期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Prediction of COVID-19 Cases Using Machine Learning for Effective Public Health Management 被引量:3
1
作者 Fahad Ahmad Saleh N.Almuayqil +3 位作者 Mamoona Humayun Shahid Naseem Wasim Ahmad Khan Kashaf Junaid 《Computers, Materials & Continua》 SCIE EI 2021年第3期2265-2282,共18页
COVID-19 is a pandemic that has affected nearly every country in the world.At present,sustainable development in the area of public health is considered vital to securing a promising and prosperous future for humans.H... COVID-19 is a pandemic that has affected nearly every country in the world.At present,sustainable development in the area of public health is considered vital to securing a promising and prosperous future for humans.However,widespread diseases,such as COVID-19,create numerous challenges to this goal,and some of those challenges are not yet defined.In this study,a Shallow Single-Layer Perceptron Neural Network(SSLPNN)and Gaussian Process Regression(GPR)model were used for the classification and prediction of confirmed COVID-19 cases in five geographically distributed regions of Asia with diverse settings and environmental conditions:namely,China,South Korea,Japan,Saudi Arabia,and Pakistan.Significant environmental and non-environmental features were taken as the input dataset,and confirmed COVID-19 cases were taken as the output dataset.A correlation analysis was done to identify patterns in the cases related to fluctuations in the associated variables.The results of this study established that the population and air quality index of a region had a statistically significant influence on the cases.However,age and the human development index had a negative influence on the cases.The proposed SSLPNN-based classification model performed well when predicting the classes of confirmed cases.During training,the binary classification model was highly accurate,with a Root Mean Square Error(RMSE)of 0.91.Likewise,the results of the regression analysis using the GPR technique with Matern 5/2 were highly accurate(RMSE=0.95239)when predicting the number of confirmed COVID-19 cases in an area.However,dynamic management has occupied a core place in studies on the sustainable development of public health but dynamic management depends on proactive strategies based on statistically verified approaches,like Artificial Intelligence(AI).In this study,an SSLPNN model has been trained to fit public health associated data into an appropriate class,allowing GPR to predict the number of confirmed COVID-19 cases in an area based on the given values of selected parameters. Therefore, this tool can help authorities in different ecological settingseffectively manage COVID-19. 展开更多
关键词 public health sustainable development artificial intelligence SARSCoV-2 shallow single-layer perceptron neural network binary classification gaussian process regression
下载PDF
Stand-Alone Patient Reception and Referral System with Health Data Management
2
作者 Ababacar Sadikh Faye Ousmane Sow +3 位作者 Mame Andallah Diop Jupiter Ndiaye Youssou Traore Oumar Diallo 《Engineering(科研)》 2023年第10期596-611,共16页
The COVID-19 pandemic has exposed vulnerabilities within our healthcare structures. Healthcare facilities are often faced with staff shortages and work overloads, which can have an impact on the collection of health d... The COVID-19 pandemic has exposed vulnerabilities within our healthcare structures. Healthcare facilities are often faced with staff shortages and work overloads, which can have an impact on the collection of health data and constants essential for early diagnosis. In order to minimize the risk of error and optimize data collection, we have developed a robot incorporating artificial intelligence. This robot has been designed to automate and collect health data and constants in a contactless way, while at the same time verifying the conditions for correct measurements, such as the absence of hats and shoes. Furthermore, this health information needs to be transmitted to services for processing. Thus, this article addresses the aspect of reception and collection of health data and constants through various modules: for taking height, temperature and weight, as well as the module for entering patient identification data. The article also deals with orientation, presenting a module for selecting the patient’s destination department. This data is then routed via a wireless network and an application integrated into the doctors’ tablets. This application will enable efficient queue management by classifying patients according to their order of arrival. The system’s infrastructure is easily deployable, taking advantage of the healthcare facility’s local wireless network, and includes encryption mechanisms to reinforce the security of data circulating over the network. In short, this innovative system will offer an autonomous, contactless method for collecting vital constants such as size, mass, and temperature. What’s more, it will facilitate the flow of data, including identification information, across a network, simplifying the implementation of this solution within healthcare facilities. 展开更多
关键词 public health health Data Wireless network SECURITY Artificial intelligence INSTRUMENTATION MECHATRONICS
下载PDF
全球公共卫生情报网及对我国的启示 被引量:17
3
作者 陈强 郭岩 +1 位作者 万明 苏雪梅 《医学信息学杂志》 CAS 2011年第8期2-5,19,共5页
介绍全球公共卫生情报网(GPHIN)的发展历程、重要作用、工作机制、运行模式等,指出GPHIN的运行模式对我国公共卫生舆情监测的启示,包括应尽快建立公共卫生舆情监测系统、建立并完善公共卫生事件应对体系等方面。
关键词 舆情监测 全球公共卫生情报网 早期预警
下载PDF
GA-BP神经网络在老人负性情绪预测中的应用 被引量:8
4
作者 王宇星 黄俊 潘英杰 《小型微型计算机系统》 CSCD 北大核心 2020年第8期1702-1706,共5页
BP神经网络在当前社会上有着极为广泛的应用,但是传统的BP神经网络存在收敛速度较慢、容易陷入局部最优点的缺点.本文利用遗传算法(Genetic Algorithm,GA)自动调整搜索方向、利于全局择优的特点,构建基于遗传算法优化的BP神经网络模型,... BP神经网络在当前社会上有着极为广泛的应用,但是传统的BP神经网络存在收敛速度较慢、容易陷入局部最优点的缺点.本文利用遗传算法(Genetic Algorithm,GA)自动调整搜索方向、利于全局择优的特点,构建基于遗传算法优化的BP神经网络模型,用于预测养老机构老年人的负性情绪,重点通过预测的准确性验证模型可行性.本文以北京大学开放研究数据平台的中国健康与养老追踪调查数据空间(CHARLS)作为主要研究数据空间;预测结果表明,粒子群算法(Partical Swarm Optimization,PSO)和遗传算法都能够提升BP神经网络的收敛速度,同时避免陷入局部最优;粒子群算法优化的PSO-BP神经网络在收敛速度上更快,遗传算法优化的GA-BP神经网络在准确度上更优.考虑到养老机构对于数据实时性要求不高,因此选取遗传算法作为BP神经网络在负性情绪预测上的优化方案是目前阶段较为良好的选择. 展开更多
关键词 BP神经网络 遗传算法 养老机构 情绪预测 智慧养老 心理健康 全局寻优
下载PDF
人工智能助力热带传染病防控研究 被引量:4
5
作者 施亮 张键锋 +1 位作者 李伟 杨坤 《中国血吸虫病防治杂志》 CAS CSCD 北大核心 2022年第5期445-452,共8页
自新型冠状病毒肺炎疫情发生以来,人工智能技术在热带传染病领域应用的先进性逐渐凸显。人工智能技术的应用对缓解疾病诊疗负担、降低疾病漏诊和误诊率、提升疾病监测预警能力、提高医药和疫苗研发效率等均具有显著成效。本文分析了人... 自新型冠状病毒肺炎疫情发生以来,人工智能技术在热带传染病领域应用的先进性逐渐凸显。人工智能技术的应用对缓解疾病诊疗负担、降低疾病漏诊和误诊率、提升疾病监测预警能力、提高医药和疫苗研发效率等均具有显著成效。本文分析了人工智能在热带传染病防控研究中的应用现状,论述了人工智能在该领域疾病诊疗、监测预警、疫苗与药物挖掘、医疗与公共卫生服务和全球卫生治理中的重要价值。鉴于人工智能助力热带传染病防控面临着诊断单一和不准确、开放环境监测预警能力不佳、智能系统服务能力有限、大数据管理困难、模型可解释性较差等方面的难题,本文提出了加强多种热带传染病多模态智能诊断、重视开放环境下媒介生物和风险人群智能监测预警、加快智能防控系统研发、强化伦理安全、大数据管理与模型可解释性等发展建议。 展开更多
关键词 热带传染病 人工智能 机器学习 深度学习 公共卫生 全球卫生
原文传递
全球重大公共卫生事件对跨国绿地投资网络的影响 被引量:1
6
作者 盛涵天 戴晓冕 贺灿飞 《经济地理》 CSSCI CSCD 北大核心 2023年第2期40-51,共12页
新冠肺炎疫情深刻影响了全球—地方联系,然而鲜有研究关注疫情冲击对跨国投资的具体影响及其传导路径。基于最新全球投资项目数据库,运用时间序列分解方法,能够更清晰识别疫情冲击对全球绿地投资的负向影响以及其在世界经济体间的异质... 新冠肺炎疫情深刻影响了全球—地方联系,然而鲜有研究关注疫情冲击对跨国投资的具体影响及其传导路径。基于最新全球投资项目数据库,运用时间序列分解方法,能够更清晰识别疫情冲击对全球绿地投资的负向影响以及其在世界经济体间的异质性。从区域能动性视角出发,通过动态序列规整及k-means聚类算法,发现国家经济调节能力与疫情冲击程度间存在密切关联。复杂网络视角下的动态空间杜宾模型进一步揭示了疫情冲击通过地理邻近与投资网络的传导机制。疫情冲击具有显著负向的地理溢出效应,且溢出效应远高于直接效应;同时,疫情冲击在投资网络上具有正向溢出效应,疫情爆发会促进强投资关联国家的绿地投资流入。疫情背景下,各国绿地投资活动竞合并存,只有深化疫情防控国际合作才能尽可能减少疫情带来的负面影响。 展开更多
关键词 跨国绿地投资网络 对外直接投资 重大公共卫生事件 国家自调节能力 溢出效应 经济全球化 新冠肺炎疫情
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部