Potential natural vegetation(PNV)is a valuable reference for ecosystem renovation and has garnered increasing attention worldwide.However,there is limited knowledge on the spatio-temporal distributions,transitional pr...Potential natural vegetation(PNV)is a valuable reference for ecosystem renovation and has garnered increasing attention worldwide.However,there is limited knowledge on the spatio-temporal distributions,transitional processes,and underlying mechanisms of global natural vegetation,particularly in the case of ongoing climate warming.In this study,we visualize the spatio-temporal pattern and inter-transition procedure of global PNV,analyse the shifting distances and directions of global PNV under the influence of climatic disturbance,and explore the mechanisms of global PNV in response to temperature and precipitation fluctuations.To achieve this,we utilize meteorological data,mainly temperature and precipitation,from six phases:the Last Inter-Glacial(LIG),the Last Glacial Maximum(LGM),the Mid Holocene(MH),the Present Day(PD),2030(20212040)and 2090(2081–2100),and employ a widely-accepted comprehensive and sequential classification sy–stem(CSCS)for global PNV classification.We find that the spatial patterns of five PNV groups(forest,shrubland,savanna,grassland and tundra)generally align with their respective ecotopes,although their distributions have shifted due to fluctuating temperature and precipitation.Notably,we observe an unexpected transition between tundra and savanna despite their geographical distance.The shifts in distance and direction of five PNV groups are mainly driven by temperature and precipitation,although there is heterogeneity among these shifts for each group.Indeed,the heterogeneity observed among different global PNV groups suggests that they may possess varying capacities to adjust to and withstand the impacts of changing climate.The spatio-temporal distributions,mutual transitions and shift tendencies of global PNV and its underlying mechanism in face of changing climate,as revealed in this study,can significantly contribute to the development of strategies for mitigating warming and promoting re-vegetation in degraded regions worldwide.展开更多
This article investigates the well posedness and asymptotic behavior of Neumann initial boundary value problems for a class of pseudo-parabolic equations with singular potential and logarithmic nonlinearity. By utiliz...This article investigates the well posedness and asymptotic behavior of Neumann initial boundary value problems for a class of pseudo-parabolic equations with singular potential and logarithmic nonlinearity. By utilizing cut-off techniques and combining with the Faedo Galerkin approximation method, local solvability was established. Based on the potential well method and Hardy Sobolev inequality, derive the global existence of the solution. In addition, we also obtained the results of decay.展开更多
Drylands are among those regions most sensitive to climate and environmental changes and human-induced perturbations.The most widely accepted definition of the term dryland is a ratio,called the Surface Wetness Index(...Drylands are among those regions most sensitive to climate and environmental changes and human-induced perturbations.The most widely accepted definition of the term dryland is a ratio,called the Surface Wetness Index(SWI),of annual precipitation to potential evapotranspiration(PET)being below 0.65.PET is commonly estimated using the Thornthwaite(PET Th)and Penman–Monteith equations(PET PM).The present study compared spatiotemporal characteristics of global drylands based on the SWI with PET Th and PET PM.Results showed vast differences between PET Th and PET PM;however,the SWI derived from the two kinds of PET showed broadly similar characteristics in the interdecadal variability of global and continental drylands,except in North America,with high correlation coefficients ranging from 0.58 to 0.89.It was found that,during 1901–2014,global hyper-arid and semi-arid regions expanded,arid and dry sub-humid regions contracted,and drylands underwent interdecadal fluctuation.This was because precipitation variations made major contributions,whereas PET changes contributed to a much lesser degree.However,distinct differences in the interdecadal variability of semi-arid and dry sub-humid regions were found.This indicated that the influence of PET changes was comparable to that of precipitation variations in the global dry–wet transition zone.Additionally,the contribution of PET changes to the variations in global and continental drylands gradually enhanced with global warming,and the Thornthwaite method was found to be increasingly less applicable under climate change.展开更多
The aims of this paper are to discuss global existence and uniqueness of strong solution for a class of isentropic compressible navier-Stokes equations with non-Newtonian in one-dimensional bounded intervals. We prove...The aims of this paper are to discuss global existence and uniqueness of strong solution for a class of isentropic compressible navier-Stokes equations with non-Newtonian in one-dimensional bounded intervals. We prove two global existence results on strong solutions of isentropic compressible Navier-Stokes equations. The first result shows only the existence. And the second one shows the existence and uniqueness result based on the first result, but the uniqueness requires some compatibility condition.展开更多
Background: Nitrogen(N) deposition affects soil greenhouse gas(GHG) emissions, while biochar application reduces GHG emissions in agricultural soils. However, it remains unclear whether biochar amendment can alleviate...Background: Nitrogen(N) deposition affects soil greenhouse gas(GHG) emissions, while biochar application reduces GHG emissions in agricultural soils. However, it remains unclear whether biochar amendment can alleviate the promoting effects of N input on GHG emissions in forest soils. Here, we quantify the separate and combined effects of biochar amendment(0, 20, and 40 t·ha) and N addition(0, 30, 60, and 90 kg N·ha·yr) on soil GHG fluxes in a long-term field experiment at a Moso bamboo(Phyllostachys edulis) plantation.Results: Low and moderate N inputs(≤60 kg N·ha·yr) significantly increase mean annual soil carbon dioxide(CO) and nitrous oxide(NO) emissions by 17.0%–25.4% and 29.8%–31.2%, respectively, while decreasing methane(CH) uptake by 12.4%–15.9%, leading to increases in the global warming potential(GWP) of soil CHand NO fluxes by 32.4%–44.0%. Moreover, N addition reduces soil organic carbon(C;SOC) storage by 0.2%–6.5%. Compared to the control treatment, biochar amendment increases mean annual soil CO2emissions, CHuptake, and SOC storage by 18.4%–25.4%, 7.6%–15.8%, and 7.1%–13.4%, respectively, while decreasing NO emissions by 17.6%–19.2%, leading to a GWP decrease of 18.4%–21.4%. Biochar amendments significantly enhance the promoting effects of N addition on soil COemissions, while substantially offsetting the promotion of N2O emissions, inhibition of CHuptake, and decreased SOC storage, resulting in a GWP decrease of 9.1%–30.3%.Additionally, soil COand CHfluxes are significantly and positively correlated with soil microbial biomass C(MBC) and pH. Meanwhile, NO emissions have a significant and positive correlation with soil MBC and a negative correlation with pH.Conclusions: Biochar amendment can increase SOC storage and offset the enhanced GWP mediated by elevated N deposition and is, thus, a potential strategy for increasing soil C sinks and decreasing GWPs of soil CHand NO under increasing atmospheric N deposition in Moso bamboo plantations.展开更多
In order to quantify the contribution of the mitigation strategies,an extended Kaya identity has been proposed in this paper for decomposing the various factors that influence the CO2 emission.To this end,we provided ...In order to quantify the contribution of the mitigation strategies,an extended Kaya identity has been proposed in this paper for decomposing the various factors that influence the CO2 emission.To this end,we provided a detailed decomposition of the carbon intensity and energy intensity,which enables the quantification of clean energy development and electrification.The logarithmic mean divisia index(LMDI)has been applied to the historical data to quantify the contributions of the various factors affecting the CO2 emissions.Further,the global energy interconnection(GEI)scenario has been introduced for providing a systematic solution to meet the 2℃goal of the Paris Agreement.By combining LMDI with the scenario analysis,the mitigation potential of the various factors for CO2 emission has been analyzed.Results from the historical data indicate that economic development and population growth contribute the most to the increase in CO2 emissions,whereas improvement in the power generation efficiency predominantly helps in emission reduction.A numerical analysis,performed for obtaining the projected future carbon emissions,suggests that clean energy development and electrification are the top two factors that can decrease CO2 emissions,thus showing their great potential for mitigation in the future.Moreover,the carbon capture and storage technology serves as an important supplementary mitigation method.展开更多
The vibrational dynamics of HOCl and HOBr between bending and OC1/OBr stretching coordinates with anharmonieity and Fermi coupling is studied with the classical dynamical potential approach. The quantal vibrational dy...The vibrational dynamics of HOCl and HOBr between bending and OC1/OBr stretching coordinates with anharmonieity and Fermi coupling is studied with the classical dynamical potential approach. The quantal vibrational dynamics is mostly mapped out by the classical nonlinear variables such as fixed points, except for the state energies, which are quantized. This approach is global in the sense that the focus is on a set of levels instead of individual ones. The dynamics of HOBr is demonstrated to be less complicated. The localized modes along the OCl/OBr stretching coordinates are also shown to have O-Br bonds more prone to dissociation.展开更多
In the face of global warming and increasing impervious surfaces,quantifying the change of climate potential productivity(CPP)is of great significance for the food production planning.Targeting the Dongting Lake Basin...In the face of global warming and increasing impervious surfaces,quantifying the change of climate potential productivity(CPP)is of great significance for the food production planning.Targeting the Dongting Lake Basin,which is a key area for food production in China,this paper uses meteorological data,as well as Climate Change Initiative Land Cover,and Shuttle Radar Topography Mission digital elevation model to investigate the CPP and its changes from 2000 to 2020.The suitability of land for cultivation(SLC),and the land use/land cover change(LUCC)are also considered.The results showed that the CPP varied from 9,825 to 20,895 kg ha^(-1).Even though the newly added impervious surfaces indirectly resulted in the decrease of CPP by of 9.81×10~8 kg,overall,the CPP increased at an average rate of 83.7 kg ha^(-1)a^(-1).Global warming is the strongest driver behind CPP increase,and CPP has played an important role in the conversions between cultivated land and other land types.The structure of land types tends to be optimized against this challenge.展开更多
Tropical cyclone heat potential (TCHP) in the ocean can affect tropical cyclone intensity and intensification. In this paper, TCHP change under global warming is presented based on 35 models from CMIP5 (Coupled Mod...Tropical cyclone heat potential (TCHP) in the ocean can affect tropical cyclone intensity and intensification. In this paper, TCHP change under global warming is presented based on 35 models from CMIP5 (Coupled Model Intercomparison Project, Phase 5). As the upper ocean warms up, the TCHP of the global ocean is projected to increase by 140.6% in the 21st century under the RCP4.5 (+4.5 W m 2 Representative Concentration Pathway) scenario, The increase is particularly significant in the western Pacific, northwestern Indian and western tropical Atlantic oceans. The increase of TCHP results from the ocean temperature warming above the depth of the 26~C isotherm (D26), the deepening of D26, and the horizontal area expansion of SST above 26~C. Their contributions are 69.4%, 22.5% and 8.1%, respectively. Further, a suite of numerical experiments with an Ocean General Circulation Model (OGCM) is conducted to investigate the relative importance of wind stress and buoyancy forcing to the TCHP change under global warming. Results show that sea surface warming is the dominant forcing for the TCHP change, while wind stress and sea surface salinity change are secondary.展开更多
According to climatic, hydrological, soil and vegetation data from671 stations in China, 12 temperate zones contains 45 natural regions areidentified. In this paper, methods like migration of crop distribution ,...According to climatic, hydrological, soil and vegetation data from671 stations in China, 12 temperate zones contains 45 natural regions areidentified. In this paper, methods like migration of crop distribution , potentialproductivity, and dynamic modelling are used to research changs of naturalzones and natural regions of eco-envirotunent.展开更多
Global minimization algorithm is indispensable to solving the protein folding problem based upon thermodynamic hypothesis. Here we propose a pseudo potential function, contact difference(CD), for simulating empirical ...Global minimization algorithm is indispensable to solving the protein folding problem based upon thermodynamic hypothesis. Here we propose a pseudo potential function, contact difference(CD), for simulating empirical contact potential functions and testing global minimization algorithm. The present paper covers conformational sampling and global minimization algorithm called BML03, based upon Monte Carlo and simulated annealing, which is able to locate CD′s global minimum and refold extended protein structures into ones with root mean square distance(RMSD) as small as 0.03 nm from the native structures. For empirical contact potential functions, these results demonstrate that their global minimization problems may be solvable.展开更多
Global minimization algorithm is indispensable for solving protein folding problems based on thermodynamic hypothesis. A contact difference (CD) based on pseudo potential function, for simulating empirical contact p...Global minimization algorithm is indispensable for solving protein folding problems based on thermodynamic hypothesis. A contact difference (CD) based on pseudo potential function, for simulating empirical contact potential functions and testing global minimization algorithm was proposed. The present article describes a conformational sampiing and global minimization algorithm, which is called WL, based on Monte Carlo simulation and simulated annealing. It can be used to locate CD's globe minimum and refold extended protein structures, as small as 0. 03 nm, from the native structures, back to ones with root mean square distance(RMSD). These results demonstrate that the global minimization problems for empirical contact potential functions may be solvable.展开更多
A set of new global phenomenological optical model potential parameters has been obtained in the mass range of target nuclei 220≤A≤260 with incident energies below 300 MeV, by simultaneously fitting the experimental...A set of new global phenomenological optical model potential parameters has been obtained in the mass range of target nuclei 220≤A≤260 with incident energies below 300 MeV, by simultaneously fitting the experimental data of 232Th and 23Su, and these potential parameters are analyzed and used to calculate the reaction cross sections, energy spectra and double differ- ential cross sections for p+232Th reaction. Comparison of calculated results using these potential parameters with available experimental data shows that the present form of global optical model potential could reproduce experimental data for both the neutron and the proton.展开更多
The three-dimensional nonlinear quasi-geostrophic potential vorticity equation is reduced to a linear form in the stream function in spherical coordinates for the permanent wave solutions consisting of zonal wavenumbe...The three-dimensional nonlinear quasi-geostrophic potential vorticity equation is reduced to a linear form in the stream function in spherical coordinates for the permanent wave solutions consisting of zonal wavenumbers from 0 to n and rn vertical components with a given degree n.This equation is solved by treating the coefficient of the Coriolis parameter square in the equation as the eigenvalue both for sinusoidal and hyperbolic variations in vertical direction. It is found that these solutions can represent the observed long term flow patterns at the surface and aloft over the globe closely. In addition, the sinusoidal vertical solutions with large eigenvalue G are trapped in low latitude,and the scales of these trapped modes are longer than 10 deg. lat. even for the top layer of the ocean and hence they are much larger than that given by the equatorial β-plane solutions.Therefore such baroclinic disturbances in the ocean can easily interact with those in the atmosphere.Solutions of the shallow water potential vorticity equation are treated in a similar manner but with the effective depth H=RT/g taken as limited within a small range for the atmosphere.The propagation of the flow energy of the wave packet consisting of more than one degree is found to be along the great circle around the globe both for barotropic and for baroclinic flows in the atmosphere.展开更多
Perfluorocarbon gas is widely used in the semiconductor industry.However,perfluorocarbon has a negative effect on the global environment owing to its high global warming potential(GWP) value.An alternative solution is...Perfluorocarbon gas is widely used in the semiconductor industry.However,perfluorocarbon has a negative effect on the global environment owing to its high global warming potential(GWP) value.An alternative solution is essential.Therefore,we evaluated the possibility of replacing conventional perfluorocarbon etching gases such as CHF_3 with C_6F_(12)O,which has a low GWP and is in a liquid state at room temperature.In this study,silicon oxynitride(SiON) films were plasma-etched using inductively coupled CF4+C_6F_(12)O+O_2 mixed plasmas.Subsequently,the etching characteristics of the film,such as etching rate,etching profile,selectivity over Si,and photoresist,were investigated.A double Langmuir probe was used and optical emission spectroscopy was performed for plasma diagnostics.In addition,a contact angle goniometer and x-ray photoelectron spectroscope were used to confirm the change in the surface properties of the etched SiON film surface.Consequently,the etching characteristics of the C_6F_(12)O mixed plasma exhibited a lower etching rate,higher SiON/Si selectivity,lower plasma damage,and more vertical etched profiles than the conventional CHF_3 mixed plasma.In addition,the C_6F_(12)O gas can be recovered in the liquid state,thereby decreasing global warming.These results confirmed that the C_6F_(12)O precursor can sufficiently replace the conventional etching gas.展开更多
Global optimization of Morse clusters with shortrange potential is a great challenge.Here,we apply our recently developed unbiased fuzzy global optimization method to systematically study Morse clusters with the poten...Global optimization of Morse clusters with shortrange potential is a great challenge.Here,we apply our recently developed unbiased fuzzy global optimization method to systematically study Morse clusters with the potential rangeρ=14 and the number of atoms N up to 400.All the putative global minima reported in the literature have been successfully reproduced with relatively high success ratios.Compared to the available results for N≤240 and several larger Morse clusters,new global minima(and local minima)with lower energies have been found out for N=164,175,188,193,194,197,239,246,260,318,and 389.Clusters with magic numbers are figured out through fitting the size-dependent global minimum energies.The cluster structures tend to be close-packed for short-range potential with large N.展开更多
The Tropical Cyclone Genesis Potential Index (GPI) was employed to investigate possible impacts of global warming on tropical cyclone genesis over the western North Pacific (WNP). The outputs of 20th century clima...The Tropical Cyclone Genesis Potential Index (GPI) was employed to investigate possible impacts of global warming on tropical cyclone genesis over the western North Pacific (WNP). The outputs of 20th century climate simulation by eighteen GCMs were used to evaluate the models' ability to reproduce tropical cyclone genesis via the GPI. The GCMs were found in general to reasonably reproduce the observed spatial distribution of genesis. Some of the models also showed ability in capturing observed temporal variation. Based on the evaluation, the models (CGCM3.1-T47 and IPSL-CM4) found to perform best when reproducing both spatial and temporal features were chosen to project future GPI. Results show that both of these models project an upward trend of the GPI under the SRES A2 scenario, however the rate of increase differs between them.展开更多
This paper is concerned with the non-cutoff Boltzmann equation for full-range interactions with potential force in the whole space. We establish the global existence and optimal temporal convergence rates of classical...This paper is concerned with the non-cutoff Boltzmann equation for full-range interactions with potential force in the whole space. We establish the global existence and optimal temporal convergence rates of classical solutions to the Cauchy problem when initial data is a small perturbation of the stationary solution. The analysis is based on the time-weighted energy method building also upon the recent studies of the non-cutoff Boltzmann equation in [1-3, 15] and the non-cutoff Vlasov-Poisson-Boltzmann system [6].展开更多
Tropical cyclone (TC) genesis over the western North Pacific (WNP) is analyzed using 23 CMIP5 (Coupled Model Intercomparison Project Phase 5) models and reanalysis datasets. The models are evaluated according to...Tropical cyclone (TC) genesis over the western North Pacific (WNP) is analyzed using 23 CMIP5 (Coupled Model Intercomparison Project Phase 5) models and reanalysis datasets. The models are evaluated according to TC genesis potential index (GPI). The spatial and temporal variations of the GPI are first calculated using three atmospheric reanalysis datasets (ERA-Interim, NCEP/NCAR Reanalysis- 1, and NCEP/DOE Reanalysis-2). Spatial distributions of July-October-mean TC frequency based on the GPI from ERA-interim are more consistent with observed ones derived from IBTrACS global TC data. So, the ERA-interim reanalysis dataset is used to examine the CMIP5 models in terms of reproducing GPI during the period 1982-2005. Although most models possess deficiencies in reproducing the spatial distribution of the GPI, their multi- model ensemble (MME) mean shows a reasonable climatological GPI pattern characterized by a high GPI zone along 20°N in the WNP. There was an upward trend of TC genesis frequency during 1982 to 1998, followed by a downward trend. Both MME results and reanalysis data can represent a robust increasing trend during 1982-1998, but the models cannot simulate the downward trend after 2000. Analysis based on future projection experiments shows that the GPI exhibits no significant change in the first half of the 21st century, and then starts to decrease at the end of the 21st century under the representative concentration pathway (RCP) 2.6 scenario. Under the RCP8.5 scenario, the GPI shows an increasing trend in the vicinity of 20°N, indicating more TCs could possibly be expected over the WNP under future global warming.展开更多
基金funded by the National Natural Science Foundation of China(grants No.30960264,31160475 and 42071258)Open Research Fund of TPESER(grant No.TPESER202208)+2 种基金Special Fund for Basic Scientific Research of Central Colleges,Chang’an University,China(grant No.300102353501)Natural Science Foundation of Gansu Province,China(grant No.22JR5RA857)Higher Education Novel Foundation of Gansu Province,China(grant No.2021B-130)。
文摘Potential natural vegetation(PNV)is a valuable reference for ecosystem renovation and has garnered increasing attention worldwide.However,there is limited knowledge on the spatio-temporal distributions,transitional processes,and underlying mechanisms of global natural vegetation,particularly in the case of ongoing climate warming.In this study,we visualize the spatio-temporal pattern and inter-transition procedure of global PNV,analyse the shifting distances and directions of global PNV under the influence of climatic disturbance,and explore the mechanisms of global PNV in response to temperature and precipitation fluctuations.To achieve this,we utilize meteorological data,mainly temperature and precipitation,from six phases:the Last Inter-Glacial(LIG),the Last Glacial Maximum(LGM),the Mid Holocene(MH),the Present Day(PD),2030(20212040)and 2090(2081–2100),and employ a widely-accepted comprehensive and sequential classification sy–stem(CSCS)for global PNV classification.We find that the spatial patterns of five PNV groups(forest,shrubland,savanna,grassland and tundra)generally align with their respective ecotopes,although their distributions have shifted due to fluctuating temperature and precipitation.Notably,we observe an unexpected transition between tundra and savanna despite their geographical distance.The shifts in distance and direction of five PNV groups are mainly driven by temperature and precipitation,although there is heterogeneity among these shifts for each group.Indeed,the heterogeneity observed among different global PNV groups suggests that they may possess varying capacities to adjust to and withstand the impacts of changing climate.The spatio-temporal distributions,mutual transitions and shift tendencies of global PNV and its underlying mechanism in face of changing climate,as revealed in this study,can significantly contribute to the development of strategies for mitigating warming and promoting re-vegetation in degraded regions worldwide.
文摘This article investigates the well posedness and asymptotic behavior of Neumann initial boundary value problems for a class of pseudo-parabolic equations with singular potential and logarithmic nonlinearity. By utilizing cut-off techniques and combining with the Faedo Galerkin approximation method, local solvability was established. Based on the potential well method and Hardy Sobolev inequality, derive the global existence of the solution. In addition, we also obtained the results of decay.
基金sponsored by the National K&D Program of China (Grant No. 2016YFA0600404)the China Special Fund for Meteorological Research in the Public Interest (Grant No. GYHY201106028 and GYHY2015060011)+1 种基金the National Natural Science Foundation of China (Grant No. 41530532)the Jiangsu Collaborative Innovation Center for Climate Change
文摘Drylands are among those regions most sensitive to climate and environmental changes and human-induced perturbations.The most widely accepted definition of the term dryland is a ratio,called the Surface Wetness Index(SWI),of annual precipitation to potential evapotranspiration(PET)being below 0.65.PET is commonly estimated using the Thornthwaite(PET Th)and Penman–Monteith equations(PET PM).The present study compared spatiotemporal characteristics of global drylands based on the SWI with PET Th and PET PM.Results showed vast differences between PET Th and PET PM;however,the SWI derived from the two kinds of PET showed broadly similar characteristics in the interdecadal variability of global and continental drylands,except in North America,with high correlation coefficients ranging from 0.58 to 0.89.It was found that,during 1901–2014,global hyper-arid and semi-arid regions expanded,arid and dry sub-humid regions contracted,and drylands underwent interdecadal fluctuation.This was because precipitation variations made major contributions,whereas PET changes contributed to a much lesser degree.However,distinct differences in the interdecadal variability of semi-arid and dry sub-humid regions were found.This indicated that the influence of PET changes was comparable to that of precipitation variations in the global dry–wet transition zone.Additionally,the contribution of PET changes to the variations in global and continental drylands gradually enhanced with global warming,and the Thornthwaite method was found to be increasingly less applicable under climate change.
文摘The aims of this paper are to discuss global existence and uniqueness of strong solution for a class of isentropic compressible navier-Stokes equations with non-Newtonian in one-dimensional bounded intervals. We prove two global existence results on strong solutions of isentropic compressible Navier-Stokes equations. The first result shows only the existence. And the second one shows the existence and uniqueness result based on the first result, but the uniqueness requires some compatibility condition.
基金sponsored by the National Natural Science Foundation of China,China(Grant Nos.31470529,32125027)Zhejiang A&F University Research and Development Fund,China(Nos.2022LFR006,2021LFR060).
文摘Background: Nitrogen(N) deposition affects soil greenhouse gas(GHG) emissions, while biochar application reduces GHG emissions in agricultural soils. However, it remains unclear whether biochar amendment can alleviate the promoting effects of N input on GHG emissions in forest soils. Here, we quantify the separate and combined effects of biochar amendment(0, 20, and 40 t·ha) and N addition(0, 30, 60, and 90 kg N·ha·yr) on soil GHG fluxes in a long-term field experiment at a Moso bamboo(Phyllostachys edulis) plantation.Results: Low and moderate N inputs(≤60 kg N·ha·yr) significantly increase mean annual soil carbon dioxide(CO) and nitrous oxide(NO) emissions by 17.0%–25.4% and 29.8%–31.2%, respectively, while decreasing methane(CH) uptake by 12.4%–15.9%, leading to increases in the global warming potential(GWP) of soil CHand NO fluxes by 32.4%–44.0%. Moreover, N addition reduces soil organic carbon(C;SOC) storage by 0.2%–6.5%. Compared to the control treatment, biochar amendment increases mean annual soil CO2emissions, CHuptake, and SOC storage by 18.4%–25.4%, 7.6%–15.8%, and 7.1%–13.4%, respectively, while decreasing NO emissions by 17.6%–19.2%, leading to a GWP decrease of 18.4%–21.4%. Biochar amendments significantly enhance the promoting effects of N addition on soil COemissions, while substantially offsetting the promotion of N2O emissions, inhibition of CHuptake, and decreased SOC storage, resulting in a GWP decrease of 9.1%–30.3%.Additionally, soil COand CHfluxes are significantly and positively correlated with soil microbial biomass C(MBC) and pH. Meanwhile, NO emissions have a significant and positive correlation with soil MBC and a negative correlation with pH.Conclusions: Biochar amendment can increase SOC storage and offset the enhanced GWP mediated by elevated N deposition and is, thus, a potential strategy for increasing soil C sinks and decreasing GWPs of soil CHand NO under increasing atmospheric N deposition in Moso bamboo plantations.
基金This work was supported by the Science and Technology Foundation of GEIGC(101662227)National Key Research and Development Program of China(2018 YFB0905000).
文摘In order to quantify the contribution of the mitigation strategies,an extended Kaya identity has been proposed in this paper for decomposing the various factors that influence the CO2 emission.To this end,we provided a detailed decomposition of the carbon intensity and energy intensity,which enables the quantification of clean energy development and electrification.The logarithmic mean divisia index(LMDI)has been applied to the historical data to quantify the contributions of the various factors affecting the CO2 emissions.Further,the global energy interconnection(GEI)scenario has been introduced for providing a systematic solution to meet the 2℃goal of the Paris Agreement.By combining LMDI with the scenario analysis,the mitigation potential of the various factors for CO2 emission has been analyzed.Results from the historical data indicate that economic development and population growth contribute the most to the increase in CO2 emissions,whereas improvement in the power generation efficiency predominantly helps in emission reduction.A numerical analysis,performed for obtaining the projected future carbon emissions,suggests that clean energy development and electrification are the top two factors that can decrease CO2 emissions,thus showing their great potential for mitigation in the future.Moreover,the carbon capture and storage technology serves as an important supplementary mitigation method.
基金Project supported by the Research Foundation from Ministry of Education of China (Grant No. 306020)the Specialized Research Fund for the Doctoral Program of Higher Education, China (Grant No. 20060003050)the National Natural Science Foundation of China (Grant No. 20373030)
文摘The vibrational dynamics of HOCl and HOBr between bending and OC1/OBr stretching coordinates with anharmonieity and Fermi coupling is studied with the classical dynamical potential approach. The quantal vibrational dynamics is mostly mapped out by the classical nonlinear variables such as fixed points, except for the state energies, which are quantized. This approach is global in the sense that the focus is on a set of levels instead of individual ones. The dynamics of HOBr is demonstrated to be less complicated. The localized modes along the OCl/OBr stretching coordinates are also shown to have O-Br bonds more prone to dissociation.
基金funded by the National Natural Science Foundation of China(Grant No.72174211)the Natural Science Foundation of Hunan Province(Grant No.2023JJ30693)。
文摘In the face of global warming and increasing impervious surfaces,quantifying the change of climate potential productivity(CPP)is of great significance for the food production planning.Targeting the Dongting Lake Basin,which is a key area for food production in China,this paper uses meteorological data,as well as Climate Change Initiative Land Cover,and Shuttle Radar Topography Mission digital elevation model to investigate the CPP and its changes from 2000 to 2020.The suitability of land for cultivation(SLC),and the land use/land cover change(LUCC)are also considered.The results showed that the CPP varied from 9,825 to 20,895 kg ha^(-1).Even though the newly added impervious surfaces indirectly resulted in the decrease of CPP by of 9.81×10~8 kg,overall,the CPP increased at an average rate of 83.7 kg ha^(-1)a^(-1).Global warming is the strongest driver behind CPP increase,and CPP has played an important role in the conversions between cultivated land and other land types.The structure of land types tends to be optimized against this challenge.
基金supported by the National Basic Research Program of China (Grant No. 2012CB 955601)the National Natural Science Foundation of China (Grant Nos. 41206021 and 41125019)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA11010103)
文摘Tropical cyclone heat potential (TCHP) in the ocean can affect tropical cyclone intensity and intensification. In this paper, TCHP change under global warming is presented based on 35 models from CMIP5 (Coupled Model Intercomparison Project, Phase 5). As the upper ocean warms up, the TCHP of the global ocean is projected to increase by 140.6% in the 21st century under the RCP4.5 (+4.5 W m 2 Representative Concentration Pathway) scenario, The increase is particularly significant in the western Pacific, northwestern Indian and western tropical Atlantic oceans. The increase of TCHP results from the ocean temperature warming above the depth of the 26~C isotherm (D26), the deepening of D26, and the horizontal area expansion of SST above 26~C. Their contributions are 69.4%, 22.5% and 8.1%, respectively. Further, a suite of numerical experiments with an Ocean General Circulation Model (OGCM) is conducted to investigate the relative importance of wind stress and buoyancy forcing to the TCHP change under global warming. Results show that sea surface warming is the dominant forcing for the TCHP change, while wind stress and sea surface salinity change are secondary.
文摘According to climatic, hydrological, soil and vegetation data from671 stations in China, 12 temperate zones contains 45 natural regions areidentified. In this paper, methods like migration of crop distribution , potentialproductivity, and dynamic modelling are used to research changs of naturalzones and natural regions of eco-envirotunent.
基金Supported by the National Natural Science Foundation of China(No.30 2 4 0 0 16)
文摘Global minimization algorithm is indispensable to solving the protein folding problem based upon thermodynamic hypothesis. Here we propose a pseudo potential function, contact difference(CD), for simulating empirical contact potential functions and testing global minimization algorithm. The present paper covers conformational sampling and global minimization algorithm called BML03, based upon Monte Carlo and simulated annealing, which is able to locate CD′s global minimum and refold extended protein structures into ones with root mean square distance(RMSD) as small as 0.03 nm from the native structures. For empirical contact potential functions, these results demonstrate that their global minimization problems may be solvable.
文摘Global minimization algorithm is indispensable for solving protein folding problems based on thermodynamic hypothesis. A contact difference (CD) based on pseudo potential function, for simulating empirical contact potential functions and testing global minimization algorithm was proposed. The present article describes a conformational sampiing and global minimization algorithm, which is called WL, based on Monte Carlo simulation and simulated annealing. It can be used to locate CD's globe minimum and refold extended protein structures, as small as 0. 03 nm, from the native structures, back to ones with root mean square distance(RMSD). These results demonstrate that the global minimization problems for empirical contact potential functions may be solvable.
基金supported by the China Ministry of Science and Technology (No. 2007CB209903)National Basic Research Program of China(973 Program)
文摘A set of new global phenomenological optical model potential parameters has been obtained in the mass range of target nuclei 220≤A≤260 with incident energies below 300 MeV, by simultaneously fitting the experimental data of 232Th and 23Su, and these potential parameters are analyzed and used to calculate the reaction cross sections, energy spectra and double differ- ential cross sections for p+232Th reaction. Comparison of calculated results using these potential parameters with available experimental data shows that the present form of global optical model potential could reproduce experimental data for both the neutron and the proton.
文摘The three-dimensional nonlinear quasi-geostrophic potential vorticity equation is reduced to a linear form in the stream function in spherical coordinates for the permanent wave solutions consisting of zonal wavenumbers from 0 to n and rn vertical components with a given degree n.This equation is solved by treating the coefficient of the Coriolis parameter square in the equation as the eigenvalue both for sinusoidal and hyperbolic variations in vertical direction. It is found that these solutions can represent the observed long term flow patterns at the surface and aloft over the globe closely. In addition, the sinusoidal vertical solutions with large eigenvalue G are trapped in low latitude,and the scales of these trapped modes are longer than 10 deg. lat. even for the top layer of the ocean and hence they are much larger than that given by the equatorial β-plane solutions.Therefore such baroclinic disturbances in the ocean can easily interact with those in the atmosphere.Solutions of the shallow water potential vorticity equation are treated in a similar manner but with the effective depth H=RT/g taken as limited within a small range for the atmosphere.The propagation of the flow energy of the wave packet consisting of more than one degree is found to be along the great circle around the globe both for barotropic and for baroclinic flows in the atmosphere.
基金supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP)the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20172010105910)。
文摘Perfluorocarbon gas is widely used in the semiconductor industry.However,perfluorocarbon has a negative effect on the global environment owing to its high global warming potential(GWP) value.An alternative solution is essential.Therefore,we evaluated the possibility of replacing conventional perfluorocarbon etching gases such as CHF_3 with C_6F_(12)O,which has a low GWP and is in a liquid state at room temperature.In this study,silicon oxynitride(SiON) films were plasma-etched using inductively coupled CF4+C_6F_(12)O+O_2 mixed plasmas.Subsequently,the etching characteristics of the film,such as etching rate,etching profile,selectivity over Si,and photoresist,were investigated.A double Langmuir probe was used and optical emission spectroscopy was performed for plasma diagnostics.In addition,a contact angle goniometer and x-ray photoelectron spectroscope were used to confirm the change in the surface properties of the etched SiON film surface.Consequently,the etching characteristics of the C_6F_(12)O mixed plasma exhibited a lower etching rate,higher SiON/Si selectivity,lower plasma damage,and more vertical etched profiles than the conventional CHF_3 mixed plasma.In addition,the C_6F_(12)O gas can be recovered in the liquid state,thereby decreasing global warming.These results confirmed that the C_6F_(12)O precursor can sufficiently replace the conventional etching gas.
基金supported by the National Natural Science Foundation of China(No.21803053)the Natural Science Foundation of Zhejiang Province,China(No.LY20B030005)the Open Project Fund of Key Laboratory of Excited-State Materials of Zhejiang Province。
文摘Global optimization of Morse clusters with shortrange potential is a great challenge.Here,we apply our recently developed unbiased fuzzy global optimization method to systematically study Morse clusters with the potential rangeρ=14 and the number of atoms N up to 400.All the putative global minima reported in the literature have been successfully reproduced with relatively high success ratios.Compared to the available results for N≤240 and several larger Morse clusters,new global minima(and local minima)with lower energies have been found out for N=164,175,188,193,194,197,239,246,260,318,and 389.Clusters with magic numbers are figured out through fitting the size-dependent global minimum energies.The cluster structures tend to be close-packed for short-range potential with large N.
基金supported by the Chinese Academy of Sciences under (Grant Nos.KZCX2-YW-Q1-02 and KZCX2-YW-Q11-05)the Major State Basic Research Development Program of China (973 Pro-gram) (Grant No.2009CB421407)the National Natural Science Foundation of China (Grant Nos. 40631005,40775049, and 40805029)
文摘The Tropical Cyclone Genesis Potential Index (GPI) was employed to investigate possible impacts of global warming on tropical cyclone genesis over the western North Pacific (WNP). The outputs of 20th century climate simulation by eighteen GCMs were used to evaluate the models' ability to reproduce tropical cyclone genesis via the GPI. The GCMs were found in general to reasonably reproduce the observed spatial distribution of genesis. Some of the models also showed ability in capturing observed temporal variation. Based on the evaluation, the models (CGCM3.1-T47 and IPSL-CM4) found to perform best when reproducing both spatial and temporal features were chosen to project future GPI. Results show that both of these models project an upward trend of the GPI under the SRES A2 scenario, however the rate of increase differs between them.
基金supported by the Fundamental Research Funds for the Central Universities
文摘This paper is concerned with the non-cutoff Boltzmann equation for full-range interactions with potential force in the whole space. We establish the global existence and optimal temporal convergence rates of classical solutions to the Cauchy problem when initial data is a small perturbation of the stationary solution. The analysis is based on the time-weighted energy method building also upon the recent studies of the non-cutoff Boltzmann equation in [1-3, 15] and the non-cutoff Vlasov-Poisson-Boltzmann system [6].
基金supported by the National Basic Research Program of China(973 Program)(Grant No.2013CB430304)the Scientific Research Foundation of the First Institute of Oceanography+3 种基金the State Oceanic Administration(Grant No.GY0213G19)the National Natural Science Foundation of China(Grant Nos.41205026 and41206026)supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA11010104)the Knowledge Innovation Program of the Chinese Academy of Sciences(Grant No.SQ201208)
文摘Tropical cyclone (TC) genesis over the western North Pacific (WNP) is analyzed using 23 CMIP5 (Coupled Model Intercomparison Project Phase 5) models and reanalysis datasets. The models are evaluated according to TC genesis potential index (GPI). The spatial and temporal variations of the GPI are first calculated using three atmospheric reanalysis datasets (ERA-Interim, NCEP/NCAR Reanalysis- 1, and NCEP/DOE Reanalysis-2). Spatial distributions of July-October-mean TC frequency based on the GPI from ERA-interim are more consistent with observed ones derived from IBTrACS global TC data. So, the ERA-interim reanalysis dataset is used to examine the CMIP5 models in terms of reproducing GPI during the period 1982-2005. Although most models possess deficiencies in reproducing the spatial distribution of the GPI, their multi- model ensemble (MME) mean shows a reasonable climatological GPI pattern characterized by a high GPI zone along 20°N in the WNP. There was an upward trend of TC genesis frequency during 1982 to 1998, followed by a downward trend. Both MME results and reanalysis data can represent a robust increasing trend during 1982-1998, but the models cannot simulate the downward trend after 2000. Analysis based on future projection experiments shows that the GPI exhibits no significant change in the first half of the 21st century, and then starts to decrease at the end of the 21st century under the representative concentration pathway (RCP) 2.6 scenario. Under the RCP8.5 scenario, the GPI shows an increasing trend in the vicinity of 20°N, indicating more TCs could possibly be expected over the WNP under future global warming.