GitHub社交平台是代码托管领域的主流平台,拥有超过7300万开发人员.评估GitHub社交网络中用户的影响力对开源成果的学习和应用有重要意义.针对PageRank算法及其改进方法在评估用户影响力时对用户交互行为与用户自身因素分析不全面的局限...GitHub社交平台是代码托管领域的主流平台,拥有超过7300万开发人员.评估GitHub社交网络中用户的影响力对开源成果的学习和应用有重要意义.针对PageRank算法及其改进方法在评估用户影响力时对用户交互行为与用户自身因素分析不全面的局限性,提出了一种引入用户行为权值分配策略的影响力计算方法CUIE(Comprehensive User Influence Evaluation)算法,将用户行为对其他用户影响力的贡献比例作为权值计算用户的CUIE值.基于真实数据的实验结果表明:将用户交互行为作为评价用户影响力分析的因素之一,能使模型获得更好的结果,与传统算法进行对比,在Top-500及以上的情况下,CUIE算法均取得最优的准确率和召回率.此方法能有效发现被传统方法忽略的部分核心用户,可作为传统方法的补充,在舆情分析与引导中也具有一定实用价值.展开更多
As the popularity of open source projects,the volume of incoming pull requests is too large,which puts heavy burden on integrators who are responsible for accepting or rejecting pull requests.An accepted pull request ...As the popularity of open source projects,the volume of incoming pull requests is too large,which puts heavy burden on integrators who are responsible for accepting or rejecting pull requests.An accepted pull request prediction approach can help integrators by allowing them either to enforce an immediate rejection of code changes or allocate more resources to overcome the deficiency.In this paper,an approach CTCPPre is proposed to predict the accepted pull requests in GitHub.CTCPPre mainly considers code features of modified changes,text features of pull requests’description,contributor features of developers’previous behaviors,and project features of development environment.The effectiveness of CTCPPre on 28 projects containing 221096 pull requests is evaluated.Experimental results show that CTCPPre has good performances by achieving accuracy of 0.82,AUC of 0.76 and F1-score of 0.88 on average.It is compared with the state of art accepted pull request prediction approach RFPredict.On average across 28 projects,CTCPPre outperforms RFPredict by 6.64%,16.06%and 4.79%in terms of accuracy,AUC and F1-score,respectively.展开更多
文摘GitHub社交平台是代码托管领域的主流平台,拥有超过7300万开发人员.评估GitHub社交网络中用户的影响力对开源成果的学习和应用有重要意义.针对PageRank算法及其改进方法在评估用户影响力时对用户交互行为与用户自身因素分析不全面的局限性,提出了一种引入用户行为权值分配策略的影响力计算方法CUIE(Comprehensive User Influence Evaluation)算法,将用户行为对其他用户影响力的贡献比例作为权值计算用户的CUIE值.基于真实数据的实验结果表明:将用户交互行为作为评价用户影响力分析的因素之一,能使模型获得更好的结果,与传统算法进行对比,在Top-500及以上的情况下,CUIE算法均取得最优的准确率和召回率.此方法能有效发现被传统方法忽略的部分核心用户,可作为传统方法的补充,在舆情分析与引导中也具有一定实用价值.
基金Project(2018YFB1004202)supported by the National Key Research and Development Program of ChinaProject(61732019)supported by the National Natural Science Foundation of ChinaProject(SKLSDE-2018ZX-06)supported by the State Key Laboratory of Software Development Environment,China
文摘As the popularity of open source projects,the volume of incoming pull requests is too large,which puts heavy burden on integrators who are responsible for accepting or rejecting pull requests.An accepted pull request prediction approach can help integrators by allowing them either to enforce an immediate rejection of code changes or allocate more resources to overcome the deficiency.In this paper,an approach CTCPPre is proposed to predict the accepted pull requests in GitHub.CTCPPre mainly considers code features of modified changes,text features of pull requests’description,contributor features of developers’previous behaviors,and project features of development environment.The effectiveness of CTCPPre on 28 projects containing 221096 pull requests is evaluated.Experimental results show that CTCPPre has good performances by achieving accuracy of 0.82,AUC of 0.76 and F1-score of 0.88 on average.It is compared with the state of art accepted pull request prediction approach RFPredict.On average across 28 projects,CTCPPre outperforms RFPredict by 6.64%,16.06%and 4.79%in terms of accuracy,AUC and F1-score,respectively.