This paper is concerned with the Navier-Stokes/Allen-Cahn system,which is used to model the dynamics of immiscible two-phase flows.We consider a 1D free boundary problem and assume that the viscosity coefficient depen...This paper is concerned with the Navier-Stokes/Allen-Cahn system,which is used to model the dynamics of immiscible two-phase flows.We consider a 1D free boundary problem and assume that the viscosity coefficient depends on the density in the form ofη(ρ)=ρ^(α).The existence of unique global H^(2m)-solutions(m∈N)to the free boundary problem is proven for when 0<α<1/4.Furthermore,we obtain the global C^(∞)-solutions if the initial data is smooth.展开更多
In this paper,we establish global classical solutions of semilinear wave equations with small compact supported initial data posed on the product space R^(3)×T.The semilinear nonlinearity is assumed to be of the ...In this paper,we establish global classical solutions of semilinear wave equations with small compact supported initial data posed on the product space R^(3)×T.The semilinear nonlinearity is assumed to be of the cubic form.The main ingredient here is the establishment of the L^(2)-L^(∞)decay estimates and the energy estimates for the linear problem,which are adapted to the wave equation on the product space.The proof is based on the Fourier mode decomposition of the solution with respect to the periodic direction,the scaling technique,and the combination of the decay estimates and the energy estimates.展开更多
This paper is concerned with the following attraction-repulsion chemotaxis system with p-Laplacian diffusion and logistic source:■The system here is under a homogenous Neumann boundary condition in a bounded domainΩ...This paper is concerned with the following attraction-repulsion chemotaxis system with p-Laplacian diffusion and logistic source:■The system here is under a homogenous Neumann boundary condition in a bounded domainΩ ■ R^(n)(n≥2),with χ,ξ,α,β,γ,δ,k_(1),k_(2)> 0,p> 2.In addition,the function f is smooth and satisfies that f(s)≤κ-μs~l for all s≥0,with κ ∈ R,μ> 0,l> 1.It is shown that(ⅰ)if l> max{2k_(1),(2k_(1)n)/(2+n)+1/(p-1)},then system possesses a global bounded weak solution and(ⅱ)if k_(2)> max{2k_(1)-1,(2k_(1)n)/(2+n)+(2-p)/(p-1)} with l> 2,then system possesses a global bounded weak solution.展开更多
We study the global unique solutions to the 2-D inhomogeneous incompressible MHD equations,with the initial data(u0,B0)being located in the critical Besov space■and the initial densityρ0 being close to a positive co...We study the global unique solutions to the 2-D inhomogeneous incompressible MHD equations,with the initial data(u0,B0)being located in the critical Besov space■and the initial densityρ0 being close to a positive constant.By using weighted global estimates,maximal regularity estimates in the Lorentz space for the Stokes system,and the Lagrangian approach,we show that the 2-D MHD equations have a unique global solution.展开更多
In this paper,we mainly focus on a type of nonlinear Choquard equations with nonconstant potential.Under appropriate hypotheses on potential function and nonlinear terms,we prove that the above Choquard equation with ...In this paper,we mainly focus on a type of nonlinear Choquard equations with nonconstant potential.Under appropriate hypotheses on potential function and nonlinear terms,we prove that the above Choquard equation with prescribed 2-norm has some normalized solutions by introducing variational methods.展开更多
We study the global existence and uniqueness of a strong solution to the kinetic thermomechanical Cucker-Smale(for short,TCS) model coupled with Stokes equations in the whole space.The coupled system consists of the k...We study the global existence and uniqueness of a strong solution to the kinetic thermomechanical Cucker-Smale(for short,TCS) model coupled with Stokes equations in the whole space.The coupled system consists of the kinetic TCS equation for a particle ensemble and the Stokes equations for a fluid via a drag force.In this paper,we present a complete analysis of the existence of global-in-time strong solutions to the coupled model without any smallness restrictions on the initial data.展开更多
Consensus was reached by delegates to the 10th World Water Forum that global water-related challenges remain acute,water resources are under serious threat,and wisdom,contributions,and cooperation from around the worl...Consensus was reached by delegates to the 10th World Water Forum that global water-related challenges remain acute,water resources are under serious threat,and wisdom,contributions,and cooperation from around the world are urgently required for water security and shared prosperity.展开更多
This paper is concerned with the Cauchy problem for a 3D fluid-particle interaction model in the so-called flowing regime inℝ3.Under the smallness assumption on both the external potential and the initial perturbation...This paper is concerned with the Cauchy problem for a 3D fluid-particle interaction model in the so-called flowing regime inℝ3.Under the smallness assumption on both the external potential and the initial perturbation of the stationary solution in some Sobolev spaces,the existence and uniqueness of global smooth solutions in H3 of the system are established by using the careful energy method.展开更多
In this paper,we consider a model of compressible isentropic two-fluid magneto-hydrodynamics without resistivity in a strip domain in three dimensional space.By exploiting the two-tier energy method developed in[Anal ...In this paper,we consider a model of compressible isentropic two-fluid magneto-hydrodynamics without resistivity in a strip domain in three dimensional space.By exploiting the two-tier energy method developed in[Anal PDE,2013,6:1429–1533],we prove the global well-posedness of the governing model around a uniform magnetic field which is non-parallel to the horizontal boundary.Moreover,we show that the solution converges to the steady state at an almost exponential rate as time goes to infinity.Compared to the work of Tan and Wang[SIAM J Math Anal,2018,50:1432–1470],we need to overcome the difficulties caused by particles.展开更多
The Landau equation is studied for hard potential with-2≤γ≤1.Under a perturbation setting,a unique global solution of the Cauchy problem to the Landau equation is established in a critical Sobolev space H_(x)^(d)L_...The Landau equation is studied for hard potential with-2≤γ≤1.Under a perturbation setting,a unique global solution of the Cauchy problem to the Landau equation is established in a critical Sobolev space H_(x)^(d)L_(v)^(2)(d>3/2),which extends the results of[11]in the torus domain to the whole space R_(x)^(3).Here we utilize the pseudo-differential calculus to derive our desired result.展开更多
Computing tasks may often be posed as optimization problems.The objective functions for real-world scenarios are often nonconvex and/or nondifferentiable.State-of-the-art methods for solving these problems typically o...Computing tasks may often be posed as optimization problems.The objective functions for real-world scenarios are often nonconvex and/or nondifferentiable.State-of-the-art methods for solving these problems typically only guarantee convergence to local minima.This work presents Hamilton-Jacobi-based Moreau adaptive descent(HJ-MAD),a zero-order algorithm with guaranteed convergence to global minima,assuming continuity of the objective function.The core idea is to compute gradients of the Moreau envelope of the objective(which is"piece-wise convex")with adaptive smoothing parameters.Gradients of the Moreau envelope(i.e.,proximal operators)are approximated via the Hopf-Lax formula for the viscous Hamilton-Jacobi equation.Our numerical examples illustrate global convergence.展开更多
This article investigates the well posedness and asymptotic behavior of Neumann initial boundary value problems for a class of pseudo-parabolic equations with singular potential and logarithmic nonlinearity. By utiliz...This article investigates the well posedness and asymptotic behavior of Neumann initial boundary value problems for a class of pseudo-parabolic equations with singular potential and logarithmic nonlinearity. By utilizing cut-off techniques and combining with the Faedo Galerkin approximation method, local solvability was established. Based on the potential well method and Hardy Sobolev inequality, derive the global existence of the solution. In addition, we also obtained the results of decay.展开更多
In this article the author considers Cauchy problem for one dimensional Navier Stokes equations and the global smooth resolvablity for classical solutions is obtained.
By means of maximum principle for nonlinear hyperbolic systems, the results given by HSIAO Ling and D. Serre was improved for Cauchy problem of compressible adiabatic flow through porous media, and a complete result o...By means of maximum principle for nonlinear hyperbolic systems, the results given by HSIAO Ling and D. Serre was improved for Cauchy problem of compressible adiabatic flow through porous media, and a complete result on the global existence and the blow-up phenomena of classical solutions of these systems. These results show that the dissipation is strong enough to preserve the smoothness of ‘small ’ solution.展开更多
This paper is concerned with the existence of global solutions to the Cauchy problem of a hyperbolic-parabolic coupled system with large initial data. To this end, we first construct its local solutions by the standar...This paper is concerned with the existence of global solutions to the Cauchy problem of a hyperbolic-parabolic coupled system with large initial data. To this end, we first construct its local solutions by the standard iteration technique, then we deduce the basic energy estimate by constructing a convex entropy-entropy flux pair to this system. Moreover, the L∞-estimates and H^2-estimates of solutions are obtained through some delicate estimates. In our results, we do not ask the far fields of the initial data to be equal and the initial data can be arbitrarily large which generalize the result obtained in [7].展开更多
We study the Cauchy problem of strongly damped Klein-Gordon equation. Global existence and asymptotic behavior of solutions with initial data in the potential well are derived. Moreover, not only does finite time blow...We study the Cauchy problem of strongly damped Klein-Gordon equation. Global existence and asymptotic behavior of solutions with initial data in the potential well are derived. Moreover, not only does finite time blow up with initial data in the unstable set is proved, but also blow up results with arbitrary positive initial energy are obtained.展开更多
In this article, we prove the global existence of weak solutions to the non- isothermal nematic liquid crystal system on T2, on the basis of a new approximate system which is different from the classical Ginzburg-Land...In this article, we prove the global existence of weak solutions to the non- isothermal nematic liquid crystal system on T2, on the basis of a new approximate system which is different from the classical Ginzburg-Landau approximation. Local in space energy inequalities are employed to recover the estimates on the second order spatial derivatives of the director fields locally in time, which cannot be derived from the basic energy balance. It is shown that these weak solutions satisfy the temperature equation, and also the total energy equation but away from at most finite many "singular" times, at which the energy concentration occurs and the director field losses its second order derivatives.展开更多
The aims of this paper are to discuss global existence and uniqueness of strong solution for a class of isentropic compressible navier-Stokes equations with non-Newtonian in one-dimensional bounded intervals. We prove...The aims of this paper are to discuss global existence and uniqueness of strong solution for a class of isentropic compressible navier-Stokes equations with non-Newtonian in one-dimensional bounded intervals. We prove two global existence results on strong solutions of isentropic compressible Navier-Stokes equations. The first result shows only the existence. And the second one shows the existence and uniqueness result based on the first result, but the uniqueness requires some compatibility condition.展开更多
In this paper, the existence and the uniqueness of the local generalized solution and the local classical solution of the Cauchy problem for the generalized BBM-Burgers equationare proved. The existence and the unique...In this paper, the existence and the uniqueness of the local generalized solution and the local classical solution of the Cauchy problem for the generalized BBM-Burgers equationare proved. The existence and the uniqueness of the global generalized solution and the global classical solution for the Cauchy problem of equation (1) are proved when n = 3, 2, 1. Moreover, the decay property of the solution is discussed.展开更多
基金supported by the Key Project of the NSFC(12131010)the NSFC(11771155,12271032)+1 种基金the NSF of Guangdong Province(2021A1515010249,2021A1515010303)supported by the NSFC(11971179,12371205)。
文摘This paper is concerned with the Navier-Stokes/Allen-Cahn system,which is used to model the dynamics of immiscible two-phase flows.We consider a 1D free boundary problem and assume that the viscosity coefficient depends on the density in the form ofη(ρ)=ρ^(α).The existence of unique global H^(2m)-solutions(m∈N)to the free boundary problem is proven for when 0<α<1/4.Furthermore,we obtain the global C^(∞)-solutions if the initial data is smooth.
文摘In this paper,we establish global classical solutions of semilinear wave equations with small compact supported initial data posed on the product space R^(3)×T.The semilinear nonlinearity is assumed to be of the cubic form.The main ingredient here is the establishment of the L^(2)-L^(∞)decay estimates and the energy estimates for the linear problem,which are adapted to the wave equation on the product space.The proof is based on the Fourier mode decomposition of the solution with respect to the periodic direction,the scaling technique,and the combination of the decay estimates and the energy estimates.
基金supported by the National Natural Science Foundation of China(12301251,12271232)the Natural Science Foundation of Shandong Province,China(ZR2021QA038)the Scientific Research Foundation of Linyi University,China(LYDX2020BS014)。
文摘This paper is concerned with the following attraction-repulsion chemotaxis system with p-Laplacian diffusion and logistic source:■The system here is under a homogenous Neumann boundary condition in a bounded domainΩ ■ R^(n)(n≥2),with χ,ξ,α,β,γ,δ,k_(1),k_(2)> 0,p> 2.In addition,the function f is smooth and satisfies that f(s)≤κ-μs~l for all s≥0,with κ ∈ R,μ> 0,l> 1.It is shown that(ⅰ)if l> max{2k_(1),(2k_(1)n)/(2+n)+1/(p-1)},then system possesses a global bounded weak solution and(ⅱ)if k_(2)> max{2k_(1)-1,(2k_(1)n)/(2+n)+(2-p)/(p-1)} with l> 2,then system possesses a global bounded weak solution.
基金supported by the National Natural Science Foundation of China(12371211,12126359)the postgraduate Scientific Research Innovation Project of Hunan Province(XDCX2022Y054,CX20220541).
文摘We study the global unique solutions to the 2-D inhomogeneous incompressible MHD equations,with the initial data(u0,B0)being located in the critical Besov space■and the initial densityρ0 being close to a positive constant.By using weighted global estimates,maximal regularity estimates in the Lorentz space for the Stokes system,and the Lagrangian approach,we show that the 2-D MHD equations have a unique global solution.
基金Supported by the National Natural Science Foundation of China(11671403,11671236,12101192)Henan Provincial General Natural Science Foundation Project(232300420113)。
文摘In this paper,we mainly focus on a type of nonlinear Choquard equations with nonconstant potential.Under appropriate hypotheses on potential function and nonlinear terms,we prove that the above Choquard equation with prescribed 2-norm has some normalized solutions by introducing variational methods.
基金supported by the National Natural Science Foundation of China (12001033)。
文摘We study the global existence and uniqueness of a strong solution to the kinetic thermomechanical Cucker-Smale(for short,TCS) model coupled with Stokes equations in the whole space.The coupled system consists of the kinetic TCS equation for a particle ensemble and the Stokes equations for a fluid via a drag force.In this paper,we present a complete analysis of the existence of global-in-time strong solutions to the coupled model without any smallness restrictions on the initial data.
文摘Consensus was reached by delegates to the 10th World Water Forum that global water-related challenges remain acute,water resources are under serious threat,and wisdom,contributions,and cooperation from around the world are urgently required for water security and shared prosperity.
文摘This paper is concerned with the Cauchy problem for a 3D fluid-particle interaction model in the so-called flowing regime inℝ3.Under the smallness assumption on both the external potential and the initial perturbation of the stationary solution in some Sobolev spaces,the existence and uniqueness of global smooth solutions in H3 of the system are established by using the careful energy method.
基金supported by the National Natural Science Foundation of China(12101095)the Natural Science Foundation of Chongqing(CSTB2022NSCQ-MSX0949,2022NSCQ-MSX2878,CSTC2021jcyj-msxmX0224)+2 种基金the Science and Technology Research Program of Chongqing Municipal Education Commission(KJQN202100517,KJQN202300542,KJQN202100511)the Research Project of Chongqing Education Commission(CXQT21014)the grant of Chongqing Young Experts’Workshop.
文摘In this paper,we consider a model of compressible isentropic two-fluid magneto-hydrodynamics without resistivity in a strip domain in three dimensional space.By exploiting the two-tier energy method developed in[Anal PDE,2013,6:1429–1533],we prove the global well-posedness of the governing model around a uniform magnetic field which is non-parallel to the horizontal boundary.Moreover,we show that the solution converges to the steady state at an almost exponential rate as time goes to infinity.Compared to the work of Tan and Wang[SIAM J Math Anal,2018,50:1432–1470],we need to overcome the difficulties caused by particles.
文摘The Landau equation is studied for hard potential with-2≤γ≤1.Under a perturbation setting,a unique global solution of the Cauchy problem to the Landau equation is established in a critical Sobolev space H_(x)^(d)L_(v)^(2)(d>3/2),which extends the results of[11]in the torus domain to the whole space R_(x)^(3).Here we utilize the pseudo-differential calculus to derive our desired result.
基金partially funded by AFOSR MURI FA9550-18-502,ONR N00014-18-1-2527,N00014-18-20-1-2093,N00014-20-1-2787supported by the NSF Graduate Research Fellowship under Grant No.DGE-1650604.
文摘Computing tasks may often be posed as optimization problems.The objective functions for real-world scenarios are often nonconvex and/or nondifferentiable.State-of-the-art methods for solving these problems typically only guarantee convergence to local minima.This work presents Hamilton-Jacobi-based Moreau adaptive descent(HJ-MAD),a zero-order algorithm with guaranteed convergence to global minima,assuming continuity of the objective function.The core idea is to compute gradients of the Moreau envelope of the objective(which is"piece-wise convex")with adaptive smoothing parameters.Gradients of the Moreau envelope(i.e.,proximal operators)are approximated via the Hopf-Lax formula for the viscous Hamilton-Jacobi equation.Our numerical examples illustrate global convergence.
文摘This article investigates the well posedness and asymptotic behavior of Neumann initial boundary value problems for a class of pseudo-parabolic equations with singular potential and logarithmic nonlinearity. By utilizing cut-off techniques and combining with the Faedo Galerkin approximation method, local solvability was established. Based on the potential well method and Hardy Sobolev inequality, derive the global existence of the solution. In addition, we also obtained the results of decay.
文摘In this article the author considers Cauchy problem for one dimensional Navier Stokes equations and the global smooth resolvablity for classical solutions is obtained.
文摘By means of maximum principle for nonlinear hyperbolic systems, the results given by HSIAO Ling and D. Serre was improved for Cauchy problem of compressible adiabatic flow through porous media, and a complete result on the global existence and the blow-up phenomena of classical solutions of these systems. These results show that the dissipation is strong enough to preserve the smoothness of ‘small ’ solution.
基金Huijiang Zhao was supported by the National Natural Science Foundation of China (10871151)Changjiang Zhu was supported by the National Natural Science Foundation of China (10625105 and 10431060)the Program for New Century Excellent Talentsin University (NCET-04-0745)
文摘This paper is concerned with the existence of global solutions to the Cauchy problem of a hyperbolic-parabolic coupled system with large initial data. To this end, we first construct its local solutions by the standard iteration technique, then we deduce the basic energy estimate by constructing a convex entropy-entropy flux pair to this system. Moreover, the L∞-estimates and H^2-estimates of solutions are obtained through some delicate estimates. In our results, we do not ask the far fields of the initial data to be equal and the initial data can be arbitrarily large which generalize the result obtained in [7].
基金supported by the National Natural Science Foundation of China (11101102)Ph.D. Programs Foundation of Ministry of Education of China (20102304120022)+3 种基金the Support Plan for the Young College Academic Backbone of Heilongjiang Province (1252G020)the Natural Science Foundation of Heilongjiang Province (A201014)Science and Technology Research Project of Department of Education of Heilongjiang Province (12521401)Foundational Science Foundation of Harbin Engineering University and Fundamental Research Funds for the Central Universities (HEUCF20131101)
文摘We study the Cauchy problem of strongly damped Klein-Gordon equation. Global existence and asymptotic behavior of solutions with initial data in the potential well are derived. Moreover, not only does finite time blow up with initial data in the unstable set is proved, but also blow up results with arbitrary positive initial energy are obtained.
基金Hong Kong RGC Earmarked Research Grants 14305315,CUHK4041/11P and CUHK4048/13PThe Chinese University of Hong Kong,a Croucher Foundation-CAS Joint Grant,and a NSFC/RGC Joint Research Scheme(N-CUHK443/14)
文摘In this article, we prove the global existence of weak solutions to the non- isothermal nematic liquid crystal system on T2, on the basis of a new approximate system which is different from the classical Ginzburg-Landau approximation. Local in space energy inequalities are employed to recover the estimates on the second order spatial derivatives of the director fields locally in time, which cannot be derived from the basic energy balance. It is shown that these weak solutions satisfy the temperature equation, and also the total energy equation but away from at most finite many "singular" times, at which the energy concentration occurs and the director field losses its second order derivatives.
文摘The aims of this paper are to discuss global existence and uniqueness of strong solution for a class of isentropic compressible navier-Stokes equations with non-Newtonian in one-dimensional bounded intervals. We prove two global existence results on strong solutions of isentropic compressible Navier-Stokes equations. The first result shows only the existence. And the second one shows the existence and uniqueness result based on the first result, but the uniqueness requires some compatibility condition.
基金supported by the National Natural Science Foundation of China(11226175,11271336 and 11171311)Specialized Reseach Fund for the Docotoral Program of Higher Education(20124301120002)Foundation of He’nan Educational Committee(2009C110006)
文摘In this paper, the existence and the uniqueness of the local generalized solution and the local classical solution of the Cauchy problem for the generalized BBM-Burgers equationare proved. The existence and the uniqueness of the global generalized solution and the global classical solution for the Cauchy problem of equation (1) are proved when n = 3, 2, 1. Moreover, the decay property of the solution is discussed.