期刊文献+
共找到21篇文章
< 1 2 >
每页显示 20 50 100
A Bayesian multi-model inference methodology for imprecise momentindependent global sensitivity analysis of rock structures
1
作者 Akshay Kumar Gaurav Tiwari 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第3期840-859,共20页
Traditional global sensitivity analysis(GSA)neglects the epistemic uncertainties associated with the probabilistic characteristics(i.e.type of distribution type and its parameters)of input rock properties emanating du... Traditional global sensitivity analysis(GSA)neglects the epistemic uncertainties associated with the probabilistic characteristics(i.e.type of distribution type and its parameters)of input rock properties emanating due to the small size of datasets while mapping the relative importance of properties to the model response.This paper proposes an augmented Bayesian multi-model inference(BMMI)coupled with GSA methodology(BMMI-GSA)to address this issue by estimating the imprecision in the momentindependent sensitivity indices of rock structures arising from the small size of input data.The methodology employs BMMI to quantify the epistemic uncertainties associated with model type and parameters of input properties.The estimated uncertainties are propagated in estimating imprecision in moment-independent Borgonovo’s indices by employing a reweighting approach on candidate probabilistic models.The proposed methodology is showcased for a rock slope prone to stress-controlled failure in the Himalayan region of India.The proposed methodology was superior to the conventional GSA(neglects all epistemic uncertainties)and Bayesian coupled GSA(B-GSA)(neglects model uncertainty)due to its capability to incorporate the uncertainties in both model type and parameters of properties.Imprecise Borgonovo’s indices estimated via proposed methodology provide the confidence intervals of the sensitivity indices instead of their fixed-point estimates,which makes the user more informed in the data collection efforts.Analyses performed with the varying sample sizes suggested that the uncertainties in sensitivity indices reduce significantly with the increasing sample sizes.The accurate importance ranking of properties was only possible via samples of large sizes.Further,the impact of the prior knowledge in terms of prior ranges and distributions was significant;hence,any related assumption should be made carefully. 展开更多
关键词 Bayesian inference Multi-model inference Statistical uncertainty global sensitivity analysis(GSA) Borgonovo’s indices Limited data
下载PDF
Parameter identification and global sensitivity analysis of Xin'anjiang model using meta-modeling approach 被引量:13
2
作者 Xiao-meng SONG Fan-zhe KONG +2 位作者 Che-sheng ZHAN Ji-wei HAN Xin-hua ZHANG 《Water Science and Engineering》 EI CAS CSCD 2013年第1期1-17,共17页
Parameter identification, model calibration, and uncertainty quantification are important steps in the model-building process, and are necessary for obtaining credible results and valuable information. Sensitivity ana... Parameter identification, model calibration, and uncertainty quantification are important steps in the model-building process, and are necessary for obtaining credible results and valuable information. Sensitivity analysis of hydrological model is a key step in model uncertainty quantification, which can identify the dominant parameters, reduce the model calibration uncertainty, and enhance the model optimization efficiency. There are, however, some shortcomings in classical approaches, including the long duration of time and high computation cost required to quantitatively assess the sensitivity of a multiple-parameter hydrological model. For this reason, a two-step statistical evaluation framework using global techniques is presented. It is based on (1) a screening method (Morris) for qualitative ranking of parameters, and (2) a variance-based method integrated with a meta-model for quantitative sensitivity analysis, i.e., the Sobol method integrated with the response surface model (RSMSobol). First, the Morris screening method was used to qualitatively identify the parameters' sensitivity, and then ten parameters were selected to quantify the sensitivity indices. Subsequently, the RSMSobol method was used to quantify the sensitivity, i.e., the first-order and total sensitivity indices based on the response surface model (RSM) were calculated. The RSMSobol method can not only quantify the sensitivity, but also reduce the computational cost, with good accuracy compared to the classical approaches. This approach will be effective and reliable in the global sensitivity analysis of a complex large-scale distributed hydrological model. 展开更多
关键词 Xin'anjiang model global sensitivity analysis parameter identification meta-modeling approach response surface model
下载PDF
Global sensitivity analysis based on high-dimensional sparse surrogate construction 被引量:1
3
作者 Jun HU Shudao ZHANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2017年第6期797-814,共18页
Surrogate models are usually used to perform global sensitivity analysis (GSA) by avoiding a large ensemble of deterministic simulations of the Monte Carlo method to provide a reliable estimate of GSA indices. Howev... Surrogate models are usually used to perform global sensitivity analysis (GSA) by avoiding a large ensemble of deterministic simulations of the Monte Carlo method to provide a reliable estimate of GSA indices. However, most surrogate models such as polynomial chaos (PC) expansions suffer from the curse of dimensionality due to the high-dimensional input space. Thus, sparse surrogate models have been proposed to alleviate the curse of dimensionality. In this paper, three techniques of sparse reconstruc- tion are used to construct sparse PC expansions that are easily applicable to computing variance-based sensitivity indices (Sobol indices). These are orthogonal matching pursuit (OMP), spectral projected gradient for L1 minimization (SPGL1), and Bayesian compressive sensing with Laplace priors. By computing Sobol indices for several benchmark response models including the Sobol function, the Morris function, and the Sod shock tube problem, effective implementations of high-dimensional sparse surrogate construction are exhibited for GSA. 展开更多
关键词 global sensitivity analysis (GSA) curse of dimensionality sparse surrogate construction polynomial chaos (PC) compressive sensing
下载PDF
Moment-independence global sensitivity analysis for the system with fuzzy failure state and its Kriging method 被引量:1
4
作者 LI Guijie XIE Chaoyang +1 位作者 WEI Fayuan WANG Fengjun 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第3期658-666,共9页
For the system with the fuzzy failure state, the effects of the input random variables and the fuzzy failure state on the fuzzy probability of failure for the structural system are studied, and the moment-independence... For the system with the fuzzy failure state, the effects of the input random variables and the fuzzy failure state on the fuzzy probability of failure for the structural system are studied, and the moment-independence global sensitivity analysis(GSA) model is proposed to quantitatively measure these effects. According to the fuzzy random theory, the fuzzy failure state is transformed into an equivalent new random variable for the system, and the complementary function of the membership function of the fuzzy failure state is defined as the cumulative distribution function(CDF) of the new random variable. After introducing the new random variable, the equivalent performance function of the original problem is built. The difference between the unconditional fuzzy probability of failure and conditional fuzzy probability of failure is defined as the moment-independent GSA index. In order to solve the proposed GSA index efficiently, the Kriging-based algorithm is developed to estimate the defined moment-independence GSA index. Two engineering examples are employed to verify the feasibility and rationality of the presented GSA model, and the advantages of the developed Kriging method are also illustrated. 展开更多
关键词 fuzzy uncertainty fuzzy failure state fuzzy probability of failure moment-independence global sensitivity analysis(GSA) Kriging model
下载PDF
Global analysis of sensitivity of bioretention cell design elements to hydrologic performance 被引量:7
5
作者 Yan-wei SUN Xiao-mei WEI Christine A. POMEROY 《Water Science and Engineering》 EI CAS 2011年第3期246-257,共12页
Analysis of sensitivity of bioretention cell design elements to their hydrologic performances is meaningful in offering theoretical guidelines for proper design. Hydrologic performance of bioretention cells was facili... Analysis of sensitivity of bioretention cell design elements to their hydrologic performances is meaningful in offering theoretical guidelines for proper design. Hydrologic performance of bioretention cells was facilitated with consideration of four metrics: the overflow ratio, groundwater recharge ratio, ponding time, and runoff coefficients. The storm water management model (SWMM) and the bioretention infiltration model RECARGA were applied to generating runoff and outflow time series for calculation of hydrologic performance metrics. Using a parking lot to build a bioretention cell, as an example, the Morris method was used to conduct global sensitivity analysis for two groups of bioretention samples, one without underdrain and the other with underdrain. Results show that the surface area is the most sensitive element to most of the hydrologic metrics, while the gravel depth is the least sensitive element whether bioretention cells are installed with underdrain or not. The saturated infiltration rate of planting soil and the saturated infiltration rate of native soil are the other two most sensitive elements for bioretention cells without underdrain, while the saturated infiltration rate of native soil and underdrain size are the two most sensitive design elements for bioretention cells with underdrain. 展开更多
关键词 BIORETENTION hydrologic performance global sensitivity analysis Morris method
下载PDF
A surrogate model for uncertainty quantification and global sensitivity analysis of nonlinear large-scale dome structures
6
作者 Huidong ZHANG Yafei SONG +3 位作者 Xinqun ZHU Yaqiang ZHANG Hui WANG Yingjun GAO 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2023年第12期1813-1829,共17页
Full-scale dome structures intrinsically have numerous sources of irreducible aleatoric uncertainties.A large-scale numerical simulation of the dome structure is required to quantify the effects of these sources on th... Full-scale dome structures intrinsically have numerous sources of irreducible aleatoric uncertainties.A large-scale numerical simulation of the dome structure is required to quantify the effects of these sources on the dynamic performance of the structure using the finite element method(FEM).To reduce the heavy computational burden,a surrogate model of a dome structure was constructed to solve this problem.The dynamic global sensitivity of elastic and elastoplastic structures was analyzed in the uncertainty quantification framework using fully quantitative variance-and distribution-based methods through the surrogate model.The model considered the predominant sources of uncertainty that have a significant influence on the performance of the dome structure.The effects of the variables on the structural performance indicators were quantified using the sensitivity index values of the different performance states.Finally,the effects of the sample size and correlation function on the accuracy of the surrogate model as well as the effects of the surrogate accuracy and failure probability on the sensitivity index values are discussed.The results show that surrogate modeling has high computational efficiency and acceptable accuracy in the uncertainty quantification of large-scale structures subjected to earthquakes in comparison to the conventional FEM. 展开更多
关键词 large-scale dome structure surrogate model global sensitivity analysis uncertainty quantification structural performance
原文传递
Multi-parameter Sensitivity Analysis and Application Research in the Robust Optimization Design for Complex Nonlinear System 被引量:4
7
作者 MA Tao ZHANG Weigang +1 位作者 ZHANG Yang TANG Ting 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第1期55-62,共8页
The current research of complex nonlinear system robust optimization mainly focuses on the features of design parameters, such as probability density functions, boundary conditions, etc. After parameters study, high-d... The current research of complex nonlinear system robust optimization mainly focuses on the features of design parameters, such as probability density functions, boundary conditions, etc. After parameters study, high-dimensional curve or robust control design is used to find an accurate robust solution. However, there may exist complex interaction between parameters and practical engineering system. With the increase of the number of parameters, it is getting hard to determine high-dimensional curves and robust control methods, thus it's difficult to get the robust design solutions. In this paper, a method of global sensitivity analysis based on divided variables in groups is proposed. By making relevant variables in one group and keeping each other independent among sets of variables, global sensitivity analysis is conducted in grouped variables and the importance of parameters is evaluated by calculating the contribution value of each parameter to the total variance of system response. By ranking the importance of input parameters, relatively important parameters are chosen to conduct robust design analysis of the system. By applying this method to the robust optimization design of a real complex nonlinear system-a vehicle occupant restraint system with multi-parameter, good solution is gained and the response variance of the objective function is reduced to 0.01, which indicates that the robustness of the occupant restraint system is improved in a great degree and the method is effective and valuable for the robust design of complex nonlinear system. This research proposes a new method which can be used to obtain solutions for complex nonlinear system robust design. 展开更多
关键词 complex nonlinear system global sensitivity analysis robust optimization design grouped variables
下载PDF
Simulation of phytoplankton biomass in Quanzhou Bay using a back propagation network model and sensitivity analysis for environmental variables 被引量:3
8
作者 郑伟 石洪华 +2 位作者 宋希坤 黄东仁 胡龙 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2012年第5期843-851,共9页
Prediction and sensitivity models,to elucidate the response of phytoplankton biomass to environmental factors in Quanzhou Bay,Fujian,China,were developed using a back propagation(BP) network.The environmental indicato... Prediction and sensitivity models,to elucidate the response of phytoplankton biomass to environmental factors in Quanzhou Bay,Fujian,China,were developed using a back propagation(BP) network.The environmental indicators of coastal phytoplankton biomass were determined and monitoring data for the bay from 2008 was used to train,test and build a three-layer BP artificial neural network with multi-input and single-output.Ten water quality parameters were used to forecast phytoplankton biomass(measured as chlorophyll-a concentration).Correlation coefficient between biomass values predicted by the model and those observed was 0.964,whilst the average relative error of the network was-3.46% and average absolute error was 10.53%.The model thus has high level of accuracy and is suitable for analysis of the influence of aquatic environmental factors on phytoplankton biomass.A global sensitivity analysis was performed to determine the influence of different environmental indicators on phytoplankton biomass.Indicators were classified according to the sensitivity of response and its risk degree.The results indicate that the parameters most relevant to phytoplankton biomass are estuary-related and include pH,sea surface temperature,sea surface salinity,chemical oxygen demand and ammonium. 展开更多
关键词 SIMULATION phytoplankton biomass Quanzhou Bay back propagation (BP) network global sensitivity analysis
下载PDF
Numerical modeling and parametric sensitivity analysis of heat transfer and two-phase oil and water flow characteristics in horizontal and inclined flowlines using OpenFOAM 被引量:2
9
作者 Nsidibe Sunday Abdelhakim Settar +1 位作者 Khaled Chetehouna Nicolas Gascoin 《Petroleum Science》 SCIE EI CAS CSCD 2023年第2期1183-1199,共17页
Estimating the oil-water temperatures in flowlines is challenging especially in deepwater and ultra-deepwater offshore applications where issues of flow assurance and dramatic heat transfer are likely to occur due to ... Estimating the oil-water temperatures in flowlines is challenging especially in deepwater and ultra-deepwater offshore applications where issues of flow assurance and dramatic heat transfer are likely to occur due to the temperature difference between the fluids and the surroundings. Heat transfer analysis is very important for the prediction and prevention of deposits in oil and water flowlines, which could impede the flow and give rise to huge financial losses. Therefore, a 3D mathematical model of oil-water Newtonian flow under non-isothermal conditions is established to explore the complex mechanisms of the two-phase oil-water transportation and heat transfer in different flowline inclinations. In this work, a non-isothermal two-phase flow model is first modified and then implemented in the InterFoam solver by introducing the energy equation using OpenFOAM® code. The Low Reynolds Number (LRN) k-ε turbulence model is utilized to resolve the turbulence phenomena within the oil and water mixtures. The flow patterns and the local heat transfer coefficients (HTC) for two-phase oil-water flow at different flowlines inclinations (0°, +4°, +7°) are validated by the experimental literature results and the relative errors are also compared. Global sensitivity analysis is then conducted to determine the effect of the different parameters on the performance of the produced two-phase hydrocarbon systems for effective subsea fluid transportation. Thereafter, HTC and flow patterns for oil-water flows at downward inclinations of 4°, and 7° can be predicted by the models. The velocity distribution, pressure gradient, liquid holdup, and temperature variation at the flowline cross-sections are simulated and analyzed in detail. Consequently, the numerical model can be generally applied to compute the global properties of the fluid and other operating parameters that are beneficial in the management of two-phase oil-water transportation. 展开更多
关键词 Flow assurance Flow pattern Heat transfer Flowlines Two-phase flow global sensitivity analysis
下载PDF
A Processor Performance Prediction Method Based on Interpretable Hierarchical Belief Rule Base and Sensitivity Analysis
10
作者 Chen Wei-wei He Wei +3 位作者 Zhu Hai-long Zhou Guo-hui Mu Quan-qi Han Peng 《Computers, Materials & Continua》 SCIE EI 2023年第3期6119-6143,共25页
The prediction of processor performance has important referencesignificance for future processors. Both the accuracy and rationality of theprediction results are required. The hierarchical belief rule base (HBRB)can i... The prediction of processor performance has important referencesignificance for future processors. Both the accuracy and rationality of theprediction results are required. The hierarchical belief rule base (HBRB)can initially provide a solution to low prediction accuracy. However, theinterpretability of the model and the traceability of the results still warrantfurther investigation. Therefore, a processor performance prediction methodbased on interpretable hierarchical belief rule base (HBRB-I) and globalsensitivity analysis (GSA) is proposed. The method can yield more reliableprediction results. Evidence reasoning (ER) is firstly used to evaluate thehistorical data of the processor, followed by a performance prediction modelwith interpretability constraints that is constructed based on HBRB-I. Then,the whale optimization algorithm (WOA) is used to optimize the parameters.Furthermore, to test the interpretability of the performance predictionprocess, GSA is used to analyze the relationship between the input and thepredicted output indicators. Finally, based on the UCI database processordataset, the effectiveness and superiority of the method are verified. Accordingto our experiments, our prediction method generates more reliable andaccurate estimations than traditional models. 展开更多
关键词 Hierarchical belief rule base(HBRB) evidence reasoning(ER) INTERPRETABILITY global sensitivity analysis(GSA) whale optimization algorithm(WOA)
下载PDF
Multi-perspective analysis on rainfall-induced spatial response of soil suction in a vegetated soil 被引量:1
11
作者 Zhiliang Cheng Wanhuan Zhou Chen Tian 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第4期1280-1291,共12页
In this study, an intelligent monitoring platform is established for continuous quantification of soil,vegetation, and atmosphere parameters (e.g. soil suction, rainfall, tree canopy, air temperature, and windspeed) t... In this study, an intelligent monitoring platform is established for continuous quantification of soil,vegetation, and atmosphere parameters (e.g. soil suction, rainfall, tree canopy, air temperature, and windspeed) to provide an efficient dataset for modeling suction response through machine learning. Twocharacteristic parameters representing suction response during wetting processes, i.e. response time andmean reduction rate of suction, are formulated through multi-gene genetic programming (MGGP) usingeight selected influential parameters including depth, initial soil suction, vegetation- and atmosphererelated parameters. An error standardebased performance evaluation indicated that MGGP has appreciable potential for model development when working with even fewer than 100 data. Global sensitivityanalysis revealed the importance of tree canopy and mean wind speed to estimation of response timeand indicated that initial soil suction and rainfall amount have an important effect on the estimatedsuction reduction rate during a wetting process. Uncertainty assessment indicated that the two MGGPmodels describing suction response after rainfall are reliable and robust under uncertain conditions. Indepth analysis of spatial variations in suction response validated the robustness of two obtained MGGPmodels in prediction of suction variation characteristics under natural conditions. 展开更多
关键词 global sensitivity analysis(GSA) Multi-gene genetic programming(MGGP) Soil suction response Spatial variation of suction response Uncertainty assessment
下载PDF
Bi-objective path optimization of flapping airfoils based on a surrogate model 被引量:1
12
作者 赵良玉 徐勇 +1 位作者 徐来斌 杨树兴 《Journal of Beijing Institute of Technology》 EI CAS 2011年第2期143-151,共9页
A bi-objective optimization problem for flapping airfoils is solved to maximize the time-averaged thrust coefficient and the propulsive efficiency. Design variables include the plunging amplitude, the pitching amplitu... A bi-objective optimization problem for flapping airfoils is solved to maximize the time-averaged thrust coefficient and the propulsive efficiency. Design variables include the plunging amplitude, the pitching amplitude and the phase shift angle. A well defined Kriging model is used to substitute the time-consuming high fidelity model, and a multi-objective genetic algorithm is employed as the search algorithm. The optimization results show that the propulsive efficiency can be improved by reducing the plunging amplitude and the phase shift angle in a proper way. The results of global sensitivity analysis using the Sobol’s method show that both of the time-averaged thrust coefficient and the propulsive efficiency are most sensitive to the plunging amplitude, and second most sensitive to the pitching amplitude. It is also observed that the phase shift angle has an un-negligible influence on the propulsive efficiency, and has little effect on the time-averaged thrust coefficient. 展开更多
关键词 path optimization flapping airfoils Kriging model global sensitivity analysis genetic algorithm
下载PDF
Robust Design Optimization and Improvement by Metamodel 被引量:1
13
作者 Shufang Song Lu Wang Yuhua Yan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第10期383-399,共17页
The robust design optimization(RDO)is an effective method to improve product performance with uncertainty factors.The robust optimal solution should be not only satisfied the probabilistic constraints but also less se... The robust design optimization(RDO)is an effective method to improve product performance with uncertainty factors.The robust optimal solution should be not only satisfied the probabilistic constraints but also less sensitive to the variation of design variables.There are some important issues in RDO,such as how to judge robustness,deal with multi-objective problem and black-box situation.In this paper,two criteria are proposed to judge the deterministic optimal solution whether satisfies robustness requirment.The robustness measure based on maximum entropy is proposed.Weighted sum method is improved to deal with the objective function,and the basic framework of metamodel assisted robust optimization is also provided for improving the efficiency.Finally,several engineering examples are used to verify the advantages. 展开更多
关键词 Robust design optimization(RDO) METAMODEL maximum entropy robustness measure global sensitivity analysis
下载PDF
Ranking parameters in urban energy models for various building forms and climates using sensitivity analysis
14
作者 Aysegul Demir Dilsiz Kaitlynn Ng +1 位作者 Jérôme Kämpf Zoltan Nagy 《Building Simulation》 SCIE EI CSCD 2023年第9期1587-1600,共14页
Urban Building Energy Modelling(UBEM)allows us to simulate buildings’energy performances at a larger scale.However,creating a reliable urban-scale energy model of new or existing urban areas can be difficult since th... Urban Building Energy Modelling(UBEM)allows us to simulate buildings’energy performances at a larger scale.However,creating a reliable urban-scale energy model of new or existing urban areas can be difficult since the model requires overly detailed input data,which is not necessarily publicly unavailable.Model calibration is a necessary step to reduce the uncertainties and simulation results in order to develop a reliable and accurate UBEM.Due to the concerns over computational resources and the time needed for calibration,a sensitivity analysis is often required to identify the key parameters with the most substantial impact before the calibration is deployed in UBEM.Here,we study the sensitivity of uncertain input parameters that affect the annual heating and cooling energy demand by employing an urban-scale energy model,CitySim.Our goal is to determine the relative influence of each set of input parameters and their interactions on heating and cooling loads for various building forms under different climates.First,we conduct a global sensitivity analysis for annual cooling and heating consumption under different climate conditions.Building upon this,we investigate the changes in input sensitivity to different building forms,focusing on the indices with the largest Total-order sensitivity.Finally,we determine First-order indices and Total-order effects of each input parameter included in the urban building energy model.We also provide tables,showing the important parameters on the annual cooling and heating demand for each climate and each building form.We find that if the desired calibration process require to decrease the number of the inputs to save the computational time and cost,calibrating 5 parameters;temperature set-point,infiltration rate,floor U-value,avg.walls U-value and roof U-value would impact the results over 55%for any climate and any building form. 展开更多
关键词 global sensitivity analysis Sobol’method urban energy modeling building stocks energy modelling parameter screening Sobol’indices sustainable urban planning
原文传递
Cloud computing for integrated stochastic groundwater uncertainty analysis 被引量:3
15
作者 Yong Liu Alexander Y.Sun +1 位作者 Keith Nelson Wesley E.Hipke 《International Journal of Digital Earth》 SCIE EI 2013年第4期313-337,共25页
One of the major scientific challenges and societal concerns is to make informed decisions to ensure sustainable groundwater availability when facing deep uncertainties.A major computational requirement associated wit... One of the major scientific challenges and societal concerns is to make informed decisions to ensure sustainable groundwater availability when facing deep uncertainties.A major computational requirement associated with this is on-demand computing for risk analysis to support timely decision.This paper presents a scientific modeling service called‘ModflowOnAzure’which enables large-scale ensemble runs of groundwater flow models to be easily executed in parallel in the Windows Azure cloud.Several technical issues were addressed,including the conjunctive use of desktop tools in MATLAB to avoid license issues in the cloud,integration of Dropbox with Azure for improved usability and‘Drop-and-Compute,’and automated file exchanges between desktop and the cloud.Two scientific use cases are presented in this paper using this service with significant computational speedup.One case is from Arizona,where six plausible alternative conceptual models and a streamflow stochastic model are used to evaluate the impacts of different groundwater pumping scenarios.Another case is from Texas,where a global sensitivity analysis is performed on a regional groundwater availability model.Results of both cases show informed uncertainty analysis results that can be used to assist the groundwater planning and sustainability study. 展开更多
关键词 MODFLOW groundwatersustainability uncertaintyanalysis global sensitivity analysis cloudcomputing WindowsAzure DROPBOX alternative conceptual model CYBERINFRASTRUCTURE ESCIENCE
原文传递
Comprehensive Analysis and Optimization of Dynamic Vibration-Absorbing Structures for Electric Vehicles Driven by In-Wheel Motors 被引量:3
16
作者 Yechen Qin Zhenfeng Wang +1 位作者 Kang Yuan Yubiao Zhang 《Automotive Innovation》 EI CSCD 2019年第4期254-262,共9页
Distributed-drive electric vehicles(EVs)replace internal combustion engine with multiple motors,and the novel configura-tion results in new dynamic-related issues.This paper studies the coupling effects between the pa... Distributed-drive electric vehicles(EVs)replace internal combustion engine with multiple motors,and the novel configura-tion results in new dynamic-related issues.This paper studies the coupling effects between the parameters and responses of dynamic vibration-absorbing structures(DVAS)for EVs driven by in-wheel motors(IWM).Firstly,a DVAS-based quarter suspension model is developed for distributed-drive EVs,from which nine parameters and five responses are selected for the coupling effect analysis.A two-stage global sensitivity analysis is then utilized to investigate the effect of each parameter on the responses.The control of the system is then converted into a multiobjective optimization problem with the defined system parameters being the optimization variables,and three dynamic limitations regarding both motor and suspension subsystems are taken as the constraints.A particle swarm optimization approach is then used to either improve ride comfort or mitigate IWM vibration,and two optimized parameter sets for these two objects are provided at last.Simulation results provide in-depth conclusions for the coupling effects between parameters and responses,as well as a guideline on how to design system parameters for contradictory objectives.It can be concluded that either passenger comfort or motor lifespan can be reduced up to 36%and 15%by properly changing the IWM suspension system parameters. 展开更多
关键词 global sensitivity analysis IWM suspension Parameter optimization Electric vehicle
原文传递
Influence of yaw damper layouts on locomotive lateral dynamics performance:Pareto optimization and parameter analysis 被引量:1
17
作者 Guang LI Yuan YAO +2 位作者 Longjiang SHEN Xiaoxing DENG Wensheng ZHONG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2023年第5期450-464,共15页
High-speed locomotives are prone to carbody or bogie hunting when the wheel-rail contact conicity is excessively low or high.This can cause negative impacts on vehicle dynamics performance.This study presents four typ... High-speed locomotives are prone to carbody or bogie hunting when the wheel-rail contact conicity is excessively low or high.This can cause negative impacts on vehicle dynamics performance.This study presents four types of typical yaw damper layouts for a high-speed locomotive(Bo-Bo)and compares,by using the multi-objective optimization method,the influences of those layouts on the lateral dynamics performance of the locomotive;the linear stability indexes under lowconicity and high-conicity conditions are selected as optimization objectives.Furthermore,the radial basis function-based highdimensional model representation(RBF-HDMR)method is used to conduct a global sensitivity analysis(GSA)between key suspension parameters and the lateral dynamics performance of the locomotive,including the lateral ride comfort on straight tracks under the low-conicity condition,and also the operational safety on curved tracks.It is concluded that the layout of yaw dampers has a considerable impact on low-conicity stability and lateral ride comfort but has little influence on curving performance.There is also an important finding that only when the locomotive adopts the layout with opening outward,the difference in lateral ride comfort between the front and rear ends of the carbody can be eliminated by adjusting the lateral installation angle of the yaw dampers.Finally,force analysis and modal analysis methods are adopted to explain the influence mechanism of yaw damper layouts on the lateral stability and differences in lateral ride comfort between the front and rear ends of the carbody. 展开更多
关键词 High-speed locomotive Yaw damper layout Lateral stability Lateral ride comfort Multi objective optimization global sensitivity analysis(GSA)
原文传递
Comprehensive Assessment of STGSA Generated Skeletal Mechanism for the Application in Flame-Wall Interaction and Flame-Flow Interaction
18
作者 YU Chunkan YANG Bin 《Journal of Thermal Science》 SCIE EI CAS CSCD 2024年第5期1946-1960,共15页
In this study,we conduct a thorough evaluation of the STGSA-generated skeletal mechanism for C_(2)H_4/air.Two STGSA-reduced mechanisms are taken into account,incorporating basic combustion models such as the homogeneo... In this study,we conduct a thorough evaluation of the STGSA-generated skeletal mechanism for C_(2)H_4/air.Two STGSA-reduced mechanisms are taken into account,incorporating basic combustion models such as the homogeneous reactor model,one-dimensional flat premixed flame,and non-premixed counterflow flame.Subsequently,these models are applied to more complex combustion systems,considering factors like flame-flow interaction and flame-wall interaction.These considerations take into account additional physical parameters and processes such as mixing frequency and quenching.The results indicate that the skeletal mechanism adeptly captures the behavior of these complex combustion systems.However,it is suggested to incorporate strain rate considerations in generating the skeletal mechanism,especially when the combustion system operates under high turbulent intensity. 展开更多
关键词 Species-Targeted global sensitivity analysis(STGSA) mechanism reduction Partially Stirred Reactor(PaSR) spark ignition Head-on Quenching(HoQ)
原文传递
Radiative transfer models(RTMs)for field phenotyping inversion of rice based on UAV hyperspectral remote sensing 被引量:9
19
作者 Yu Fenghua Xu Tongyu +3 位作者 Du Wen Ma Hang Zhang Guosheng Chen Chunling 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2017年第4期150-157,共8页
The nondestructive and rapid acquisition of rice field phenotyping information is very important for the precision management of the rice growth process.In this research,the phenotyping information LAI(leaf area index... The nondestructive and rapid acquisition of rice field phenotyping information is very important for the precision management of the rice growth process.In this research,the phenotyping information LAI(leaf area index),leaf chlorophyll content(C_(ab)),canopy water content(C_(w)),and dry matter content(C_(dm))of rice was inversed based on the hyperspectral remote sensing technology of an unmanned aerial vehicle(UAV).The improved Sobol global sensitivity analysis(GSA)method was used to analyze the input parameters of the PROSAIL model in the spectral band range of 400-1100 nm,which was obtained by hyperspectral remote sensing by the UAV.The results show that C_(ab) mainly affects the spectrum on 400-780 nm band,C_(dm) on 760-1000 nm band,C_(w) on 900-1100 nm band,and LAI on the entire band.The hyperspectral data of the 400-1100 nm band of the rice canopy were acquired by using the M600 UAV remote sensing platform,and the radiance calibration was converted to the canopy emission rate.In combination with the PROSAIL model,the particle swarm optimization algorithm was used to retrieve rice phenotyping information by constructing the cost function.The results showed the following:(1)an accuracy of R^(2)=0.833 and RMSE=0.0969,where RMSE denotes root-mean-square error,was obtained for C_(ab) retrieval;R^(2)=0.816 and RMSE=0.1012 for LAI inversion;R^(2)=0.793 and RMSE=0.1084 for C_(dm);and R^(2)=0.665 and RMSE=0.1325 for C_(w).The C_(w) inversion accuracy was not particularly high.(2)The same band will be affected by multiple parameters at the same time.(3)This study adopted the rice phenotyping information inversion method to expand the rice hyperspectral information acquisition field of a UAV based on the phenotypic information retrieval accuracy using a high level of field spectral radiometric accuracy.The inversion method featured a good mechanism,high universality,and easy implementation,which can provide a reference for nondestructive and rapid inversion of rice biochemical parameters using UAV hyperspectral remote sensing. 展开更多
关键词 UAV rice phenotyping inversion hyperspectral remote sensing PROSAIL model global sensitivity analysis precision management
原文传递
On the electrophysiology of the atrial fast conduction system:an uncertain quantification study
20
作者 Giulio Del Corso Roberto Verzicco Francesco Viola 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2021年第2期264-278,共15页
Cardiac modeling entails the epistemic uncertainty of the input parameters,such as bundles and chambers geometry,electrical conductivities and cell parameters,thus calling for an uncertainty quantification(UQ)analysis... Cardiac modeling entails the epistemic uncertainty of the input parameters,such as bundles and chambers geometry,electrical conductivities and cell parameters,thus calling for an uncertainty quantification(UQ)analysis.Since the cardiac activation and the subsequent muscular contraction is provided by a complex electrophysiology system made of interconnected conductive media,we focus here on the fast conductivity structures of the atria(internodal pathways)with the aim of identifying which of the uncertain inputs mostly influence the propagation of the depolarization front.Firstly,the distributions of the input parameters are calibrated using data available from the literature taking into account gender differences.The output quantities of interest(Qols)of medical relevance are defined and a set of metamodels(one for each Qol)is then trained according to a polynomial chaos expansion(PCE)in order to run a global sensitivity analysis with non-linear variance-based SoboF indices with confidence intervals evaluated through the bootstrap method.The most sensitive parameters on each Qol are then identified for both genders showing the same order of importance of the model inputs on the electrical activation.Lastly,the probability distributions of the Qols are obtained through a forward sensitivity analysis using the same trained metamodels.It results that several input parameters-including the position of the internodal pathways and the electrical impulse applied at the sinoatrial node一have a little influence on the Qols studied.Vice-versa the electrical activation of the atrial fast conduction system is sensitive on the bundles geometry and electrical conductivities that need to be carefully measured or calibrated in order for the electrophysiology model to be accurate and predictive. 展开更多
关键词 Uncertainty quantification global sensitivity analysis Forward analysis Atrial modelling ELECTROPHYSIOLOGY Monodomain model
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部