In view of the failure of GNSS signals,this paper proposes an INS/GNSS integrated navigation method based on the recurrent neural network(RNN).This proposed method utilizes the calculation principle of INS and the mem...In view of the failure of GNSS signals,this paper proposes an INS/GNSS integrated navigation method based on the recurrent neural network(RNN).This proposed method utilizes the calculation principle of INS and the memory function of the RNN to estimate the errors of the INS,thereby obtaining a continuous,reliable and high-precision navigation solution.The performance of the proposed method is firstly demonstrated using an INS/GNSS simulation environment.Subsequently,an experimental test on boat is also conducted to validate the performance of the method.The results show a promising application prospect for RNN in the field of positioning for INS/GNSS integrated navigation in the absence of GNSS signal,as it outperforms extreme learning machine(ELM)and EKF by approximately 30%and 60%,respectively.展开更多
In this paper,we study scene image recognition with knowledge transfer for drone navigation.We divide navigation scenes into three macro-classes,namely outdoor special scenes(OSSs),the space from indoors to outdoors o...In this paper,we study scene image recognition with knowledge transfer for drone navigation.We divide navigation scenes into three macro-classes,namely outdoor special scenes(OSSs),the space from indoors to outdoors or from outdoors to indoors transitional scenes(TSs),and others.However,there are difficulties in how to recognize the TSs,to this end,we employ deep convolutional neural network(CNN)based on knowledge transfer,techniques for image augmentation,and fine tuning to solve the issue.Moreover,there is still a novelty detection prob-lem in the classifier,and we use global navigation satellite sys-tems(GNSS)to solve it in the prediction stage.Experiment results show our method,with a pre-trained model and fine tun-ing,can achieve 91.3196%top-1 accuracy on Scenes21 dataset,paving the way for drones to learn to understand the scenes around them autonomously.展开更多
基金supported in part by the National Natural Science Foundation of China(No.41876222)。
文摘In view of the failure of GNSS signals,this paper proposes an INS/GNSS integrated navigation method based on the recurrent neural network(RNN).This proposed method utilizes the calculation principle of INS and the memory function of the RNN to estimate the errors of the INS,thereby obtaining a continuous,reliable and high-precision navigation solution.The performance of the proposed method is firstly demonstrated using an INS/GNSS simulation environment.Subsequently,an experimental test on boat is also conducted to validate the performance of the method.The results show a promising application prospect for RNN in the field of positioning for INS/GNSS integrated navigation in the absence of GNSS signal,as it outperforms extreme learning machine(ELM)and EKF by approximately 30%and 60%,respectively.
基金supported by the National Natural Science Foundation of China(62103104)the Natural Science Foundation of Jiangsu Province(BK20210215)the China Postdoctoral Science Foundation(2021M690615).
文摘In this paper,we study scene image recognition with knowledge transfer for drone navigation.We divide navigation scenes into three macro-classes,namely outdoor special scenes(OSSs),the space from indoors to outdoors or from outdoors to indoors transitional scenes(TSs),and others.However,there are difficulties in how to recognize the TSs,to this end,we employ deep convolutional neural network(CNN)based on knowledge transfer,techniques for image augmentation,and fine tuning to solve the issue.Moreover,there is still a novelty detection prob-lem in the classifier,and we use global navigation satellite sys-tems(GNSS)to solve it in the prediction stage.Experiment results show our method,with a pre-trained model and fine tun-ing,can achieve 91.3196%top-1 accuracy on Scenes21 dataset,paving the way for drones to learn to understand the scenes around them autonomously.