期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
Chinese word segmentation with local and global context representation learning 被引量:2
1
作者 李岩 Zhang Yinghua +2 位作者 Huang Xiaoping Yin Xucheng Hao Hongwei 《High Technology Letters》 EI CAS 2015年第1期71-77,共7页
A local and global context representation learning model for Chinese characters is designed and a Chinese word segmentation method based on character representations is proposed in this paper. First, the proposed Chin... A local and global context representation learning model for Chinese characters is designed and a Chinese word segmentation method based on character representations is proposed in this paper. First, the proposed Chinese character learning model uses the semanties of loeal context and global context to learn the representation of Chinese characters. Then, Chinese word segmentation model is built by a neural network, while the segmentation model is trained with the eharaeter representations as its input features. Finally, experimental results show that Chinese charaeter representations can effectively learn the semantic information. Characters with similar semantics cluster together in the visualize space. Moreover, the proposed Chinese word segmentation model also achieves a pretty good improvement on precision, recall and f-measure. 展开更多
关键词 local and global context representation learning Chinese character representa- tion Chinese word segmentation
下载PDF
The breakfast imperative: The changing context of global food security 被引量:2
2
作者 YE Li-ming Jean-Paul Malingreau +1 位作者 TANG Hua-jun Eric Van Ranst 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2016年第6期1179-1185,共7页
The debate on global food security has regained vigor since the food crisis of 2008, when a sudden spike in the prices of staple food commodities dramatically demonstrated that securing the supply and accessibility of... The debate on global food security has regained vigor since the food crisis of 2008, when a sudden spike in the prices of staple food commodities dramatically demonstrated that securing the supply and accessibility of food for a world of nine billion people in 2050 cannot be taken for grant- ed (Godfray etal. 2010; Swinnen and Squicciarini 2012; 展开更多
关键词 The breakfast imperative The changing context of global food security
下载PDF
Strengthening Solidarity, Increasing Cooperation, Promoting Development---International Symposium on Sustainable Development and Solidarity in the Context of Globalization" Held in beijing
3
《International Understanding》 2000年第4期6-7,共2页
关键词 International Symposium on Sustainable Development and Solidarity in the context of Globalization Strengthening Solidarity Held in beijing Promoting Development
下载PDF
The Trends of Globalization and Digitalization are Changing the Market Contexts
4
作者 Sunil Bharti Mittal 《China's Foreign Trade》 2016年第5期20-21,共2页
We know that SME’s that trade online grow faster and create more jobs than those that only operate in their domestic markets.The Internet is breaking down many traditional barriers to global trade,but there is still ... We know that SME’s that trade online grow faster and create more jobs than those that only operate in their domestic markets.The Internet is breaking down many traditional barriers to global trade,but there is still much governments can do to speed and enable SME digitization and ecommerce.The opportunity is huge at 展开更多
关键词 The Trends of Globalization and Digitalization are Changing the Market contexts
下载PDF
Rethinking Global Context in Crowd Counting
5
作者 Guolei Sun Yun Liu +3 位作者 Thomas Probst Danda Pani Paudel Nikola Popovic Luc Van Gool 《Machine Intelligence Research》 EI CSCD 2024年第4期640-651,共12页
This paper investigates the role of global context for crowd counting.Specifically,a pure transformer is used to extract features with global information from overlapping image patches.Inspired by classification,we ad... This paper investigates the role of global context for crowd counting.Specifically,a pure transformer is used to extract features with global information from overlapping image patches.Inspired by classification,we add a context token to the input sequence,to facilitate information exchange with tokens corresponding to image patches throughout transformer layers.Due to the fact that transformers do not explicitly model the tried-and-true channel-wise interactions,we propose a token-attention module(TAM)to recalibrate encoded features through channel-wise attention informed by the context token.Beyond that,it is adopted to predict the total person count of the image through regression-token module(RTM).Extensive experiments on various datasets,including ShanghaiTech,UCFQNRF,JHU-CROWD++and NWPU,demonstrate that the proposed context extraction techniques can significantly improve the performanceover the baselines. 展开更多
关键词 Crowd counting vision transformer global context ATTENTION density map.
原文传递
Intercultural Trust in Global Contexts:Synthesizing a Western Nomological Approach with a Chinese Systems Approach
6
作者 Rong Du Mingqian Li +2 位作者 Shizhong Ai Cathal MacSwiney Brugha Uirike Reisach 《Journal of Systems Science and Systems Engineering》 SCIE EI CSCD 2024年第2期162-186,共25页
Intercultural trust in global contexts plays a central role in helping people from different cultures to communicate comfortably,which is essential for cooperation.Attempting to construct a framework that might foster... Intercultural trust in global contexts plays a central role in helping people from different cultures to communicate comfortably,which is essential for cooperation.Attempting to construct a framework that might foster international cooperation,and thus be helpful for coping with global emergencies,we relate a Western nomological approach to an Eastern systems approach to analyse intercultural trust in global contexts.Considering cultural impacts on intercultural trust and the nomological framework of cultural differences,we propose an intercultural trust model to interpret how cultural differences influence trust.A qualitative study of Chinese-Irish interactions was conducted to interpret this model.We organized 10 seminars on intercultural trust,and interviewed 16 people to further explore the respondents'deeper feelings and experiences about intercultural trust in global contexts.Through this study,we have identified factors impacting on intercultural trust,and found that intercultural trust can be developed and improved in various ways.To llustrate these ways,we have provided tactics and methods for building intercultural trust in global contexts.Implications are highlighted for organizations to avoid cultural clashes and relevant political or economic risks. 展开更多
关键词 Intercultural trust global contexts systems approach Western approach Chinese approach
原文传递
Dense Face Network:A Dense Face Detector Based on Global Context and Visual Attention Mechanism 被引量:3
7
作者 Lin Song Jin-Fu Yang +1 位作者 Qing-Zhen Shang Ming-Ai Li 《Machine Intelligence Research》 EI CSCD 2022年第3期247-256,共10页
Face detection has achieved tremendous strides thanks to convolutional neural networks. However, dense face detection remains an open challenge due to large face scale variation, tiny faces, and serious occlusion. Thi... Face detection has achieved tremendous strides thanks to convolutional neural networks. However, dense face detection remains an open challenge due to large face scale variation, tiny faces, and serious occlusion. This paper presents a robust, dense face detector using global context and visual attention mechanisms which can significantly improve detection accuracy. Specifically, a global context fusion module with top-down feedback is proposed to improve the ability to identify tiny faces. Moreover, a visual attention mechanism is employed to solve the problem of occlusion. Experimental results on the public face datasets WIDER FACE and FDDB demonstrate the effectiveness of the proposed method. 展开更多
关键词 Face detection global context attention mechanism computer vision deep learning
原文传递
Improved Global Context Descriptor for Describing Interest Regions 被引量:3
8
作者 刘景能 曾贵华 《Journal of Shanghai Jiaotong university(Science)》 EI 2012年第2期147-152,共6页
The global context(GC) descriptor is improved for describing interest regions,uses gradient orientation for binning,and thus provides more robust invariance for geometric and photometric transformations.The performanc... The global context(GC) descriptor is improved for describing interest regions,uses gradient orientation for binning,and thus provides more robust invariance for geometric and photometric transformations.The performance of the improved GC(IGC) to image matching is studied through extensive experiments on the Oxford A?ne dataset.Empirical results indicate that the proposed IGC yields quite stable and robust results,signi?cantly outperforms the original GC,and also can outperform the classical scale-invariant feature transform(SIFT) in most of the test cases.By integrating the IGC to the SIFT,the resulting of hybrid SIFT+IGC performs best over all other single descriptors in these experimental evaluations with various geometric transformations. 展开更多
关键词 global context(GC) scale-invariant feature transform(SIFT) region description image matching
原文传递
Document-Level Neural Machine Translation with Hierarchical Modeling of Global Context
9
作者 Xin Tan Long-Yin Zhang Guo-Dong Zhou 《Journal of Computer Science & Technology》 SCIE EI CSCD 2022年第2期295-308,共14页
Document-level machine translation(MT)remains challenging due to its difficulty in efficiently using documentlevel global context for translation.In this paper,we propose a hierarchical model to learn the global conte... Document-level machine translation(MT)remains challenging due to its difficulty in efficiently using documentlevel global context for translation.In this paper,we propose a hierarchical model to learn the global context for documentlevel neural machine translation(NMT).This is done through a sentence encoder to capture intra-sentence dependencies and a document encoder to model document-level inter-sentence consistency and coherence.With this hierarchical architecture,we feedback the extracted document-level global context to each word in a top-down fashion to distinguish different translations of a word according to its specific surrounding context.Notably,we explore the effect of three popular attention functions during the information backward-distribution phase to take a deep look into the global context information distribution of our model.In addition,since large-scale in-domain document-level parallel corpora are usually unavailable,we use a two-step training strategy to take advantage of a large-scale corpus with out-of-domain parallel sentence pairs and a small-scale corpus with in-domain parallel document pairs to achieve the domain adaptability.Experimental results of our model on Chinese-English and English-German corpora significantly improve the Transformer baseline by 4.5 BLEU points on average which demonstrates the effectiveness of our proposed hierarchical model in document-level NMT. 展开更多
关键词 neural machine translation document-level translation global context hierarchical model
原文传递
Natural Image Matting with Attended Global Context
10
作者 张億一 牛力 +4 位作者 Yasushi Makihara 张健夫 赵维杰 Yasushi Yagi 张丽清 《Journal of Computer Science & Technology》 SCIE EI CSCD 2023年第3期659-673,共15页
Image matting is to estimate the opacity of foreground objects from an image. A few deep learning based methods have been proposed for image matting and perform well in capturing spatially close information. However, ... Image matting is to estimate the opacity of foreground objects from an image. A few deep learning based methods have been proposed for image matting and perform well in capturing spatially close information. However, these methods fail to capture global contextual information, which has been proved essential in improving matting performance. This is because a matting image may be up to several megapixels, which is too big for a learning-based network to capture global contextual information due to the limit size of a receptive field. Although uniformly downsampling the matting image can alleviate this problem, it may result in the degradation of matting performance. To solve this problem, we introduce a natural image matting with the attended global context method to extract global contextual information from the whole image, and to condense them into a suitable size for learning-based network. Specifically, we first leverage a deformable sampling layer to obtain condensed foreground and background attended images respectively. Then, we utilize a contextual attention layer to extract information related to unknown regions from condensed foreground and background images generated by a deformable sampling layer. Besides, our network predicts a background as well as the alpha matte to obtain more purified foreground, which contributes to better qualitative performance in composition. Comprehensive experiments show that our method achieves competitive performance on both Composition-1k and the alphamatting.com benchmark quantitatively and qualitatively. 展开更多
关键词 image matting global context deformable sampling
原文传递
The international conference on mountain development in a context of global change with special focus on the Himalayas was held successfully in Kathmandu, Nepal
11
作者 XIN Liangjie LIU Linshan 《Journal of Geographical Sciences》 SCIE CSCD 2018年第10期1560-1560,F0003,共2页
The international conference on mountain development in a context of global change with special focus on the Himalayas was held in Kathmandu, Nepal on April 21-26.
关键词 The international conference on mountain development in a context of global change with special focus on the Himalayas was held successfully in Kathmandu Nepal
原文传递
Global video object segmentation with spatial constraint module
12
作者 Yadang Chen Duolin Wang +2 位作者 Zhiguo Chen Zhi-Xin Yang Enhua Wu 《Computational Visual Media》 SCIE EI CSCD 2023年第2期385-400,共16页
We present a lightweight and efficient semisupervised video object segmentation network based on the space-time memory framework.To some extent,our method solves the two difficulties encountered in traditional video o... We present a lightweight and efficient semisupervised video object segmentation network based on the space-time memory framework.To some extent,our method solves the two difficulties encountered in traditional video object segmentation:one is that the single frame calculation time is too long,and the other is that the current frame’s segmentation should use more information from past frames.The algorithm uses a global context(GC)module to achieve highperformance,real-time segmentation.The GC module can effectively integrate multi-frame image information without increased memory and can process each frame in real time.Moreover,the prediction mask of the previous frame is helpful for the segmentation of the current frame,so we input it into a spatial constraint module(SCM),which constrains the areas of segments in the current frame.The SCM effectively alleviates mismatching of similar targets yet consumes few additional resources.We added a refinement module to the decoder to improve boundary segmentation.Our model achieves state-of-the-art results on various datasets,scoring 80.1%on YouTube-VOS 2018 and a J&F score of 78.0%on DAVIS 2017,while taking 0.05 s per frame on the DAVIS 2016 validation dataset. 展开更多
关键词 video object segmentation semantic segmentation global context(GC)module spatial constraint
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部