为分析和验证斐波那契树优化算法(Fibonacci tree optimization algorithm,FTO)求解多峰函数全局最优解的算法性能,对算法的可达性问题进行研究.本文基于斐波那契法构造一个斐波那契树结构,在搜索空间中进行全局、局部交替搜索,不易陷...为分析和验证斐波那契树优化算法(Fibonacci tree optimization algorithm,FTO)求解多峰函数全局最优解的算法性能,对算法的可达性问题进行研究.本文基于斐波那契法构造一个斐波那契树结构,在搜索空间中进行全局、局部交替搜索,不易陷入局部最优解.对斐波那契树优化算法基于该结构的可达性进行分析和证明.通过跟踪算法求解过程中坐标点的累积分布仿真实验和到达率的对比实验,分析和验证了算法求解多峰函数全局最优解的可达性.展开更多
To deal with the demerits of constriction particle swarm optimization(CPSO), such as relapsing into local optima, slow convergence velocity, a modified CPSO algorithm is proposed by improving the velocity update formu...To deal with the demerits of constriction particle swarm optimization(CPSO), such as relapsing into local optima, slow convergence velocity, a modified CPSO algorithm is proposed by improving the velocity update formula of CPSO. The random velocity operator from local optima to global optima is added into the velocity update formula of CPSO to accelerate the convergence speed of the particles to the global optima and reduce the likelihood of being trapped into local optima. Finally the convergence of the algorithm is verified by calculation examples.展开更多
文摘为分析和验证斐波那契树优化算法(Fibonacci tree optimization algorithm,FTO)求解多峰函数全局最优解的算法性能,对算法的可达性问题进行研究.本文基于斐波那契法构造一个斐波那契树结构,在搜索空间中进行全局、局部交替搜索,不易陷入局部最优解.对斐波那契树优化算法基于该结构的可达性进行分析和证明.通过跟踪算法求解过程中坐标点的累积分布仿真实验和到达率的对比实验,分析和验证了算法求解多峰函数全局最优解的可达性.
基金supported by the National Natural Science Foundation of China(71171015)the National High Technology Research and Development Program(863 Program)(2012AA112403)
文摘To deal with the demerits of constriction particle swarm optimization(CPSO), such as relapsing into local optima, slow convergence velocity, a modified CPSO algorithm is proposed by improving the velocity update formula of CPSO. The random velocity operator from local optima to global optima is added into the velocity update formula of CPSO to accelerate the convergence speed of the particles to the global optima and reduce the likelihood of being trapped into local optima. Finally the convergence of the algorithm is verified by calculation examples.