Structural parameters of 22 polyacrylic compounds were computed at two levels using Hartree-Fock and DFT methods. Based on the experimental data of glass transition temperature (Tg), four-parameter (energy of the l...Structural parameters of 22 polyacrylic compounds were computed at two levels using Hartree-Fock and DFT methods. Based on the experimental data of glass transition temperature (Tg), four-parameter (energy of the lowest unoccupied molecular orbital (ELoMO), the highest positive charge (Qmax^+), dipole moments(μ) and the next highest occupied molecular orbital (ENLOMO)) dependent equations were developed using structural parameters as theoretical descriptors. Especially, Tg dependent equation calculated at the HF/6-31G(d) level is more advantageous than others in view of their correlation and predictive abilities. This dependent equation was validated by variance inflation factors (VIF) and t-test methods.展开更多
The high temperature tensile and fracture behavior of Zr50Al40Cu10 metallic glass at the temperature range in the vicinity of glass transition were investigated. Tensile tests were carried out at room temperature, 350...The high temperature tensile and fracture behavior of Zr50Al40Cu10 metallic glass at the temperature range in the vicinity of glass transition were investigated. Tensile tests were carried out at room temperature, 350-420 ℃, and in the supercooled liquid region temperature range, respectively. Obvious plastic deformation was initiated at temperature about 80 °C lower than the glass transition temperature. The ultimate tensile strength decreases with the increase of testing temperature and the ductility increases with temperature. At temperature higher than Tg, viscous flow of Non-Newtonian fluid led to super plastic deformation behavior. The deformation process under tension was inhomogeneous, and remarkable serrations were observed on the stress-strain curve near glass transition temperature.展开更多
Based on the two-pass differential temperature rolling bonding method,the effects of prefabricated steel/aluminum composite panel temperature on interface characteristics and microstructure properties were investigate...Based on the two-pass differential temperature rolling bonding method,the effects of prefabricated steel/aluminum composite panel temperature on interface characteristics and microstructure properties were investigated through experimental analysis and finite element simulations.When the temperature exceeds 400℃,the effective preparation of the steel-aluminum transition joint can be achieved,and with the increase in temperature,the interface shear and pull-off strength of the steel-aluminum transition joint exhibits an initial decrease followed by an increase.Both the interface shear and pull-off fractures are in 1060 aluminum matrix.As the temperature increases,the size of the average grain in 1060 aluminum matrix increases and then decreases.When the temperature reaches 550℃,the comprehensive performance of the prepared steel-aluminum transition joint is the best,with the interface shear strength of 77 MPa and the interface pull-off strength of 153 MPa,exceeding the bonding strength of the explosive compounding method.There are no pinholes,wrinkles,or cracks in the lateral bending matrix and the interface.展开更多
The study considers gas compression properties,gas slippage,back pressure(BP),phase transition(PT),well depth,and differences in gas-liquid physical properties.A new temperature model for multiphase flow is proposed b...The study considers gas compression properties,gas slippage,back pressure(BP),phase transition(PT),well depth,and differences in gas-liquid physical properties.A new temperature model for multiphase flow is proposed by considering phase transition in the drilling process.The mathematical model of multiphase flow is solved using the finite difference method with annulus mesh division for grid nodes,and a module for multiphase flow calculation and analysis is developed.Numerical results indicate that the temperature varies along the annulus with the variation of gas influx at the bottom of the well.During the process of controlled pressure drilling,as gas slips along the annulus to the wellhead,its volume continuously expands,leading to an increase in the gas content within the annulus,and consequently,an increase in the pressure drop caused by gas slippage.The temperature increases with the increase in BP and decreases in gas influx rate and wellbore diameter.During gas influx,the thermal conductivity coefficient for the gas-drilling mud two phases is significantly weakened,resulting in a considerable change in temperature along the annulus.In the context of MPD,the method of slightly changing the temperature along the annulus by controlling the back pressure is feasible.展开更多
In this study, it was examined whether the dynamics of polymer chains at a surface is different from that in thebulk, and if so, to what extent they differ in terms of surface glass transition temperature and diffusio...In this study, it was examined whether the dynamics of polymer chains at a surface is different from that in thebulk, and if so, to what extent they differ in terms of surface glass transition temperature and diffusion coefficient. Obtainedresults clearly indicate that surface chains can travel for a relatively large distance in comparison with the characteristiclength scale of usual segmental motion even at a temperature below its bulk glass transition temperature, T_g^b. This isconsistent with our previous results that the surface glass transition temperature is much lower than the corresponding T_g^b.Also, it was experimentally revealed that there was a gradient of molecular motion in the surface region.展开更多
The bi-functional carbazole-based photorefractive polyphosphazenes with different content of C_(60)-doped were fabricated. The glass transition temperature(T_g) of these polymer composite materials was determined ...The bi-functional carbazole-based photorefractive polyphosphazenes with different content of C_(60)-doped were fabricated. The glass transition temperature(T_g) of these polymer composite materials was determined using a differential scanning calorimetric(DSC) method. According to the DSC measurement results with different heating rates, the variation of T_g and the active energy of glass transition(E_g) were analyzed in detail. The analysis results indicate that the transition region shifts to higher temperatures with increasing heating rate, and C_(60) content(below 1.0 wt%) can influence the T_g of photorefractive polyphosphazenes. The T_g first increases and then decreases with the C_(60) content(below 1.0 wt%). The probable causes of the influence of C_(60) on T_g was proposed.展开更多
In order to predict the mechanical performance of the polyvinyl chloride (PVC) at a high operating temperature, a series of short-term tensile creep tests (one- tenth of the physical aging time) of the PVC are car...In order to predict the mechanical performance of the polyvinyl chloride (PVC) at a high operating temperature, a series of short-term tensile creep tests (one- tenth of the physical aging time) of the PVC are carried out at 63 ℃ with a small constant stress by a dynamic mechanical analyzer (DMA). The Struik-Kohlrausch (SK) formula and Struik shifting methods are used to describe these creep data for various physical aging time. A new phenomenological model based on the multiple relaxation mechanisms of an amorphous polymer is developed to quantitatively characterize the SK parameters (the initial creep compliance, the characteristic retardation time, and the shape factor) determined by the aging time. It is shown that the momentary creep compliance curve of the PVC at 63℃ can be very well fitted by the SK formula for each aging time. However, the SK parameters for the creep curves are not constant during the aging process at the elevated temperatures, and the evolution of these parameters and the creep rate versus aging time curves at the double logarithmic coordinafes have shown a nonlinear phenomenon. Moreover, the creep master curves obtained by the superposition with the Struik shifting methods are unsatisfactory in such a case. Finally, the predicted results calculated from the present model incorporating with the SK formula are in excellent agreement with the creep experimental data for the PVC isothermally aged at the temperature relatively close to the glass transition temperature.展开更多
A three-descriptor quantitative structure-property relationship (QSPR) model, based on the support vector machine (SVM) algorithm, was constructed to predict the glass transition temperatures (Tgs) ofpolyarylate...A three-descriptor quantitative structure-property relationship (QSPR) model, based on the support vector machine (SVM) algorithm, was constructed to predict the glass transition temperatures (Tgs) ofpolyarylates with complex structures. A total of 50 polyarylates were randomly divided into three sets, viz., the training set (30 polymers), validation set (10 polymers) and prediction set (10 polymers). By adjusting various parameters by trial and error, the final optimum SVM model based on Austin Model 1 (AM1) calculation is a polynomial kernel with the parameters C of 100, ε of 1.00E-05 and d of 2. The root-mean-square (RMS) errors obtained from the training set, validation set and prediction set are 19.4, 12.8 and 15.5 K, respectively. Research results show that the proposed SVM model has better statistical quality than the previous models. Thus, applying the SVM algorithm to predict Tgs of polymers is feasible.展开更多
In this paper, an artificial neural network model is adopted to study the glass transition temperature of polymers. In our artificial neural networks, the input nodes are the characteristic ratio C-infinity, the avera...In this paper, an artificial neural network model is adopted to study the glass transition temperature of polymers. In our artificial neural networks, the input nodes are the characteristic ratio C-infinity, the average molecular weight M-e between entanglement points and the molecular weight M-mon of repeating unit. The output node is the glass transition temperature T-g, and the number of the hidden layer is 6. We found that the artificial neural network simulations are accurate in predicting the outcome for polymers for which it is not trained. The maximum relative error for predicting of the glass transition temperature is 3.47%, and the overall average error is only 2.27%. Artificial neural networks may provide some new ideas to investigate other properties of the polymers.展开更多
We have synthesized styrene-acrylic latex and investigated the effect of such reaction conditions as the dosage of initiator, surfactant and stirring speed on monomer conversion and glass transition temperature (Tg) o...We have synthesized styrene-acrylic latex and investigated the effect of such reaction conditions as the dosage of initiator, surfactant and stirring speed on monomer conversion and glass transition temperature (Tg) of polymer by means of orthogonal experiment, then we get the best reaction conditions. Test results prove that the glass transition temperature of the polymer is directly related to the monomer con- version. The improvement of monomer conver- sion can make the glass transition temperature close to the theoretical value. In the case of high final conversion, we can predict the glass transition temperature of the polymers of different composition according to the theoretical relation effectively.展开更多
Molecular dynamic (MD) simulations were carried out to predict the thermo-mechanical properties of the cured epoxy network composed of diglycidyl ether bisphenol A (DGEBA) epoxy resin and tetrahydrophthalic anhydride ...Molecular dynamic (MD) simulations were carried out to predict the thermo-mechanical properties of the cured epoxy network composed of diglycidyl ether bisphenol A (DGEBA) epoxy resin and tetrahydrophthalic anhydride (THPA) curing agent and their single-walled carbon nanotubes (SWCNT) reinforced the epoxy matrix composites. Different characters such as the density of the materials and mean square displacements (MSDs) were calculated to estimate the glass transition temperatures (Tgs) of of the materials. 365 K and 423 K of the Tgs were obtained respectively, whereas the latter is much higher than the former. The simulation results indicated that the incorporation of SWCNTs in the epoxy matrix can significantly improve the Tg of the cured epoxy. The approach presented in this study is ready to be applied more widely to a large group of candidate polymers and nanofillers.展开更多
Studying the thermophysical properties of disaccharide based ternary solutions are gaining increasing importance because of their role as excepients in preservation protocols for biologics in general and mammalian cel...Studying the thermophysical properties of disaccharide based ternary solutions are gaining increasing importance because of their role as excepients in preservation protocols for biologics in general and mammalian cells in particular. Preservation strategies involve not only cryopreservation, but novel approaches like room temperature vitrification and lyophilization. In this study we investigate the water activity and glass transition temperature of citrate and tris buffers (widely used in the gamete preservation industry) with trehalose or sucrose after partial desiccation. After obtaining the water activity (aw) through equilibration at different relative humidity environments, we measured the glass transition temperature (Tg) of these partially desiccated solutions using a differential scanning calorimetry (DSC). The experimental data was used in conjunction with the Gordon-Taylor equation to obtain 3-D contours of Tg as a function of water content and relative salt/sugar concentration. Results indicate that the glass transition behavior is a strong function of the excepient combination. Overall, that trehalose solutions yielded larger values for Tg than sucrose counterparts at low moisture contents in combination with the same buffer. We also saw that citrate solutions yielded larger glass transitions than their tris counterparts. Based on these results, a trehalose-citrate mixture can be picked as the preferred composition for storage applications. The 3-D contours which show a wide variation in slope depending on the salt-sugar concentration constitute important information for the desiccation preservation of biologics.展开更多
The data describing of the light scattering intensity relaxation above the glass transition temperature by boron oxide obtained by using of the temperature jump methods are presented. It is found that the stabilizatio...The data describing of the light scattering intensity relaxation above the glass transition temperature by boron oxide obtained by using of the temperature jump methods are presented. It is found that the stabilization of the glass at 220℃ resulted in increasing of the anisotropic intensity at the same time the isotropic intensity is not practically unchangeable. It is shown that after the temperature jump to 330℃the intensity is characterized by the formation of a maximum. This effect is in compliance with the results obtained for the other oxide glasses. It is established that characteristic time of the relaxation of the maximum height is about two orders of magnitude more than the structural relaxation time for this temperature.展开更多
Zr-based metallic glasses(MGs)possess a wide supercooled liquid region,which gives a wide processing window for superplastic forming to make microdevices with demanding size accuracy and surface finishing.The existenc...Zr-based metallic glasses(MGs)possess a wide supercooled liquid region,which gives a wide processing window for superplastic forming to make microdevices with demanding size accuracy and surface finishing.The existence of oxygen may have an influence on the thermoplastic deformation process.Therefore,the effect of oxidation on the mechanical behavior of the MGs in the vicinity of glass transition temperature is of great significance for practical forming of MG components.In the present study,the effect of oxidation on tensile properties of Zr50Cu40Al10 metallic glass was investigated.The tested samples were characterized by XRD and SEM analysis.For the samples tested in air,the strength decreases 187 MPa,61 MPa and 59 MPa and the ductility increases 0.31,0.36,and 0.77 at 420℃,430℃,and 440℃,respectively,compared with those tested in flowing argon.ZrO_(2) preferentially formed during the tensile testing at 420℃,and both ZrO_(2) and Al_(2)O_(3) oxides formed at 430℃.The dilution of Zr elements in the remaining amorphous matrix caused by preferential oxidation on the surface layer attributes to the decrease in strength and enhancement in ductility of the Zr_(50)Cu_(40)Al_(10) metallic glasses.展开更多
To investigate the performance of utilizing the shape memory effect of SMA(Shape Memory Alloy)wire to generate recovery stress,this paper performed single heating recovery stress tests and reciprocating heating-coolin...To investigate the performance of utilizing the shape memory effect of SMA(Shape Memory Alloy)wire to generate recovery stress,this paper performed single heating recovery stress tests and reciprocating heating-cooling recovery stress tests on SMA wire under varying initial strain conditions.The effects of various strains and different energized heating methods on the recovery stress of SMA wires were explored in the single heating tests.The SMA wire was strained from 2%to 8%initially,and two distinct heating approaches were employed:one using a large current interval for rapid heating and one using a small current interval for slower heating.The experimental outcomes reveal that during a single heating cycle,the temperature-recovery stress relationship of SMA wire exhibits three distinct stages:the martensite phase stage,the transition stage from martensite to austenite phase,and the austenite phase stage.Notably,the choice of heating method does not influence the maximum recovery stress value,and the correlation between initial strain and maximum recovery stress is predominantly linear.Moreover,conducting the reciprocating temperature rise and fall performance test is important to better simulate the scenario in practical engineering where multiple recovery stress in SMA wires for structural repair.In this test,two temperature cycling methods were studied:interval rise and fall,as well as direct rise and fall.In the case of utilizing the interval temperature rise and fall method,it was observed that the recovery stress associated with cooling was significantly higher than that corresponding to heating at the same temperature.Furthermore,the recovery stress was lower upon subsequent heating than that measured during the previous heating cycle.Based on the experimental results,a prediction model for the temperature-recovery stress relationship has been proposed to simplify numerical calculations.It is hoped that an approximate temperaturerecovery stress curve can be obtained from the parameters of the SMA wire.The calculated values derived from this model show good alignment with the measured values,indicating its reliability.展开更多
In this study, the bending test is used to investigate the glass transition temperature for epoxy reinforced with three types ot fibers, fiberglass, Kevlar and synthetic wool, these materials have a wide used in many ...In this study, the bending test is used to investigate the glass transition temperature for epoxy reinforced with three types ot fibers, fiberglass, Kevlar and synthetic wool, these materials have a wide used in many application which they are used composite materials. The glass transition temperature can be measured at the point of inflection for "the curve of variation of the deflection and temperature. The results show that, the glass transition temperature is affected by the type of the reinforcement of the composites. On the other hand, the glass transition temperature of the wool composite is higher than the other.展开更多
The rapid solidification process of Mg7Zn3 alloy was simulated by the molecular dynamics method. The relationship between the local structure and the dynamics during the liquid-glass transition was deeply investigated...The rapid solidification process of Mg7Zn3 alloy was simulated by the molecular dynamics method. The relationship between the local structure and the dynamics during the liquid-glass transition was deeply investigated. It was found that the Mg-centered FK polyhedron and the Zn-centered icosahedron play a critical role in the formation of Mg7Zn3 metallic glass. The self-diffusion coefficients of Mg and Zn atoms deviate from the Arrhenius law near the melting temperature and then satisfy the power law. According to the time correlation functions of mean-square displacement, incoherent intermediate scattering function and non-Gaussian parameter, it was found that the β-relaxation in Mg7Zn3 supercooled liquid becomes more and more evident with decreasing temperature, and the α-relaxation time rapidly increases in the VFT law. Moreover, the smaller Zn atom has a faster relaxation behavior than the Mg atom. Some local atomic structures with short-range order have lower mobility, and they play a critical role in the appearance of cage effect in theβ-relaxation regime. The dynamics deviates from the Arrhenius law just at the temperature as the number of local atomic structures begins to rapidly increase. The dynamic glass transition temperature (Tc) is close to the glass transition point in structure (TgStr).展开更多
The hardness, elastic modulus, and scratch resistance of a glass-ceramic rigid substrate were measured by nanoindentation and nanoscratch, and the fracture toughness was measured by indentation using a Vickers indente...The hardness, elastic modulus, and scratch resistance of a glass-ceramic rigid substrate were measured by nanoindentation and nanoscratch, and the fracture toughness was measured by indentation using a Vickers indenter. The results show that the hardness and elastic modulus at a peak indentation depth of 200 nm are 9.04 and 94.70 GPa, respectively. These values reflect the properties of the glass-ceramic rigid substrate. The fracture toughness value of the glass-ceramic rigid substrate is 2.63 MPa?m1/2. The material removal mechanisms are seen to be directly related to normal force on the tip. The critical load and scratch depth estimated from the scratch depth profile after scratching and the friction profile are 268.60 mN and 335.10 nm, respectively. If the load and scratch depth are under the critical values, the glass-ceramic rigid substrate will undergo plastic flow rather than fracture. The formula of critical depth of cut described by Bifnao et al. is modified based on the difference of critical scratch depth展开更多
Foamed glass-ceramics were prepared via a single-step sintering method using high-titanium blast furnace slag and waste glass as the main raw materials The influence of sintering temperature(900–1060℃) on the micros...Foamed glass-ceramics were prepared via a single-step sintering method using high-titanium blast furnace slag and waste glass as the main raw materials The influence of sintering temperature(900–1060℃) on the microstructure and properties of foamed glass-ceramics was studied. The results show that the crystal shape changed from grainy to rod-shaped and finally turned to multiple shapes as the sintering temperature was increased from 900 to 1060℃. With increasing sintering temperature, the average pore size of the foamed glass-ceramics increased and subsequently decreased. By contrast, the compressive strength and the bulk density decreased and subsequently increased. An excessively high temperature, however, induced the coalescence of pores and decreased the compressive strength. The optimal properties, including the highest compressive strength(16.64 MPa) among the investigated samples and a relatively low bulk density(0.83 g/cm^3), were attained in the case of the foamed glass-ceramics sintered at 1000℃.展开更多
基金The project was support by the Natural Science Foundation of University of Anhui Province (No. 2006KJ156B)
文摘Structural parameters of 22 polyacrylic compounds were computed at two levels using Hartree-Fock and DFT methods. Based on the experimental data of glass transition temperature (Tg), four-parameter (energy of the lowest unoccupied molecular orbital (ELoMO), the highest positive charge (Qmax^+), dipole moments(μ) and the next highest occupied molecular orbital (ENLOMO)) dependent equations were developed using structural parameters as theoretical descriptors. Especially, Tg dependent equation calculated at the HF/6-31G(d) level is more advantageous than others in view of their correlation and predictive abilities. This dependent equation was validated by variance inflation factors (VIF) and t-test methods.
基金financially supported by the National Natural Sciences Foundation of China(Grant No.51171119 and No.51401129)
文摘The high temperature tensile and fracture behavior of Zr50Al40Cu10 metallic glass at the temperature range in the vicinity of glass transition were investigated. Tensile tests were carried out at room temperature, 350-420 ℃, and in the supercooled liquid region temperature range, respectively. Obvious plastic deformation was initiated at temperature about 80 °C lower than the glass transition temperature. The ultimate tensile strength decreases with the increase of testing temperature and the ductility increases with temperature. At temperature higher than Tg, viscous flow of Non-Newtonian fluid led to super plastic deformation behavior. The deformation process under tension was inhomogeneous, and remarkable serrations were observed on the stress-strain curve near glass transition temperature.
基金supported by the National Natural Science Foundation of China(52005361)the Central Science and Technology Research Fund(YDZJSX2022A022)+3 种基金the Postdoctoral Science Foundation of China(2021M692373)the State Key Laboratory of Material Processing and Mold Technology of Huazhong University of Science and Technology(P2022-004)the China Postdoctoral Science Foundation Project(2023T160474)Open Research Fund from the Hai'an&Taiyuan University of Technology Advanced Manufacturing and Intelligent Equipment Industrial Research Institute(2023HA-TYUTKFYF019).
文摘Based on the two-pass differential temperature rolling bonding method,the effects of prefabricated steel/aluminum composite panel temperature on interface characteristics and microstructure properties were investigated through experimental analysis and finite element simulations.When the temperature exceeds 400℃,the effective preparation of the steel-aluminum transition joint can be achieved,and with the increase in temperature,the interface shear and pull-off strength of the steel-aluminum transition joint exhibits an initial decrease followed by an increase.Both the interface shear and pull-off fractures are in 1060 aluminum matrix.As the temperature increases,the size of the average grain in 1060 aluminum matrix increases and then decreases.When the temperature reaches 550℃,the comprehensive performance of the prepared steel-aluminum transition joint is the best,with the interface shear strength of 77 MPa and the interface pull-off strength of 153 MPa,exceeding the bonding strength of the explosive compounding method.There are no pinholes,wrinkles,or cracks in the lateral bending matrix and the interface.
基金support by the financial support of the National Nature Science Foundation of China(No.52274001,No.52074018)China Petrochemical Corporation(No.p21069)The financial support of Fundamental Research Funds for the Central Universities(buctrc202017)。
文摘The study considers gas compression properties,gas slippage,back pressure(BP),phase transition(PT),well depth,and differences in gas-liquid physical properties.A new temperature model for multiphase flow is proposed by considering phase transition in the drilling process.The mathematical model of multiphase flow is solved using the finite difference method with annulus mesh division for grid nodes,and a module for multiphase flow calculation and analysis is developed.Numerical results indicate that the temperature varies along the annulus with the variation of gas influx at the bottom of the well.During the process of controlled pressure drilling,as gas slips along the annulus to the wellhead,its volume continuously expands,leading to an increase in the gas content within the annulus,and consequently,an increase in the pressure drop caused by gas slippage.The temperature increases with the increase in BP and decreases in gas influx rate and wellbore diameter.During gas influx,the thermal conductivity coefficient for the gas-drilling mud two phases is significantly weakened,resulting in a considerable change in temperature along the annulus.In the context of MPD,the method of slightly changing the temperature along the annulus by controlling the back pressure is feasible.
基金This work was in part supported by a Gran-in-Aid for Scientific Research (A)(#13355034) from the Ministry of Education, Science, Sports, and Culture, Japan.
文摘In this study, it was examined whether the dynamics of polymer chains at a surface is different from that in thebulk, and if so, to what extent they differ in terms of surface glass transition temperature and diffusion coefficient. Obtainedresults clearly indicate that surface chains can travel for a relatively large distance in comparison with the characteristiclength scale of usual segmental motion even at a temperature below its bulk glass transition temperature, T_g^b. This isconsistent with our previous results that the surface glass transition temperature is much lower than the corresponding T_g^b.Also, it was experimentally revealed that there was a gradient of molecular motion in the surface region.
基金the National Science Foundation of China(No.11174258)the Development Foundation of China Academy of Engineering Physics(No.2013A0302016)
文摘The bi-functional carbazole-based photorefractive polyphosphazenes with different content of C_(60)-doped were fabricated. The glass transition temperature(T_g) of these polymer composite materials was determined using a differential scanning calorimetric(DSC) method. According to the DSC measurement results with different heating rates, the variation of T_g and the active energy of glass transition(E_g) were analyzed in detail. The analysis results indicate that the transition region shifts to higher temperatures with increasing heating rate, and C_(60) content(below 1.0 wt%) can influence the T_g of photorefractive polyphosphazenes. The T_g first increases and then decreases with the C_(60) content(below 1.0 wt%). The probable causes of the influence of C_(60) on T_g was proposed.
基金Project supported by the National Natural Science Foundation of China (Nos. 10672095 and 11072137)the Shanghai Leading Academic Discipline Project (No. S30106)
文摘In order to predict the mechanical performance of the polyvinyl chloride (PVC) at a high operating temperature, a series of short-term tensile creep tests (one- tenth of the physical aging time) of the PVC are carried out at 63 ℃ with a small constant stress by a dynamic mechanical analyzer (DMA). The Struik-Kohlrausch (SK) formula and Struik shifting methods are used to describe these creep data for various physical aging time. A new phenomenological model based on the multiple relaxation mechanisms of an amorphous polymer is developed to quantitatively characterize the SK parameters (the initial creep compliance, the characteristic retardation time, and the shape factor) determined by the aging time. It is shown that the momentary creep compliance curve of the PVC at 63℃ can be very well fitted by the SK formula for each aging time. However, the SK parameters for the creep curves are not constant during the aging process at the elevated temperatures, and the evolution of these parameters and the creep rate versus aging time curves at the double logarithmic coordinafes have shown a nonlinear phenomenon. Moreover, the creep master curves obtained by the superposition with the Struik shifting methods are unsatisfactory in such a case. Finally, the predicted results calculated from the present model incorporating with the SK formula are in excellent agreement with the creep experimental data for the PVC isothermally aged at the temperature relatively close to the glass transition temperature.
基金supported by the Open Project Program of Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education,China (No.10HJYH06)
文摘A three-descriptor quantitative structure-property relationship (QSPR) model, based on the support vector machine (SVM) algorithm, was constructed to predict the glass transition temperatures (Tgs) ofpolyarylates with complex structures. A total of 50 polyarylates were randomly divided into three sets, viz., the training set (30 polymers), validation set (10 polymers) and prediction set (10 polymers). By adjusting various parameters by trial and error, the final optimum SVM model based on Austin Model 1 (AM1) calculation is a polynomial kernel with the parameters C of 100, ε of 1.00E-05 and d of 2. The root-mean-square (RMS) errors obtained from the training set, validation set and prediction set are 19.4, 12.8 and 15.5 K, respectively. Research results show that the proposed SVM model has better statistical quality than the previous models. Thus, applying the SVM algorithm to predict Tgs of polymers is feasible.
基金This research was financially supported by NSFC (No. 29874012) and the Special Funds for Major State Basic Research Projects (95-12 and G1999064800).
文摘In this paper, an artificial neural network model is adopted to study the glass transition temperature of polymers. In our artificial neural networks, the input nodes are the characteristic ratio C-infinity, the average molecular weight M-e between entanglement points and the molecular weight M-mon of repeating unit. The output node is the glass transition temperature T-g, and the number of the hidden layer is 6. We found that the artificial neural network simulations are accurate in predicting the outcome for polymers for which it is not trained. The maximum relative error for predicting of the glass transition temperature is 3.47%, and the overall average error is only 2.27%. Artificial neural networks may provide some new ideas to investigate other properties of the polymers.
文摘We have synthesized styrene-acrylic latex and investigated the effect of such reaction conditions as the dosage of initiator, surfactant and stirring speed on monomer conversion and glass transition temperature (Tg) of polymer by means of orthogonal experiment, then we get the best reaction conditions. Test results prove that the glass transition temperature of the polymer is directly related to the monomer con- version. The improvement of monomer conver- sion can make the glass transition temperature close to the theoretical value. In the case of high final conversion, we can predict the glass transition temperature of the polymers of different composition according to the theoretical relation effectively.
文摘Molecular dynamic (MD) simulations were carried out to predict the thermo-mechanical properties of the cured epoxy network composed of diglycidyl ether bisphenol A (DGEBA) epoxy resin and tetrahydrophthalic anhydride (THPA) curing agent and their single-walled carbon nanotubes (SWCNT) reinforced the epoxy matrix composites. Different characters such as the density of the materials and mean square displacements (MSDs) were calculated to estimate the glass transition temperatures (Tgs) of of the materials. 365 K and 423 K of the Tgs were obtained respectively, whereas the latter is much higher than the former. The simulation results indicated that the incorporation of SWCNTs in the epoxy matrix can significantly improve the Tg of the cured epoxy. The approach presented in this study is ready to be applied more widely to a large group of candidate polymers and nanofillers.
文摘Studying the thermophysical properties of disaccharide based ternary solutions are gaining increasing importance because of their role as excepients in preservation protocols for biologics in general and mammalian cells in particular. Preservation strategies involve not only cryopreservation, but novel approaches like room temperature vitrification and lyophilization. In this study we investigate the water activity and glass transition temperature of citrate and tris buffers (widely used in the gamete preservation industry) with trehalose or sucrose after partial desiccation. After obtaining the water activity (aw) through equilibration at different relative humidity environments, we measured the glass transition temperature (Tg) of these partially desiccated solutions using a differential scanning calorimetry (DSC). The experimental data was used in conjunction with the Gordon-Taylor equation to obtain 3-D contours of Tg as a function of water content and relative salt/sugar concentration. Results indicate that the glass transition behavior is a strong function of the excepient combination. Overall, that trehalose solutions yielded larger values for Tg than sucrose counterparts at low moisture contents in combination with the same buffer. We also saw that citrate solutions yielded larger glass transitions than their tris counterparts. Based on these results, a trehalose-citrate mixture can be picked as the preferred composition for storage applications. The 3-D contours which show a wide variation in slope depending on the salt-sugar concentration constitute important information for the desiccation preservation of biologics.
文摘The data describing of the light scattering intensity relaxation above the glass transition temperature by boron oxide obtained by using of the temperature jump methods are presented. It is found that the stabilization of the glass at 220℃ resulted in increasing of the anisotropic intensity at the same time the isotropic intensity is not practically unchangeable. It is shown that after the temperature jump to 330℃the intensity is characterized by the formation of a maximum. This effect is in compliance with the results obtained for the other oxide glasses. It is established that characteristic time of the relaxation of the maximum height is about two orders of magnitude more than the structural relaxation time for this temperature.
基金financially supported by the National Natural Science Foundation of China(Grant No.51801208)the Joint Research Fund of Natural Science Foundation of Liaoning Province-State Key Laboratory of Rolling and Automation(Grant No.2019-KF-05-05)。
文摘Zr-based metallic glasses(MGs)possess a wide supercooled liquid region,which gives a wide processing window for superplastic forming to make microdevices with demanding size accuracy and surface finishing.The existence of oxygen may have an influence on the thermoplastic deformation process.Therefore,the effect of oxidation on the mechanical behavior of the MGs in the vicinity of glass transition temperature is of great significance for practical forming of MG components.In the present study,the effect of oxidation on tensile properties of Zr50Cu40Al10 metallic glass was investigated.The tested samples were characterized by XRD and SEM analysis.For the samples tested in air,the strength decreases 187 MPa,61 MPa and 59 MPa and the ductility increases 0.31,0.36,and 0.77 at 420℃,430℃,and 440℃,respectively,compared with those tested in flowing argon.ZrO_(2) preferentially formed during the tensile testing at 420℃,and both ZrO_(2) and Al_(2)O_(3) oxides formed at 430℃.The dilution of Zr elements in the remaining amorphous matrix caused by preferential oxidation on the surface layer attributes to the decrease in strength and enhancement in ductility of the Zr_(50)Cu_(40)Al_(10) metallic glasses.
基金financially supported by National Natural Science Foundation of China(Project No.51878156).
文摘To investigate the performance of utilizing the shape memory effect of SMA(Shape Memory Alloy)wire to generate recovery stress,this paper performed single heating recovery stress tests and reciprocating heating-cooling recovery stress tests on SMA wire under varying initial strain conditions.The effects of various strains and different energized heating methods on the recovery stress of SMA wires were explored in the single heating tests.The SMA wire was strained from 2%to 8%initially,and two distinct heating approaches were employed:one using a large current interval for rapid heating and one using a small current interval for slower heating.The experimental outcomes reveal that during a single heating cycle,the temperature-recovery stress relationship of SMA wire exhibits three distinct stages:the martensite phase stage,the transition stage from martensite to austenite phase,and the austenite phase stage.Notably,the choice of heating method does not influence the maximum recovery stress value,and the correlation between initial strain and maximum recovery stress is predominantly linear.Moreover,conducting the reciprocating temperature rise and fall performance test is important to better simulate the scenario in practical engineering where multiple recovery stress in SMA wires for structural repair.In this test,two temperature cycling methods were studied:interval rise and fall,as well as direct rise and fall.In the case of utilizing the interval temperature rise and fall method,it was observed that the recovery stress associated with cooling was significantly higher than that corresponding to heating at the same temperature.Furthermore,the recovery stress was lower upon subsequent heating than that measured during the previous heating cycle.Based on the experimental results,a prediction model for the temperature-recovery stress relationship has been proposed to simplify numerical calculations.It is hoped that an approximate temperaturerecovery stress curve can be obtained from the parameters of the SMA wire.The calculated values derived from this model show good alignment with the measured values,indicating its reliability.
文摘In this study, the bending test is used to investigate the glass transition temperature for epoxy reinforced with three types ot fibers, fiberglass, Kevlar and synthetic wool, these materials have a wide used in many application which they are used composite materials. The glass transition temperature can be measured at the point of inflection for "the curve of variation of the deflection and temperature. The results show that, the glass transition temperature is affected by the type of the reinforcement of the composites. On the other hand, the glass transition temperature of the wool composite is higher than the other.
基金Project (51101022) supported by the National Natural Science Foundation of ChinaProject (CHD2012JC096) supported by the Fundamental Research Funds for the Central Universities,China
文摘The rapid solidification process of Mg7Zn3 alloy was simulated by the molecular dynamics method. The relationship between the local structure and the dynamics during the liquid-glass transition was deeply investigated. It was found that the Mg-centered FK polyhedron and the Zn-centered icosahedron play a critical role in the formation of Mg7Zn3 metallic glass. The self-diffusion coefficients of Mg and Zn atoms deviate from the Arrhenius law near the melting temperature and then satisfy the power law. According to the time correlation functions of mean-square displacement, incoherent intermediate scattering function and non-Gaussian parameter, it was found that the β-relaxation in Mg7Zn3 supercooled liquid becomes more and more evident with decreasing temperature, and the α-relaxation time rapidly increases in the VFT law. Moreover, the smaller Zn atom has a faster relaxation behavior than the Mg atom. Some local atomic structures with short-range order have lower mobility, and they play a critical role in the appearance of cage effect in theβ-relaxation regime. The dynamics deviates from the Arrhenius law just at the temperature as the number of local atomic structures begins to rapidly increase. The dynamic glass transition temperature (Tc) is close to the glass transition point in structure (TgStr).
基金supported by the National Natural Science Foundation of China (No.50905086)China Postdoctoral Science Foundation (No.200904501095)+1 种基金Jiangsu Planned Projects for Postdoctoral Research Funds (No.0901035C)NUAA Research Funding (No.NS2010134)
文摘The hardness, elastic modulus, and scratch resistance of a glass-ceramic rigid substrate were measured by nanoindentation and nanoscratch, and the fracture toughness was measured by indentation using a Vickers indenter. The results show that the hardness and elastic modulus at a peak indentation depth of 200 nm are 9.04 and 94.70 GPa, respectively. These values reflect the properties of the glass-ceramic rigid substrate. The fracture toughness value of the glass-ceramic rigid substrate is 2.63 MPa?m1/2. The material removal mechanisms are seen to be directly related to normal force on the tip. The critical load and scratch depth estimated from the scratch depth profile after scratching and the friction profile are 268.60 mN and 335.10 nm, respectively. If the load and scratch depth are under the critical values, the glass-ceramic rigid substrate will undergo plastic flow rather than fracture. The formula of critical depth of cut described by Bifnao et al. is modified based on the difference of critical scratch depth
基金financially supported by the Science and Technology Support Program of Sichuan Province (No.2014GZ0011)the Industry Promotion Project of Panzhihua City, China (No.2012CY-C-2)
文摘Foamed glass-ceramics were prepared via a single-step sintering method using high-titanium blast furnace slag and waste glass as the main raw materials The influence of sintering temperature(900–1060℃) on the microstructure and properties of foamed glass-ceramics was studied. The results show that the crystal shape changed from grainy to rod-shaped and finally turned to multiple shapes as the sintering temperature was increased from 900 to 1060℃. With increasing sintering temperature, the average pore size of the foamed glass-ceramics increased and subsequently decreased. By contrast, the compressive strength and the bulk density decreased and subsequently increased. An excessively high temperature, however, induced the coalescence of pores and decreased the compressive strength. The optimal properties, including the highest compressive strength(16.64 MPa) among the investigated samples and a relatively low bulk density(0.83 g/cm^3), were attained in the case of the foamed glass-ceramics sintered at 1000℃.