng,inhibits HSC activ... Liver fibrosis is primarily driven by the activation of hepatic stellate cells(HSCs),a process associated with ferroptosis.Ginsenoside Rb1(GRb1),a major active component extracted from Panax ginseng,inhibits HSC activation.However,the potential role of GRb1 in mediating HSC ferroptosis remains unclear.This study examined the effect of GRb1 on liver fibrosis both in vivo and in vitro,using CCl4-induced liver fibrosis mouse model and primary HSCs,LX-2 cells.The findings revealed that GRb1 effectively inactivated HSCs in vitro,reducing alpha-smooth muscle actin(a-SMA)and type I collagen(Col1A1)levels.Moreover,GRb1 significantly alleviated CCl4-induced liver fibrosis in vivo.From a mechanistic standpoint,the ferroptosis pathway appeared to be central to the antifibrotic effects of GRb1.Specifically,GRb1 promoted HSC ferroptosis both in vivo and in vitro,characterized by increased glutathione depletion,malondialdehyde production,iron overload,and accumulation of reactive oxygen species(ROS).Intriguingly,GRb1 increased Beclin 1(BECN1)levels and decreased the System Xc-key subunit SLC7A11.Further experiments showed that BECN1 silencing inhibited GRb1-induced effects on HSC ferroptosis and mitigated the reduction of SLC7A11 caused by GRb1.Moreover,BECN1 could directly interact with SLC7A11,initiating HSC ferroptosis.In conclusion,the suppression of BECN1 counteracted the effects of GRb1 on HSC inactivation both in vivo and in vitro.Overall,this study highlights the novel role of GRb1 in inducing HSC ferroptosis and promoting HSC inactivation,at least partly through its modulation of BECN1 and SLC7A11. 展开更多
关键词 ginsenoside Rb1 Ferroptosis Liver fibrosis Hepatic stellate cells
下载PDF
Crosstalk among Oxidative Stress,Autophagy,and Apoptosis in the Protective Effects of Ginsenoside Rb1 on Brain Microvascular Endothelial Cells:A Mixed Computational and Experimental Study
2
作者 Yi-miao LUO Shu-sen LIU +5 位作者 Ming ZHAO Wei WEI Jiu-xiu YAO Jia-hui SUN Yu CAO Hao LI 《Current Medical Science》 SCIE CAS 2024年第3期578-588,共11页
Objective Brain microvascular endothelial cells (BMECs) were found to shift from their usually inactive state to an active state in ischemic stroke (IS) and cause neuronal damage. Ginsenoside Rb1 (GRb1),a component de... Objective Brain microvascular endothelial cells (BMECs) were found to shift from their usually inactive state to an active state in ischemic stroke (IS) and cause neuronal damage. Ginsenoside Rb1 (GRb1),a component derived from medicinal plants,is known for its pharmacological benefits in IS,but its protective effects on BMECs have yet to be explored. This study aimed to investigate the potential protective effects of GRb1 on BMECs. Methods An in vitro oxygen-glucose deprivation/reperfusion (OGD/R) model was established to mimic ischemia-reperfusion (I/R) injury. Bulk RNA-sequencing data were analyzed by using the Human Autophagy Database and various bioinformatic tools,including gene set enrichment analysis (GSEA),Gene Ontology (GO) classification and enrichment analysis,Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis,protein-protein interaction network analysis,and molecular docking. Experimental validation was also performed to ensure the reliability of our findings. Results Rb1 had a protective effect on BMECs subjected to OGD/R injury. Specifically,GRb1 was found to modulate the interplay between oxidative stress,apoptosis,and autophagy in BMECs. Key targets such as sequestosome 1 (SQSTM1/p62),autophagy related 5 (ATG5),and hypoxia-inducible factor 1-alpha (HIF-1α) were identified,highlighting their potential roles in mediating the protective effects of GRb1 against IS-induced damage. Conclusion GRbl protects BMECs against OGD/R injury by influencing oxidative stress,apoptosis,and autophagy. The identification of SQSTM1/p62,ATG5,and HIF-1α as promising targets further supports the potential of GRb1 as a therapeutic agent for IS,providing a foundation for future research into its mechanisms and applications in IS treatment. 展开更多
关键词 ischemic stroke ginsenoside Rb1 brain microvascular endothelial cells oxidative stress AUTOPHAGY APOPTOSIS bioinformatic analysis
下载PDF
GPCR-Gs mediates the protective effects of ginsenoside Rb1 against oxygen-glucose deprivation/re-oxygenation-induced astrocyte injury
3
作者 Xi Wang Ying Liu +3 位作者 Juan Li Jiayu Xie Yi Dai Minke Tang 《Journal of Traditional Chinese Medical Sciences》 CAS 2024年第1期33-43,共11页
Objectives:To investigate whether the protective actions of ginsenoside Rb1(Rb1)on astrocytes are mediated through the G_(s)-type G-protein-coupled receptor(GPCR-G_(s)).Methods:Primary astrocyte cultures derived from ... Objectives:To investigate whether the protective actions of ginsenoside Rb1(Rb1)on astrocytes are mediated through the G_(s)-type G-protein-coupled receptor(GPCR-G_(s)).Methods:Primary astrocyte cultures derived from neonatal mouse brain were used.Astrocyte injury was induced via oxygen-glucose deprivation/re-oxygenation(OGD/R).Cell morphology,viability,lactate dehydrogenase(LDH)leakage,apoptosis,glutamate uptake,and brain-derived neurotrophic factor(BDNF)secretion were assessed to gauge cell survival and functionality.Western blot was used to investigate the cyclic adenosine monophosphate(cAMP)and protein kinase B(Akt)signaling pathways.GPCR-G_(s)-specific inhibitors and molecular docking were used to identify target receptors.Results:Rb1 at concentrations ranging from 0.8 to 5μM did not significantly affect the viability,glutamate uptake,or BDNF secretion in normal astrocytes.OGD/R reduced astrocyte viability,increasing their LDH leakage and apoptosis rate.It also decreased glutamate uptake and BDNF secretion by these cells.Rb1 had protective effects of astrocytes challenged by OGD/R,by improving viability,reducing apoptosis,and enhancing glutamate uptake and BDNF secretion.Additionally,Rb1 activated the cAMP and Akt pathways in these cells.When the GPCR-G_(s) inhibitor NF449 was introduced,the protective effects of Rb1 completely disappeared,and its activation of cAMP and Akt signaling pathways was significantly inhibited.Conclusion:Rb1 protects against astrocytes from OGD/R-induced injury through GPCR-G_(s) mediation. 展开更多
关键词 GINSENG ginsenoside Rb1 Receptor GPCR ASTROCYTES Neuroprotective effects
下载PDF
Transcriptome-Wide Identification and Functional Analysis of PgSQE08-01 Gene in Ginsenoside Biosynthesis in Panax ginseng C.A.Mey.
4
作者 Lei Zhu Lihe Hou +5 位作者 Yu Zhang Yang Jiang Yi Wang Meiping Zhang Mingzhu Zhao Kangyu Wang 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第2期313-327,共15页
Panax ginseng C.A.Mey.is an important plant species used in traditional Chinese medicine,whose primary active ingredient is a ginsenoside.Ginsenoside biosynthesis is not only regulated by transcription factors but als... Panax ginseng C.A.Mey.is an important plant species used in traditional Chinese medicine,whose primary active ingredient is a ginsenoside.Ginsenoside biosynthesis is not only regulated by transcription factors but also controlled by a variety of structural genes.Nonetheless,the molecular mechanism underlying ginsenoside biosynthesis has always been a topic in the discussion of ginseng secondary metabolites.Squalene epoxidase(SQE)is a key enzyme in the mevalonic acid pathway,which affects the biosynthesis of secondary metabolites such as terpenoid.Using ginseng transcriptome,expression,and ginsenoside content databases,this study employed bioinformatic methods to systematically analyze the genes encoding SQE in ginseng.We first selected six PgSQE candidates that were closely involved in ginsenoside biosynthesis and then identified PgSQE08-01 to be highly associated with ginsenoside biosynthesis.Next,we constructed the overexpression vector pCAMBIA3301-PgSQE08-01 and the RNAi vector pART27-PgSQE08-01 and transformed ginseng adventitious roots using Agrobacterium rhizogenes,to obtain positive hairy-root clones.Thereafter,quantitative reverse transcriptionpolymerase chain reaction and high-performance liquid chromatography were used to determine the expression of relevant genes and ginsenoside content,respectively.Then,we focused on the function of PgSQE08-01 gene,which was noted to be involved in ginsenoside biosynthesis.Thus,these findings not only provided a molecular basis for the identification of important functional genes in ginseng but also enriched genetic resources for the biosynthesis of ginsenosides using synthetic biology. 展开更多
关键词 Panax ginseng pgSQE08-01 gene squalene epoxidase ginsenosidE ginseng hairy roots
下载PDF
A novel cabazitaxel liposomes modified with ginsenoside Rk1 for cancer targeted therapy
5
作者 Dandan Huang Zhongjie Tang +3 位作者 Xiao Pu Tianqi Wang Feiyan Gao Chong Li 《Acupuncture and Herbal Medicine》 2024年第1期113-121,共9页
Objective:In this study,we aim to enhance the anti-prostate cancer efficacy of cabazitaxel(CTX)and reduce its immunosuppression and systemic toxicity by developing CTX-loaded liposomes modified with ginsenoside Rk1(Rk... Objective:In this study,we aim to enhance the anti-prostate cancer efficacy of cabazitaxel(CTX)and reduce its immunosuppression and systemic toxicity by developing CTX-loaded liposomes modified with ginsenoside Rk1(Rk1/CTX-Lip).Methods:Physical and chemical properties of Rk1/CTX-Lip were investigated.We evaluated the biological functions of Rk1/CTXLip,both in vitro and in vivo.A subcutaneous prostate cancer(RM-1)-bearing mouse model was established to study the efficacy of Rk1/CTX-Lip inhibition in tumors.Simultaneously,a Candida albicans infection model was established in tumor-bearing mice to study the infection-relieving efficacy of Rk1/CTX-Lip.Finally,biocompatibility and in vivo safety of Rk1/CTX-Lip were evaluated.Results:We successfully prepared Rk1/CTX-Lip,achieving high CTX encapsulation efficiency(97.24±0.75)%and physical stability.Rk1/CTX-Lip demonstrated evasion of macrophage phagocytosis,effective tumor tissue targeting,and a significant reduction(>50%)in average tumor volume compared with Chol/CTX-Lip.Moreover,it relieved the concurrent infection burden and effectively regulated immune organs and cells,demonstrating superior biocompatibility.Conclusion:Rk1/CTX-Lip presents a promising new therapy for prostate cancer and holds potential for relieving concurrent fungal infections in cancer patients with low immunity. 展开更多
关键词 CABAZITAXEL Fungal infection ginsenoside Rk1 Liposome-drug delivery system Prostate cancer
下载PDF
Effect of ginsenoside Rg1 on hematopoietic stem cells in treating aplastic anemia in mice via MAPK pathway
6
作者 Jin-Bo Wang Ming-Wei Du Yan Zheng 《World Journal of Stem Cells》 SCIE 2024年第5期591-603,共13页
BACKGROUND Aplastic anemia(AA)presents a significant clinical challenge as a life-threatening condition due to failure to produce essential blood cells,with the current the-rapeutic options being notably limited.AIM T... BACKGROUND Aplastic anemia(AA)presents a significant clinical challenge as a life-threatening condition due to failure to produce essential blood cells,with the current the-rapeutic options being notably limited.AIM To assess the therapeutic potential of ginsenoside Rg1 on AA,specifically its protective effects,while elucidating the mechanism at play.METHODS We employed a model of myelosuppression induced by cyclophosphamide(CTX)in C57 mice,followed by administration of ginsenoside Rg1 over 13 d.The invest-igation included examining the bone marrow,thymus and spleen for pathological changes via hematoxylin-eosin staining.Moreover,orbital blood of mice was collected for blood routine examinations.Flow cytometry was employed to identify the impact of ginsenoside Rg1 on cell apoptosis and cycle in the bone marrow of AA mice.Additionally,the study further evaluated cytokine levels with enzyme-linked immunosorbent assay and analyzed the expression of key proteins in the MAPK signaling pathway via western blot.RESULTS Administration of CTX led to significant damage to the bone marrow’s structural integrity and a reduction in hematopoietic cells,establishing a model of AA.Ginsenoside Rg1 successfully reversed hematopoietic dysfunction in AA mice.In comparison to the AA group,ginsenoside Rg1 provided relief by reducing the induction of cell apoptosis and inflammation factors caused by CTX.Furthermore,it helped alleviate the blockade in the cell cycle.Treatment with ginsenoside Rg1 significantly alleviated myelosuppression in mice by inhibiting the MAPK signaling pathway.CONCLUSION This study suggested that ginsenoside Rg1 addresses AA by alleviating myelosuppression,primarily through modulating the MAPK signaling pathway,which paves the way for a novel therapeutic strategy in treating AA,highlighting the potential of ginsenoside Rg1 as a beneficial intervention. 展开更多
关键词 Aplastic anemia ginsenoside Rg1 MYELOSUPPRESSION MAPK signaling pathway Bone marrow Hematopoietic stem cells
下载PDF
Ginsenoside Rk3 is a novel PI3K/AKT-targeting therapeutics agent that regulates autophagy and apoptosis in hepatocellular carcinoma 被引量:2
7
作者 Linlin Qu Yannan Liu +2 位作者 Jianjun Deng Xiaoxuan Ma Daidi Fan 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2023年第5期463-482,共20页
Hepatocellular carcinoma(HCC)is the third leading cause of cancer death worldwide.Ginsenoside Rk3,an important and rare saponin in heat-treated ginseng,is generated from Rg1 and has a smaller molecular weight.However,... Hepatocellular carcinoma(HCC)is the third leading cause of cancer death worldwide.Ginsenoside Rk3,an important and rare saponin in heat-treated ginseng,is generated from Rg1 and has a smaller molecular weight.However,the anti-HCC efficacy and mechanisms of ginsenoside Rk3 have not yet been characterized.Here,we investigated the mechanism by which ginsenoside Rk3,a tetracyclic triterpenoid rare ginsenoside,inhibits the growth of HCC.We first explored the possible potential targets of Rk3 through network pharmacology.Both in vitro(HepG2 and HCC-LM3 cells)and in vivo(primary liver cancer mice and HCC-LM3 subcutaneous tumor-bearing mice)studies revealed that Rk3 significantly inhibits the proliferation of HCC.Meanwhile,Rk3 blocked the cell cycle in HCC at the G1 phase and induced autophagy and apoptosis in HCC.Further proteomics and siRNA experiments showed that Rk3 regulates the phosphatidylinositol 3-kinase(PI3K)/protein kinase B(AKT)pathway to inhibit HCC growth,which was validated by molecular docking and surface plasmon resonance.In conclusion,we report the discovery that ginsenoside Rk3 binds to PI3K/AKT and promotes autophagy and apoptosis in HCC.Our data strongly support the translation of ginsenoside Rk3 into novel PI3K/AKT-targeting therapeutics for HCC treatment with low toxic side effects. 展开更多
关键词 Hepatocellular carcinoma ginsenoside Rk3 APOPTOSIS AUTOPHAGY PI3K/AKT pathway
下载PDF
Ginsenoside Rb1 improves energy metabolism after spinal cord injury 被引量:1
8
作者 Shan Wen Zhi-Ru Zou +4 位作者 Shuai Cheng Hui Guo Heng-Shuo Hu Fan-Zhuo Zeng Xi-Fan Mei 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第6期1332-1338,共7页
Mitochondrial damage caused by oxidative stress and energy deficiency induced by focal ischemia and hypoxia are important factors that aggravate diseases.Studies have shown that ginsenoside Rb1 has neurotrophic and ne... Mitochondrial damage caused by oxidative stress and energy deficiency induced by focal ischemia and hypoxia are important factors that aggravate diseases.Studies have shown that ginsenoside Rb1 has neurotrophic and neuroprotective effects.However,whether it influences energy metabolism after spinal cord injury remains unclear.In this study,we treated mouse and cell models of spinal cord injury with ginsenoside Rb1.We found that ginsenoside Rb1 remarkably inhibited neuronal oxidative stress,protected mitochondria,promoted neuronal metabolic reprogramming,increased glycolytic activity and ATP production,and promoted the survival of motor neurons in the anterior horn and the recovery of motor function in the hind limb.Because sirtuin 3 regulates glycolysis and oxidative stress,mouse and cell models of spinal cord injury were treated with the sirtuin 3 inhibitor 3-TYP.When Sirt3 expression was suppressed,we found that the therapeutic effects of ginsenoside Rb1 on spinal cord injury were remarkably inhibited.Therefore,ginsenoside Rb1 is considered a potential drug for the treatment of spinal cord injury,and its therapeutic effects are closely related to sirtuin 3. 展开更多
关键词 axon growth ginsenoside Rb1 GLYCOLYSIS metabolic reprogramming MITOCHONDRION NEUROPROTECTION oxidative stress oxygen and glucose deprivation Sirt3 spinal cord injury
下载PDF
Ginsenoside Rc:A potential intervention agent for metabolic syndrome
9
作者 Zhengjie Lu Tongyun Mao +3 位作者 Kaiqi Chen Longxin Chai Yongguo Dai Kexin Liu 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2023年第12期1375-1387,共13页
Ginsenoside Rc,a dammarane-type tetracyclic triterpenoid saponin primarily derived from Panax ginseng,has garnered significant attention due to its diverse pharmacological properties.This review outlined the sources,p... Ginsenoside Rc,a dammarane-type tetracyclic triterpenoid saponin primarily derived from Panax ginseng,has garnered significant attention due to its diverse pharmacological properties.This review outlined the sources,putative biosynthetic pathways,extraction,and quantification techniques,as well as the pharmacokinetic properties of ginsenoside Rc.Furthermore,this study explored the pharmacological effects of ginsenoside Rc against metabolic syndrome(MetS)across various phenotypes including obesity,diabetes,atherosclerosis,non-alcoholic fatty liver disease,and osteoarthritis.It also highlighted the impact of ginsenoside Rc on multiple associated signaling molecules.In conclusion,the anti-MetS effect of ginsenoside Rc is characterized by its influence on multiple organs,multiple targets,and multiple ways.Although clinical investigations regarding the effects of ginsenoside Rc on MetS are limited,its proven safety and tolerability suggest its potential as an effective treatment option. 展开更多
关键词 ginsenoside Rc Metabolic syndrome OBESITY DIABETES ATHEROSCLEROSIS
下载PDF
Ginsenoside Rg5 enhances the radiosensitivity of lung adenocarcinoma via reducing HSP90-CDC37 interaction and promoting client protein degradation
10
作者 Hansong Bai Jiahua Lyu +6 位作者 Xinyu Nie Hao Kuang Long Liang Hongyuan Jia Shijie Zhou Churong Li Tao Li 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2023年第11期1296-1308,共13页
Ginsenoside Rg5 is a rare ginsenoside showing promising tumor-suppressive effects.This study aimed to explore its radio-sensitizing effects and the underlying mechanisms.Human lung adenocarcinoma cell lines A549 and C... Ginsenoside Rg5 is a rare ginsenoside showing promising tumor-suppressive effects.This study aimed to explore its radio-sensitizing effects and the underlying mechanisms.Human lung adenocarcinoma cell lines A549 and Calu-3 were used for in vitro and in vivo analysis.Bioinformatic molecular docking prediction and following validation by surface plasmon resonance(SPR)technology,cellular thermal shift assay(CETSA),and isothermal titration calorimetry(ITC)were conducted to explore the binding between ginsenoside Rg5 and 90 kD heat shock protein alpha(HSP90a).The effects of ginsenoside Rg5 on HSP90-cell division cycle 37(CDC37)interaction,the client protein stability,and the downstream regulations were further explored.Results showed that ginsenoside Rg5 could induce cell-cycle arrest at the G1 phase and enhance irradiationinduced cell apoptosis.It could bind to HSP90a with a high affinity,but the affinity was drastically decreased by HSP90a Y61A mutation.Co-immunoprecipitation(Co-IP)and ITC assays confirmed that ginsenoside Rg5 disrupts the HSP90-CDC37 interaction in a dose-dependent manner.It reduced irradiation-induced upregulation of the HSP90-CDC37 client proteins,including SRC,CDK4,RAF1,and ULK1 in A549 cell-derived xenograft(CDX)tumors.Ginsenoside Rg5 or MRT67307(an IKKε/TBK1 inhibitor)pretreatment suppressed irradiation-induced elevation of the LC3-II/b ratio and restored irradiation-induced downregulation of p62 expression.In A549 CDX tumors,ginsenoside Rg5 treatment suppressed LC3 expression and enhanced irradiation-induced DNA damage.In conclusion,ginsenoside Rg5 may be a potential radiosensitizer for lung adenocarcinoma.It interacts with HSP90a and reduces the binding between HSP90 and CDC37,thereby increasing the ubiquitin-mediated proteasomal degradation of the HSP90-CDC37 client proteins. 展开更多
关键词 ginsenoside Rg5 Lung adenocarcinoma RADIOTHERAPY HSP90 CDC37
下载PDF
Comparative analysis of physicochemical properties,ginsenosides content andα-amylase inhibitory effects in white ginseng and red ginsen
11
作者 Huairui Wang Yao Cheng +2 位作者 Xue Zhang Yingping Wang Hui Zhao 《Food Science and Human Wellness》 SCIE CSCD 2023年第1期14-27,共14页
Ginseng(Panax ginseng C.A.Meyer)as a common dietary adjunct is widely applied in Traditional Chinese Medicine due to its health-promoting properties,but the differences between white ginseng and red ginseng was rarely... Ginseng(Panax ginseng C.A.Meyer)as a common dietary adjunct is widely applied in Traditional Chinese Medicine due to its health-promoting properties,but the differences between white ginseng and red ginseng was rarely studied.In the present study,color parameters and scanning electron microscope(SEM)were determined to evaluate the differences of ginseng color and microstructure induced by processing procedure.Quantitative analysis of multi-components by a single-marker(QAMS)method and anti-α-amylase activity test were used to assess variations of chemical ingredients and pharmacological activity between white and red ginseng.Finally,molecular docking studies were carried out to screen out the most effective compound againstα-amylase.Results indicated that processing had a significant impact on the physicochemical properties and pharmacological activity of white and red ginseng.After processing,the color value of L*declined significantly.Red ginseng sample displayed a compact structure and presented of a gel layer on the surface compared to white ginseng.Additionally,the content of ginsenosides and the activity of anti-α-amylase decreased.The contents of total ginsenosides were positively correlated with the anti-α-amylase activities of ginseng,and ginsenoside Rb1 might be the most effective compound to inhibit the activity ofα-amylase. 展开更多
关键词 GINSENG Color Microstructure ginsenosidES Α-AMYLASE
下载PDF
Ginsenoside Rk2, a dehydroprotopanaxadiol saponin, alleviates alcoholic liver disease via regulating NLRP3 and NLRP6 inflammasome signaling pathways in mice
12
作者 Jian Zou Rujie Yang +2 位作者 Ruibing Feng Jiayue Liu Jian-Bo Wan 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2023年第9期999-1012,共14页
Heavy alcohol consumption results in alcoholic liver disease(ALD)with inadequate therapeutic options.Here,we first report the potential beneficial effects of ginsenoside Rk2(Rk2),a rare dehydroprotopanaxadiol saponin ... Heavy alcohol consumption results in alcoholic liver disease(ALD)with inadequate therapeutic options.Here,we first report the potential beneficial effects of ginsenoside Rk2(Rk2),a rare dehydroprotopanaxadiol saponin isolated from streamed ginseng,against alcoholic liver injury in mice.Chronic-plus-single-binge ethanol feeding caused severe liver injury,as manifested by significantly elevated serum aminotransferase levels,hepatic histological changes,increased lipid accumulation,oxidative stress,and inflammation in the liver.These deleterious effects were alleviated by the treatment with Rk2(5 and 30 mg/kg).Acting as an nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3(NLRP3)inhibitor,Rk2 ameliorates alcohol-induced liver inflammation by inhibiting NLRP3 inflammasome signaling in the liver.Meanwhile,the treatment with Rk2 alleviated the alcohol-induced intestinal barrier dysfunction via enhancing NLRP6 inflammasome in the intestine.Our findings indicate that Rk2 is a promising agent for the prevention and treatment of ALD and other NLPR3-driven diseases. 展开更多
关键词 Alcoholic liver disease ginsenoside Rk2 NLRP3 inflammasome NLRP6 inflammasome Intestinal barrier dysfunction
下载PDF
Ginsenoside Rg1 protects against ischemia-induced neuron damage by regulating the rno-miRNA-27a-3p/PPARγaxis
13
作者 YUE GUAN TINGTING ZHANG +6 位作者 JIANAN YU JIAWEI LIU WENYUAN LI YUJIA ZHENG JIALE WANG YUE LIU FENGGUO ZHAI 《BIOCELL》 SCIE 2023年第7期1583-1594,共12页
A preliminary miRNA screening showed that expression levels of rno-miRNA-27a-3p were significantly increased in the serum and brain tissues of rats undergoing cerebral ischemia.In recent years,there is evidence of the... A preliminary miRNA screening showed that expression levels of rno-miRNA-27a-3p were significantly increased in the serum and brain tissues of rats undergoing cerebral ischemia.In recent years,there is evidence of the protective capacity of the saponins extracted from panax ginseng and its primary active ingredient ginsenosideRg1oncerebral ischemic injury.Methods:Fetal rat neurons(FRNs)were cultured in glucose-and-serumfree medium and exposed to hypoxia to establish a cerebral ischemia model in vitro(oxygen and glucose deprivation model,OGD).Antioxidant indexes(CAT,SOD),inflammatory markers(MPO,TNF-αand IL-6),and the expression of apoptosis and proliferation associated proteins(NF kB-p65,Caspase 3-cleaved,BCL-2)were examined.Results:Pre-treatment of Rg1(30–100μg/mL)could effectively inhibit the decline of antioxidant indexes(CAT,SOD)and increase in inflammatory markers(MPO,TNF-αand IL-6),and effectively inhibited the apoptosis in FRNs induced by OGD in a gradient-dependent manner.The mechanism analysis showed that the role of Rg1 in protecting against ischemia-induced neuron damage depends on its indirect up-regulation of PPAR protein via suppression of rnomiRNA-27a-3p.Moreover,these effects of Rg1 could be reversed by exogenous rno-miRNA-27a-3p and PPAR gene silencing in FRNs exposed to OGD.Conclusion:To summarize,our study demonstrates that Rg1 could effectively attenuate neuronal damage caused by cerebral ischemia via the rno-miRNA-27a-3p/PPARγpathway.Further,clarification of the novel mechanism will certainly improve our previous understanding of the role of Rg1 and enhancing its level in treatments for alleviating ischemic brain injury. 展开更多
关键词 ginsenoside Rg1 rno-miRNA-27a-3p PPARΓ Cerebral ischemia NEURON OGD
下载PDF
Ginsenoside F1 administration promotes UCP1-dependent fat browning and ameliorates obesity-associated insulin resistance
14
作者 Yuhan Meng Weili Li +7 位作者 Chenxing Hu Si Chen Haiyang Li Feifei Bai Lujuan Zheng Ye Yuan Yuying Fan Yifa Zhou 《Food Science and Human Wellness》 SCIE CSCD 2023年第6期2061-2072,共12页
Obesity-induced type 2 diabetes is mainly due to excessive free fatty acids leading to insulin resistance.Increasing thermogenesis is regarded as an effective strategy for hypolipidemia and hypoglycemia.Ginsenoside is... Obesity-induced type 2 diabetes is mainly due to excessive free fatty acids leading to insulin resistance.Increasing thermogenesis is regarded as an effective strategy for hypolipidemia and hypoglycemia.Ginsenoside is a natural active component in Panax ginseng C.A.Meyer,and some of them enhance thermogenesis.However,there are few studies on the mechanism and target of ginsenosides enhancing thermogenesis.Using thermogenic protein uncoupling protein 1(UCP1)-luciferase reporter assay,we identifi ed ginsenoside F1 as a novel UCP1 activator in the ginsenosides library.Using pull down assay and inhibitor interference,we found F1 binds toβ3-adrenergic receptors(β3-AR)to enhance UCP1 expression via cAMP/PKA/CREB pathway.We also investigated the ability of F1 on energy metabolism in obesity-induced diabetic mice,including body weight,body composition and energy expenditure.The results of proteomics showed that F1 signifi cantly up-regulated thermogenesis proteins and lipolytic proteins,but down-regulated fatty acid synthesis proteins.Ginsenoside F1 increased thermogenesis and ameliorated insulin resistance specifi cally by promoting the browning of white adipose tissue in obese mice.Additionally,ginsenoside F1 improves norepinephrine-induced insulin resistance in adipocytes and hepatocytes,and shows a stronger mitochondria respiration ability than norepinephrine.These fi ndings suggest that ginsenoside F1 is a promising lead compound in the improvement of insulin resistance. 展开更多
关键词 ginsenoside F1 Uncoupling protein 1 β3-Adrenergic receptor White adipose tissue browning Insulin resistance
下载PDF
Protective effect of ginsenoside Rg1 on 661W cells exposed to oxygen-glucose deprivation/reperfusion via keap1/nrf2 pathway
15
作者 Ming Zhou Xin-Qi Ma +4 位作者 Yi-Yu Xie Jia-Bei Zhou Xie-Lan Kuang Huang-Xuan Shen Chong-De Long 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2023年第7期1026-1033,共8页
AIM:To construct an in vitro model of oxygen-glucose deprivation/reperfusion(OGD/R)induced injury to the optic nerve and to study the oxidative damage mechanism of ischemia-reperfusion(I/R)injury in 661W cells and the... AIM:To construct an in vitro model of oxygen-glucose deprivation/reperfusion(OGD/R)induced injury to the optic nerve and to study the oxidative damage mechanism of ischemia-reperfusion(I/R)injury in 661W cells and the protective effect of ginsenoside Rg1.METHODS:The 661W cells were treated with different concentrations of Na2S2O4 to establish OGD/R model in vitro.Apoptosis,intracellular reactive oxygen species(ROS)levels and superoxide dismutase(SOD)levels were measured at different time points during the reperfusion injury process.The injury model was pretreated with graded concentrations of ginsenoside Rg1.Real-time polymerase chain reaction(PCR)was used to measure the expression levels of cytochrome C(cyt C)/B-cell lymphoma-2(Bcl2)/Bcl2 associated protein X(Bax),heme oxygenase-1(HO-1),caspase9,nuclear factor erythroid 2-related factor 2(nrf2),kelch-like ECH-associated protein 1(keap1)and other genes.Western blot was used to detect the expression of nrf2,phosphorylated nrf2(pnrf2)and keap1 protein levels.RESULTS:Compared to the untreated group,the cell activity of 661W cells treated with Na2S2O4 for 6 and 8h decreased(P<0.01).Additionally,the ROS content increased and SOD levels decreased significantly(P<0.01).In contrast,treatment with ginsenoside Rg1 reversed the cell viability and SOD levels in comparison to the Na_(2)S_(2)O_(4)treated group(P<0.01).Moreover,Rg1 reduced the levels of caspase3,caspase9,and cyt C,while increasing the Bcl2/Bax level.These differences were all statistically significant(P<0.05).Western blot analysis showed no significant difference in the protein expression levels of keap1 and nrf2 with Rg1 treatment,however,Rg1 significantly increased the ratio of pnrf2/nrf2 protein expression compared to the Na_(2)S_(2)O_(4)treated group(P<0.001).CONCLUSION:The OGD/R process is induced in 661W cells using Na_(2)S_(2)O_(4).Rg1 inhibits OGD/R-induced oxidative damage and alleviates the extent of apoptosis in 661W cells through the keap1/nrf2 pathway.These results suggest a potential protective effect of Rg1 against retinal I/R injury. 展开更多
关键词 oxygen-glucose deprivation/reoxygenation ginsenoside Rg1 oxidative stress phosphorylated nrf2
下载PDF
Enrichment of the less polar ginsenoside (Rg3) from ginseng grown in New Zealand by post-harvest processing and extraction 被引量:1
16
作者 Wei Chen Wen-Liang Xu +2 位作者 Dan-Xia Shi Prabhu Balan David Popovich 《Traditional Medicine Research》 2021年第4期136-149,共14页
Background:Previous studies showed that New Zealand-grown ginseng contains an abundance of ginsenosides and that rare less polar ginsenosides,such as Rg3,exhibit more pharmacological activities than polar ginsenosides... Background:Previous studies showed that New Zealand-grown ginseng contains an abundance of ginsenosides and that rare less polar ginsenosides,such as Rg3,exhibit more pharmacological activities than polar ginsenosides,which are the major components of ginseng.Methods:The ginsenoside profile of New Zealand-grown Panax ginseng was manipulated by treatment with acetic acid,sodium hydroxide,pH,and high temperature.The abundance of 23 ginsenosides extracted by different treatments was quantified using high-performance liquid chromatography.Results:Treatment with 0.5 mol/L acetic acid can stimulate the degradation of polar ginsenosides to less polar ginsenosides(5.6%Rg3 was accumulated,P<0.0001).Furthermore,when ginseng root was treated at 121℃ for 100 min in a pH 3.0 acetic acid aqueous solution,the majority of the polar ginsenosides were converted into less polar ginsenosides.Specifically,83.46±3.69%(P=0.0360)of the less polar ginsenosides and 41.01±2.39%(P=0.0412)of Rg3 were enriched.In contrast,alkali treatment did not convert the polar ginsenosides into less polar ginsenosides at mild temperature and less conversion was observed compared with acid treatment at high temperature.Conclusion:This is the first attempt to manipulate the ginsenoside profile of New Zealand-grown ginseng.The conditions(high temperature with low pH)may be modified to produce and enrich the less polar ginsenoside fraction(especially Rg3)from the total ginseng extract. 展开更多
关键词 New Zealand grown ginseng Less polar ginsenoside ginsenoside Rg3 ginsenoside transformation
下载PDF
Inhibiting effect of Endostar combined with ginsenoside Rg3 on breast cancer tumor growth in tumor-bearing mice 被引量:24
17
作者 Yun Zhang Qing-Zhan Liu +1 位作者 Su-Ping Xing Jin-Ling Zhang 《Asian Pacific Journal of Tropical Medicine》 SCIE CAS 2016年第2期178-181,共4页
Objective: To study the inhibiting effect of Endostar combined with ginsenoside Rg3 on breast cancer tumor growth in tumor-bearing mice. Methods: Female mice were selected as experimental animals, and breast cancer tu... Objective: To study the inhibiting effect of Endostar combined with ginsenoside Rg3 on breast cancer tumor growth in tumor-bearing mice. Methods: Female mice were selected as experimental animals, and breast cancer tumor-bearing mouse models were established and then divided into group A, B, C and D that respectively received saline, recombinant human endostatin, ginsenosides Rg3 and recombinant human endostatin combined with Rg3 intervention; 7 d, 14 d and 21 d after intervention, tumor tissue volume was measured; 21 d after intervention, mice were killed, tumor tissue was collected, and m RNA contents of angiogenesis molecules, invasion molecules, autophagy marker molecules and autophagy signaling pathway molecules were detected. Results: At 7 d, 14 d and 21 d after intervention, tumor tissue volume of group B, C and D was lower than that of group A, and tumor tissue volume of group D was lower than that of group B and C; m RNA contents of VEGFA, VEGFB, VEGFC, MMP2, MMP9, p62, m TOR, PI3 K, Akt, JNK and Beclin-1 in tumor tissue of group B, C and D were significantly lower than those of group A, and LC3-II/LC3-I was significantly higher than that of group A; m RNA contents of VEGFA, VEGFB, VEGFC, MMP2, MMP9, p62, m TOR, PI3 K, Akt, JNK and Beclin-1 in tumor tissue of group D were significantly lower than those of group B and C, and LC3-II/LC3-I was higher than that of group B and C. Conclusions: Endostar combined with ginsenoside Rg3 has stronger inhibiting effect on breast cancer tumor growth in tumor-bearing mice than single drug, and it can inhibit angiogenesis and cell invasion, and enhance cell autophagy. 展开更多
关键词 Breast cancer RECOMBINANT human ENDOSTATIN ginsenosidE RG3 Autophagy
下载PDF
Effects of ginsenoside Rh2 on growth and migration of pancreatic cancer cells 被引量:19
18
作者 Xi-Ping Tang Guo-Du Tang +2 位作者 Chun-Yun Fang Zhi-Hai Liang Lu-Yi Zhang 《World Journal of Gastroenterology》 SCIE CAS 2013年第10期1582-1592,共11页
AIM:To investigate the effects of ginsenoside Rh2 on the human pancreatic cancer cell line Bxpc-3.METHODS:The human pancreatic cancer cell line Bxpc-3 was cultured in vitro and treated with or without ginsenoside Rh2.... AIM:To investigate the effects of ginsenoside Rh2 on the human pancreatic cancer cell line Bxpc-3.METHODS:The human pancreatic cancer cell line Bxpc-3 was cultured in vitro and treated with or without ginsenoside Rh2.Growth rates for Bxpc-3 cells were assessed by methyl thiazolyl tetrazolium(MTT) and colony formation assays.Cell cycle changes were analyzed by flow cytometry.Apoptosis was measured by flow cytometry and Hoechst 33258 fluorescence staining.A scratch assay and a Matrigel invasion assay were used to detect cell migration and invasion.Expression of Bax,Bcl-2,survivin,cyclin D1,matrix metalloproteinase(MMP)-2,MMP-9,cleaved caspase-3,caspase-8,and caspase-9 mRNA were determined by reverse transcriptase-polymerase chain reaction(RT-PCR).Bax,Bcl-2,survivin,cyclin D1,cleaved caspase-3,caspase-8 and caspase-9 protein levels were examined by western blotting.Expression of MMP-2 and MMP-9 proteins in culture supernatants were determined by enzymelinked immunosorbent assay(ELISA).RESULTS:Rh2 significantly inhibited Bxpc-3 cell proliferation in a dose-and time-dependent manner,as evaluated by the MTT(P < 0.05) and colony formation assays(P < 0.05).Compared to the control group,Rh2 significantly increased the percentage of Bxpc-3 cells in the G 0 /G 1 phase from 43.32% ± 2.17% to 71.32% ± 1.16%,which was accompanied by a decrease in S phase(from 50.86% ± 1.29% to 28.48% ± 1.18%) and G 2 /M phase(from 5.81% ± 1.19% to 0.20% ± 0.05%) in a dose-dependent manner(P < 0.05),suggesting that Rh2 arrested cell cycle progression at the G 0 /G 1 phase,as measured by flow cytometry.Compared to the control group,cells treated with Rh2 showed significantly higher apoptosis ratios in a dosedependent manner(percentage of early apoptotic cells:from 5.29% ± 2.28% to 38.90% ± 3.42%(F = 56.20,P < 0.05);percentage of late apoptotic cells:from 4.58% ± 1.42% to 36.32% ± 2.73%(F = 86.70,P < 0.05).Rh2 inhibited Bxpc-3 cell migration and invasion,as detected by scratch wound healing assay and Matrigel invasion assay [percentages of scratch wound healing for 12 h,24 h and 48 h(control vs experimental group):37.3% ± 4.8%vs 18.30% ± 1.65%,58.7% ± 3.5% vs 38.00% ± 4.09% and 93.83% ± 4.65% vs 65.50% ± 4.09%,respectively;t = 6.489,t = 6.656 and t = 7.926,respectively,P < 0.05;the number of cells invading at various concentrations(0 μmol/L,35 μmol/L,45 μmol/L and 55 μmol/L):81.10 ± 9.55,46.40 ± 6.95,24.70 ± 6.88 and 8.70 ± 3.34,respectively(F = 502.713,P < 0.05)].RT-PCR,western blotting or ELISA showed that mRNA and protein expression of Bax,cleaved caspase-3 and caspase-9 were upregulated(P < 0.05),while mRNA and protein expression of Bcl-2,survivin,cyclin D1,MMP-2 and MMP-9 were downregulated(P < 0.05).CONCLUSION:Ginsenoside Rh2 inhibits proliferation,migration and invasion and induces apoptosis of the human pancreatic cancer cell line Bxpc-3. 展开更多
关键词 ginsenosidE Rh2 Human PANCREATIC cancer BXPC-3 cell PROLIFERATION APOPTOSIS MIGRATION
下载PDF
Neuroprotective effects of ginsenoside Rg1-induced neural stem cell transplantation on hypoxic-ischemic encephalopathy 被引量:21
19
作者 Ying-bo Li Yan Wang +2 位作者 Ji-ping Tang Di Chen Sha-li Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第5期753-759,共7页
Ginsenoside Rgl is the major pharmacologically active component of ginseng, and is reported to have various therapeutic actions. To determine whether it induces the differentiation of neural stem cells, and whether ne... Ginsenoside Rgl is the major pharmacologically active component of ginseng, and is reported to have various therapeutic actions. To determine whether it induces the differentiation of neural stem cells, and whether neural stem cell transplantation after induction has therapeutic effects on hypoxic-ischemic encephalopathy, we cultured neural stem cells in 10-80 ~tM ginsenoside Rgl. Immunohistochemistry revealed that of the concentrations tested, 20 mM ginsenoside Rgl had the greatest differentiation-inducing effect and was the concentration used for subsequent exper- iments. Whole-cell patch clamp showed that neural stem cells induced by 20 jaM ginsenoside Rgl were more mature than non-induced cells. We then established neonatal rat models of hypox- ic-ischemic encephalopathy using the suture method, and ginsenoside Rgl-induced neural stem cells were transplanted via intracerebroventricular injection. These tests confirmed that neural stem cells induced by ginsenoside had fewer pathological lesions and had a significantly better behavioral capacity than model rats that received saline. Transplanted neural stem cells expressed neuron-specific enolase, and were mainly distributed in the hippocampus and cerebral cortex. The present data suggest that ginsenoside Rgl-induced neural stem cells can promote the partial recovery of complicated brain functions in models of hypoxic-ischemic encephalopathy. 展开更多
关键词 nerve regeneration hypoxic-ischemic brain damage ginsenoside Rgl neural stem cells cell transplantation ceil differentiation COGNITION nerve reconstruction neural regeneration
下载PDF
Ginsenoside Rd inhibits apoptosis following spinal cord ischemia/reperfusion injury 被引量:14
20
作者 Baogang Wang Qingsan Zhu +2 位作者 Xiaxia Man Li Guo Liming Hao 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第18期1678-1687,共10页
Ginsenoside Rd has a clear neuroprotective effect against ischemic stroke. We aimed to verify the neuroprotective effect of ginsenoside Rd in spinal cord ischemia/reperfusion injury and explore its anti-apoptotic mech... Ginsenoside Rd has a clear neuroprotective effect against ischemic stroke. We aimed to verify the neuroprotective effect of ginsenoside Rd in spinal cord ischemia/reperfusion injury and explore its anti-apoptotic mechanisms. We established a spinal cord ischemia/reperfusion injury model in rats through the occlusion of the abdominal aorta below the level of the renal artery for 1 hour. Successfully established models were injected intraperitoneally with 6.25, 12.5, 25 or 50 mg/kg per day ginsenoside Rd. Spinal cord morphology was observed at 1, 3, 5 and 7 days after spinal cord ischemia/reperfusion injury. Intraperitoneal injection of ginsenoside Rd in ischemia/reperfusion injury rats not only improved hindlimb motor function and the morphology of motor neurons in the anterior horn of the spinal cord, but it also reduced neuronal apoptosis. The optimal dose of ginsenoside Rd was 25 mg/kg per day and the optimal time point was 5 days after ischemia/ reperfusion. Immunohistochemistry and western blot analysis showed ginsenoside Rd dose-de- pendently inhibited expression of pro-apoptotic Caspase 3 and down-regulated the expression of the apoptotic proteins ASK1 and JNK in the spinal cord of rats with spinal cord ischemia/reper- fusion injury. These findings indicate that ginsenoside Rd exerts neuroprotective effects against spinal cord ischemia/reperfusion injury and the underlying mechanisms are achieved through the inhibition of ASK1-JNK pathway and the down-regulation of Caspase 3 expression. 展开更多
关键词 nerve regeneration spinal cord injury ginsenoside Rd ischemia/reperfusion injury APOPTOSIS ASKI INK Caspase 3 neural regeneration
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部