Reinforced concrete (RC) columns lacking adequately detailed transverse reinforcement do not possess the necessary ductility to dissipate seismic energy during a major earthquake without severe strength degradation....Reinforced concrete (RC) columns lacking adequately detailed transverse reinforcement do not possess the necessary ductility to dissipate seismic energy during a major earthquake without severe strength degradation. In this paper, a new retrofit method, which utilized fiber-reinforced plastics (FRP) confinement mechanism and anchorage of embedded bars, was developed aiming to retrofit non-ductile large RC rectangular columns to prevent the damage of the plastic hinges. Carbon FRP (CFRP) sheets and glass FRP (GFRP) bars were used in this test, and five scaled RC columns were tested to examine the function of this new method for improving the ductility of columns. Responses of columns were examined before and after being retrofitted. Test results indicate that this new composite method can be very effective to improve the anti-seismic behavior of non-ductile RC columns compared with normal CFRP sheets retrofitted column.展开更多
Concrete Filled FRP (Reinforced Polymeric Plastic) Tubes (CFFT) and Reinforced Concrete Filled FRP Tubes (RCFFT) are known to have the capability to enhance structural performance in terms of structural stabilit...Concrete Filled FRP (Reinforced Polymeric Plastic) Tubes (CFFT) and Reinforced Concrete Filled FRP Tubes (RCFFT) are known to have the capability to enhance structural performance in terms of structural stability, ductility, as well as chemical resistance when compared with conventional concrete members. In this study, the authors evaluate the structural performance of the CFFT and the RCFFT through flexural tests for the purpose of applying the members as flexural ones. Moreover, the compressive behavior of the CFFT and the RCFFT members was investigated to examine their confinement effects. Based on the experimental and analytical results of the compressive behavior of the members, equations for estimating the ultimate compressive strengths of the CFFT and the RCFFT were proposed. In addition, the degree of improvement on the flexural performance of the RCFFT member strengthened by the FRP was analyzed from the flexural tests.展开更多
The potential usage of virgin Low density polyethelyne (LDPE) reinforced with different concentrations (2%, 5% and 6% by weight) of treated rice straw with different lengths (2 mm, 4 mm and 6 mm) is investigated to pr...The potential usage of virgin Low density polyethelyne (LDPE) reinforced with different concentrations (2%, 5% and 6% by weight) of treated rice straw with different lengths (2 mm, 4 mm and 6 mm) is investigated to produce high value products that have technical and environmental demand. The two treatment methods used for rice straw are alkali and acidic treatments of rice straw. The removal of impurities and waxy substances from fiber surface avoid creation of rougher topography after treatment and improves the quality of fiber, also content of hemi cellulose and lignin decrease so increase effectiveness of fiber due to dispersing of fiber in matrix. The reinforcing material is embedded in the matrix material to enhance tensile and flexural behaviors of the synthesized composite. The result of investigating these two mechanical properties, using statistical analysis & design of experiments, showed an enhancement in the mechaniccal properties of the virgin polymer composite compared to the virgin polymer. The flexural stress of the composite increased three times the virgin flexural stress, while the tensile stress increased eight times the original tensile stress.展开更多
基金Project supported by the Science Foundation of Shanghai Municipal Commission of Science and Technology (Grant No.07QA14025).Acknowledgment The authors thank Dr. WU Yu-fei, the assistant professor of the City University of Hong Kong for providing good suggestion and help during the test. This research was also supported by the grant from the Research Grant Council of the Hong Kong Special Administrative Region (Grant No.Cityu1113/04E).
文摘Reinforced concrete (RC) columns lacking adequately detailed transverse reinforcement do not possess the necessary ductility to dissipate seismic energy during a major earthquake without severe strength degradation. In this paper, a new retrofit method, which utilized fiber-reinforced plastics (FRP) confinement mechanism and anchorage of embedded bars, was developed aiming to retrofit non-ductile large RC rectangular columns to prevent the damage of the plastic hinges. Carbon FRP (CFRP) sheets and glass FRP (GFRP) bars were used in this test, and five scaled RC columns were tested to examine the function of this new method for improving the ductility of columns. Responses of columns were examined before and after being retrofitted. Test results indicate that this new composite method can be very effective to improve the anti-seismic behavior of non-ductile RC columns compared with normal CFRP sheets retrofitted column.
文摘Concrete Filled FRP (Reinforced Polymeric Plastic) Tubes (CFFT) and Reinforced Concrete Filled FRP Tubes (RCFFT) are known to have the capability to enhance structural performance in terms of structural stability, ductility, as well as chemical resistance when compared with conventional concrete members. In this study, the authors evaluate the structural performance of the CFFT and the RCFFT through flexural tests for the purpose of applying the members as flexural ones. Moreover, the compressive behavior of the CFFT and the RCFFT members was investigated to examine their confinement effects. Based on the experimental and analytical results of the compressive behavior of the members, equations for estimating the ultimate compressive strengths of the CFFT and the RCFFT were proposed. In addition, the degree of improvement on the flexural performance of the RCFFT member strengthened by the FRP was analyzed from the flexural tests.
文摘The potential usage of virgin Low density polyethelyne (LDPE) reinforced with different concentrations (2%, 5% and 6% by weight) of treated rice straw with different lengths (2 mm, 4 mm and 6 mm) is investigated to produce high value products that have technical and environmental demand. The two treatment methods used for rice straw are alkali and acidic treatments of rice straw. The removal of impurities and waxy substances from fiber surface avoid creation of rougher topography after treatment and improves the quality of fiber, also content of hemi cellulose and lignin decrease so increase effectiveness of fiber due to dispersing of fiber in matrix. The reinforcing material is embedded in the matrix material to enhance tensile and flexural behaviors of the synthesized composite. The result of investigating these two mechanical properties, using statistical analysis & design of experiments, showed an enhancement in the mechaniccal properties of the virgin polymer composite compared to the virgin polymer. The flexural stress of the composite increased three times the virgin flexural stress, while the tensile stress increased eight times the original tensile stress.