Stroke represents a severe,widespread,and widely acknowledged health crisis on both national and international levels.It is one of the most prevalent life-threatening conditions.Despite impressive advances in treating...Stroke represents a severe,widespread,and widely acknowledged health crisis on both national and international levels.It is one of the most prevalent life-threatening conditions.Despite impressive advances in treating stroke,in addition to a need for effective patient care services,many sufferers still rely solely on physical interventions.The present paper describes and explains the use of a newly designed gadget for stroke survivors who cannot move their fingers.This is a sophisticated mobile device that enables stroke patients to regain their muscle memory and thus their ability to perform repetitive actions by continuing to tighten and stretch their muscles without the intervention of a physiotherapist.Gamification methodology is used to encourage patients to become involved in the process of rehabilitation.The device also has sensors that take information and transmit it to an app through an ESP32 connection.This enables physicians to view glove usage information remotely and keep track of an individual patient’s health.Communication between app and glove is facilitated by a broker in the Amazon Web Service IoT.With the robotic glove presented here,the recovery rate is found to be 90.23%over four weeks’duration,which represents a significant improvement compared with existing hospital-based rehabilitation techniques.展开更多
BACKGROUND During the coronavirus disease 2019(COVID-19)epidemic,the fever clinic is an important link for screening and diagnosing whether a patient is infected with the novel coronavirus.Blood collection from child...BACKGROUND During the coronavirus disease 2019(COVID-19)epidemic,the fever clinic is an important link for screening and diagnosing whether a patient is infected with the novel coronavirus.Blood collection from children’s fingertips is a commonly used detection method;however,in children,the blood collection process may cause discomfort and resistance.To address this problem,the use of heating gloves combined with hand swinging can be considered for fingertip blood collection in children.AIM To explore the application of fever gloves with the handshaking method for fingertip blood collection from children in fever clinics during the COVID-19 epidemic.METHODS A total of 100 children were selected for fingertip blood collection at the fever clinic of our hospital from June 2022 to June 2023 and were divided into two groups using a randomized numerical table method,with 50 cases in each group,including the control and observation groups.The patients in the control group followed the doctor's instructions to cooperate with the routine fingertip blood collection method,and the patients in the observation group followed the doctor's instructions to cooperate with the static fever gloves with the shaking hands method of children's fingertip blood collection.The level of the six blood routine and collection indexes,and the satisfaction of the examination of the patients in the peripheral blood group and the fever gloves with the shaking hands method of the children's fingertip blood collection group were compared.RESULTS The red and white blood cell count,hemoglobin,and red blood cell pressure volume in the observation group were higher than those in the control group(P<0.05);the platelet count in the control group was lower than that in the observation group(P<0.05);the number of times of squeezing the fingertip,the average time of blood collection,and the score of puncture pain in the observation group were significantly better than those in the control group(P<0.05);and satisfaction with the routine blood examination in the observation group was greater than that in the control group.CONCLUSION The application value of the fever gloves with shaking hands method for children's fingertip blood collection was better,the accuracy of examination indexes was higher,and patient satisfaction with the examination was greater.展开更多
Progress is described regarding the development of a new electrotactile feedback glove designed for application to dexterous robot. The sensitivity of operator's finger against electrical stimulus pulse is conside...Progress is described regarding the development of a new electrotactile feedback glove designed for application to dexterous robot. The sensitivity of operator's finger against electrical stimulus pulse is considered. It is found that frequency, duty ratio, and voltage amplitude of electrical stimulus pulse determine the sensitivity of finger. The effects of materials, sizes, arrangements and shapes of electrodes on sensitivity of finger are analyzed. Finally, the tactile tele presence system is designed to experimentally confirm that the robot with electrotactile feedback glove can manipulate dexterous robotic multi fingered hand and identify and classify three sorts of objects.展开更多
Yarn sensors have shown promising application prospects in wearable electronics owing to their shape adaptability, good flexibility, and weavability. However, it is still a critical challenge to develop simultaneously...Yarn sensors have shown promising application prospects in wearable electronics owing to their shape adaptability, good flexibility, and weavability. However, it is still a critical challenge to develop simultaneously structure stable, fast response, body conformal, mechanical robust yarn sensor using full microfibers in an industrial-scalable manner. Herein, a full-fiber auxetic-interlaced yarn sensor(AIYS) with negative Poisson’s ratio is designed and fabricated using a continuous, mass-producible, structure-programmable, and low-cost spinning technology. Based on the unique microfiber interlaced architecture, AIYS simultaneously achieves a Poisson’s ratio of-1.5, a robust mechanical property(0.6 c N/dtex), and a fast train-resistance responsiveness(0.025 s), which enhances conformality with the human body and quickly transduce human joint bending and/or stretching into electrical signals. Moreover, AIYS shows good flexibility, washability, weavability, and high repeatability. Furtherly, with the AIYS array, an ultrafast full-letter sign-language translation glove is developed using artificial neural network. The sign-language translation glove achieves an accuracy of 99.8% for all letters of the English alphabet within a short time of 0.25 s. Furthermore, owing to excellent full letter-recognition ability, real-time translation of daily dialogues and complex sentences is also demonstrated. The smart glove exhibits a remarkable potential in eliminating the communication barriers between signers and non-signers.展开更多
Humans can sense, weigh and grasp different objects, deduce their physical properties at the same time, and exert appropriate forces – a challenging task for modern robots. Studying the mechanics of human grasping ob...Humans can sense, weigh and grasp different objects, deduce their physical properties at the same time, and exert appropriate forces – a challenging task for modern robots. Studying the mechanics of human grasping objects will play a supplementary role in visual-based robot object processing. These tools require large-scale tactile data sets with high spatial resolution. However, there is no large human-grasped tactile data set covering the whole hand, because dense coverage of the human hand with tactile sensors is challenging. Hence, the capability of observing and learning from successful daily humanobject interactions is the long-term goal of aiding the development of robots and prosthetics.展开更多
A wearable force-feedback glove is a promising way to enhance the immersive sensation when a user interacts with virtual objects in virtual reality scenarios.Design challenges for such a glove include allowing a large...A wearable force-feedback glove is a promising way to enhance the immersive sensation when a user interacts with virtual objects in virtual reality scenarios.Design challenges for such a glove include allowing a large fingertip workspace,providing a desired force sensation when simulating both free-and constrained-space interactions,and ensuring a lightweight structure.In this paper,we present a forcefeedback glove using a pneumatically actuated mechanism mounted on the dorsal side of the user’s hand.By means of a triple kinematic paired link with a curved sliding slot,a hybrid cam-linkage mechanism is proposed to transmit the resistance from the pneumatic piston rod to the fingertip.In order to obtain a large normal component of the feedback force on the user’s fingertip,the profile of the sliding slot was synthesized through an analysis of the force equilibrium on the triple kinematic paired link.A prototype five-fingered glove with a mass of 245 g was developed,and a wearable force-measurement system was constructed to permit the quantitative evaluation of the interaction performance in both free and constrained space.The experimental results confirm that the glove can achieve an average resistance of less than 0.1 N in free-space simulation and a maximum fingertip force of 4 N in constrained-space simulation.The experiment further confirms that this glove permits the finger to move freely to simulate typical grasping gestures.展开更多
Two prototype pneumatic boxing gloves of different design were compared against conventional 10?oz (Std 10?oz) and 16?oz (Std 16?oz) gloves in terms of ability to reduce impact forces delivered to a target. One of the...Two prototype pneumatic boxing gloves of different design were compared against conventional 10?oz (Std 10?oz) and 16?oz (Std 16?oz) gloves in terms of ability to reduce impact forces delivered to a target. One of the pneumatic gloves (SBLI) contained a sealed air bladder inflated to a pressure of 2?kPa. The other (ARLI) incorporated a bladder that allowed release of air to the external environment upon contact with a target, followed by rapid air reuptake. Each glove was placed on to a mechanical fist and dropped 10 times on to an in-floor force plate from each of nine heights ranging from 1.0 to 5.0 metres, with the 5-metre drop generating a peak pre-impact glove velocity close to the reported maximum for elite boxers. Compared to the conventional gloves, the ARLI glove substantially reduced peak impact forces at all drop heights, with the reduction exceeding 30% even at the 5-metre level. The SBLI glove was as effective as the ARLI glove in reducing peak impact forces at drop heights of up to 2.5 metres, but its performance then progressively diminished, and at drop heights of 4.0, 4.5 and 5.0 metres it produced peak force readings similar to those recorded for the Std 10?oz and Std 16?oz gloves. The superiority of the ARLI glove was even more evident in relation to peak rate of force development, with reductions relative to the Std 10?oz glove being ~60% at drop heights up to 3.5 metres and still ~47% at 5 metres. Peak rate of force development for the SBLI glove exceeded that for the ARLI glove for all drop heights of 2.0 metres and above, and at 4.0, 4.5 and 5.0 metres it was higher than the readings for the Std 10 oz and 16?oz gloves. The protective effect of the ARLI glove was?associated with an increase in impact compliance and prolongation of contact time between glove and target. It is concluded that a pneumatic boxing glove that provides for air exchange with the external environment can greatly reduce impact magnitudes across the whole range of pre-impact glove velocities likely to be encountered in boxing, thereby mitigating risks associated with the sport. While acceptance of the gloves by the boxing community is uncertain, opportunity may exist for almost immediate uptake in modified boxing programs.展开更多
A conventional boxing glove and a prototype pneumatic glove were each fitted to a mechanical fist and dropped 253 times from a height of 3 metres on to a force plate covered by an ethylene vinyl acetate (EVA) mat. Imp...A conventional boxing glove and a prototype pneumatic glove were each fitted to a mechanical fist and dropped 253 times from a height of 3 metres on to a force plate covered by an ethylene vinyl acetate (EVA) mat. Impact dynamics were measured and modelled. From the outset, peak impact force and peak rate of force development (loading rate) were lower for the pneumatic glove. For both gloves, these variables displayed upward drift during the drop series, but the drift was smaller for the pneumatic glove. Consequently, the magnitude of the protective effect provided by the pneumatic glove increased with the number of impacts. For the conventional glove, change in peak force showed a close inverse relationship to force plate contact time (R2?>?0.96) and the time from first contact of the glove with the force plate to attainment of peak force (R2?=?0.85). These relationships were much weaker for the pneumatic glove (R2?=?0.09 and 0.59 respectively), suggesting the possibility of a more complex impact damping mechanism. Following the 253 drops of the pneumatic glove, the EVA mat covering the force plate was replaced, and another 10 drops then performed. Peak force readings were immediately reduced to an extent suggesting that 26%?-?34% of the increase that had occurred over the 253 drops was attributable to impact-induced change in mat properties. This has implications for future experimental designs. Overall, the findings provided further evidence of the potential of pneumatic gloves to enable safer boxing.展开更多
文摘Stroke represents a severe,widespread,and widely acknowledged health crisis on both national and international levels.It is one of the most prevalent life-threatening conditions.Despite impressive advances in treating stroke,in addition to a need for effective patient care services,many sufferers still rely solely on physical interventions.The present paper describes and explains the use of a newly designed gadget for stroke survivors who cannot move their fingers.This is a sophisticated mobile device that enables stroke patients to regain their muscle memory and thus their ability to perform repetitive actions by continuing to tighten and stretch their muscles without the intervention of a physiotherapist.Gamification methodology is used to encourage patients to become involved in the process of rehabilitation.The device also has sensors that take information and transmit it to an app through an ESP32 connection.This enables physicians to view glove usage information remotely and keep track of an individual patient’s health.Communication between app and glove is facilitated by a broker in the Amazon Web Service IoT.With the robotic glove presented here,the recovery rate is found to be 90.23%over four weeks’duration,which represents a significant improvement compared with existing hospital-based rehabilitation techniques.
基金Health Commission of Guangxi Zhuang Autonomous Region Application for Self Funded Research Projects,No.Z20210159.
文摘BACKGROUND During the coronavirus disease 2019(COVID-19)epidemic,the fever clinic is an important link for screening and diagnosing whether a patient is infected with the novel coronavirus.Blood collection from children’s fingertips is a commonly used detection method;however,in children,the blood collection process may cause discomfort and resistance.To address this problem,the use of heating gloves combined with hand swinging can be considered for fingertip blood collection in children.AIM To explore the application of fever gloves with the handshaking method for fingertip blood collection from children in fever clinics during the COVID-19 epidemic.METHODS A total of 100 children were selected for fingertip blood collection at the fever clinic of our hospital from June 2022 to June 2023 and were divided into two groups using a randomized numerical table method,with 50 cases in each group,including the control and observation groups.The patients in the control group followed the doctor's instructions to cooperate with the routine fingertip blood collection method,and the patients in the observation group followed the doctor's instructions to cooperate with the static fever gloves with the shaking hands method of children's fingertip blood collection.The level of the six blood routine and collection indexes,and the satisfaction of the examination of the patients in the peripheral blood group and the fever gloves with the shaking hands method of the children's fingertip blood collection group were compared.RESULTS The red and white blood cell count,hemoglobin,and red blood cell pressure volume in the observation group were higher than those in the control group(P<0.05);the platelet count in the control group was lower than that in the observation group(P<0.05);the number of times of squeezing the fingertip,the average time of blood collection,and the score of puncture pain in the observation group were significantly better than those in the control group(P<0.05);and satisfaction with the routine blood examination in the observation group was greater than that in the control group.CONCLUSION The application value of the fever gloves with shaking hands method for children's fingertip blood collection was better,the accuracy of examination indexes was higher,and patient satisfaction with the examination was greater.
文摘Progress is described regarding the development of a new electrotactile feedback glove designed for application to dexterous robot. The sensitivity of operator's finger against electrical stimulus pulse is considered. It is found that frequency, duty ratio, and voltage amplitude of electrical stimulus pulse determine the sensitivity of finger. The effects of materials, sizes, arrangements and shapes of electrodes on sensitivity of finger are analyzed. Finally, the tactile tele presence system is designed to experimentally confirm that the robot with electrotactile feedback glove can manipulate dexterous robotic multi fingered hand and identify and classify three sorts of objects.
基金supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (NRF-2020R1A2C3003344 and NRF-2020R1A4A2002728)
文摘Yarn sensors have shown promising application prospects in wearable electronics owing to their shape adaptability, good flexibility, and weavability. However, it is still a critical challenge to develop simultaneously structure stable, fast response, body conformal, mechanical robust yarn sensor using full microfibers in an industrial-scalable manner. Herein, a full-fiber auxetic-interlaced yarn sensor(AIYS) with negative Poisson’s ratio is designed and fabricated using a continuous, mass-producible, structure-programmable, and low-cost spinning technology. Based on the unique microfiber interlaced architecture, AIYS simultaneously achieves a Poisson’s ratio of-1.5, a robust mechanical property(0.6 c N/dtex), and a fast train-resistance responsiveness(0.025 s), which enhances conformality with the human body and quickly transduce human joint bending and/or stretching into electrical signals. Moreover, AIYS shows good flexibility, washability, weavability, and high repeatability. Furtherly, with the AIYS array, an ultrafast full-letter sign-language translation glove is developed using artificial neural network. The sign-language translation glove achieves an accuracy of 99.8% for all letters of the English alphabet within a short time of 0.25 s. Furthermore, owing to excellent full letter-recognition ability, real-time translation of daily dialogues and complex sentences is also demonstrated. The smart glove exhibits a remarkable potential in eliminating the communication barriers between signers and non-signers.
文摘Humans can sense, weigh and grasp different objects, deduce their physical properties at the same time, and exert appropriate forces – a challenging task for modern robots. Studying the mechanics of human grasping objects will play a supplementary role in visual-based robot object processing. These tools require large-scale tactile data sets with high spatial resolution. However, there is no large human-grasped tactile data set covering the whole hand, because dense coverage of the human hand with tactile sensors is challenging. Hence, the capability of observing and learning from successful daily humanobject interactions is the long-term goal of aiding the development of robots and prosthetics.
基金the National Key Research and Development Program(2016YFB1001200)the National Natural Science Foundation of China(61572055 and 61633004).
文摘A wearable force-feedback glove is a promising way to enhance the immersive sensation when a user interacts with virtual objects in virtual reality scenarios.Design challenges for such a glove include allowing a large fingertip workspace,providing a desired force sensation when simulating both free-and constrained-space interactions,and ensuring a lightweight structure.In this paper,we present a forcefeedback glove using a pneumatically actuated mechanism mounted on the dorsal side of the user’s hand.By means of a triple kinematic paired link with a curved sliding slot,a hybrid cam-linkage mechanism is proposed to transmit the resistance from the pneumatic piston rod to the fingertip.In order to obtain a large normal component of the feedback force on the user’s fingertip,the profile of the sliding slot was synthesized through an analysis of the force equilibrium on the triple kinematic paired link.A prototype five-fingered glove with a mass of 245 g was developed,and a wearable force-measurement system was constructed to permit the quantitative evaluation of the interaction performance in both free and constrained space.The experimental results confirm that the glove can achieve an average resistance of less than 0.1 N in free-space simulation and a maximum fingertip force of 4 N in constrained-space simulation.The experiment further confirms that this glove permits the finger to move freely to simulate typical grasping gestures.
文摘Two prototype pneumatic boxing gloves of different design were compared against conventional 10?oz (Std 10?oz) and 16?oz (Std 16?oz) gloves in terms of ability to reduce impact forces delivered to a target. One of the pneumatic gloves (SBLI) contained a sealed air bladder inflated to a pressure of 2?kPa. The other (ARLI) incorporated a bladder that allowed release of air to the external environment upon contact with a target, followed by rapid air reuptake. Each glove was placed on to a mechanical fist and dropped 10 times on to an in-floor force plate from each of nine heights ranging from 1.0 to 5.0 metres, with the 5-metre drop generating a peak pre-impact glove velocity close to the reported maximum for elite boxers. Compared to the conventional gloves, the ARLI glove substantially reduced peak impact forces at all drop heights, with the reduction exceeding 30% even at the 5-metre level. The SBLI glove was as effective as the ARLI glove in reducing peak impact forces at drop heights of up to 2.5 metres, but its performance then progressively diminished, and at drop heights of 4.0, 4.5 and 5.0 metres it produced peak force readings similar to those recorded for the Std 10?oz and Std 16?oz gloves. The superiority of the ARLI glove was even more evident in relation to peak rate of force development, with reductions relative to the Std 10?oz glove being ~60% at drop heights up to 3.5 metres and still ~47% at 5 metres. Peak rate of force development for the SBLI glove exceeded that for the ARLI glove for all drop heights of 2.0 metres and above, and at 4.0, 4.5 and 5.0 metres it was higher than the readings for the Std 10 oz and 16?oz gloves. The protective effect of the ARLI glove was?associated with an increase in impact compliance and prolongation of contact time between glove and target. It is concluded that a pneumatic boxing glove that provides for air exchange with the external environment can greatly reduce impact magnitudes across the whole range of pre-impact glove velocities likely to be encountered in boxing, thereby mitigating risks associated with the sport. While acceptance of the gloves by the boxing community is uncertain, opportunity may exist for almost immediate uptake in modified boxing programs.
文摘A conventional boxing glove and a prototype pneumatic glove were each fitted to a mechanical fist and dropped 253 times from a height of 3 metres on to a force plate covered by an ethylene vinyl acetate (EVA) mat. Impact dynamics were measured and modelled. From the outset, peak impact force and peak rate of force development (loading rate) were lower for the pneumatic glove. For both gloves, these variables displayed upward drift during the drop series, but the drift was smaller for the pneumatic glove. Consequently, the magnitude of the protective effect provided by the pneumatic glove increased with the number of impacts. For the conventional glove, change in peak force showed a close inverse relationship to force plate contact time (R2?>?0.96) and the time from first contact of the glove with the force plate to attainment of peak force (R2?=?0.85). These relationships were much weaker for the pneumatic glove (R2?=?0.09 and 0.59 respectively), suggesting the possibility of a more complex impact damping mechanism. Following the 253 drops of the pneumatic glove, the EVA mat covering the force plate was replaced, and another 10 drops then performed. Peak force readings were immediately reduced to an extent suggesting that 26%?-?34% of the increase that had occurred over the 253 drops was attributable to impact-induced change in mat properties. This has implications for future experimental designs. Overall, the findings provided further evidence of the potential of pneumatic gloves to enable safer boxing.