In this editorial,we comment on Yin et al’s recently published Letter to the editor.In particular,we focus on the potential use of glucagon-like peptide 1 receptor agonists(GLP-1RAs)alone,but even more so in combinat...In this editorial,we comment on Yin et al’s recently published Letter to the editor.In particular,we focus on the potential use of glucagon-like peptide 1 receptor agonists(GLP-1RAs)alone,but even more so in combination therapy,as one of the most promising therapies in metabolic dysfunction-associated steatotic liver disease(MASLD),the new definition of an old condition,non-alcoholic fatty liver disease,which aims to better define the spectrum of steatotic pathology.It is well known that GLP-1RAs,having shown outstanding performance in fat loss,weight loss,and improvement of insulin resistance,could play a role in protecting the liver from progressive damage.Several clinical trials have shown that,among GLP-1RAs,semaglutide is a safe,well-studied therapeutic choice for MASLD patients;however,most studies demonstrate that,while semaglutide can reduce steatosis,including steatohepatitis histological signs(in terms of inflammatory cell infiltration and hepatocyte ballooning),it does not improve fibrosis.Combinations of therapies with different but complementary mechanisms of action are considered the best way to improve efficiency and slow disease progression due to the complex pathophysiology of the disease.In particular,GLP-1RAs associated with antifibrotic drug therapy,dual glucose-dependent insulinotropic polypeptide(GIP)/GLP-1RA or GLP-1 and glucagon RAs have promoted greater improvement in hepatic steatosis,liver biochemistry,and non-invasive fibrosis tests than monotherapy.Therefore,although to date there are no definitive indications from international drug agencies,there is the hope that soon the therapeutic lines in the most advanced phase of study will be able to provide a therapy for MASLD,one that will certainly include the use of GLP-1RAs as combination therapy.展开更多
The glucagon-like peptide 1 is a pleiotropic hormone that has potent insulinotropic effects and is key in treating metabolic diseases such as diabetes and obesity.Glucagon-like peptide 1 exerts its effects by activati...The glucagon-like peptide 1 is a pleiotropic hormone that has potent insulinotropic effects and is key in treating metabolic diseases such as diabetes and obesity.Glucagon-like peptide 1 exerts its effects by activating a membrane receptor identified in many tissues,including diffe rent brain regions.Glucagon-like peptide 1 activates several signaling pathways related to neuroprotection,like the support of cell growth/survival,enhancement promotion of synapse formation,autophagy,and inhibition of the secretion of proinflammatory cytokines,microglial activation,and apoptosis during neural morphogenesis.The glial cells,including astrocytes and microglia,maintain metabolic homeostasis and defe nse against pathogens in the central nervous system.After brain insult,microglia are the first cells to respond,followed by reactive astrocytosis.These activated cells produce proinflammato ry mediators like cytokines or chemokines to react to the insult.Furthermore,under these circumstances,mic roglia can become chro nically inflammatory by losing their homeostatic molecular signature and,consequently,their functions during many diseases.Several processes promote the development of neurological disorders and influence their pathological evolution:like the formation of protein aggregates,the accumulation of abnormally modified cellular constituents,the formation and release by injured neurons or synapses of molecules that can dampen neural function,and,of critical impo rtance,the dysregulation of inflammato ry control mechanisms.The glucagonlike peptide 1 receptor agonist emerges as a critical tool in treating brain-related inflammatory pathologies,restoring brain cell homeostasis under inflammatory conditions,modulating mic roglia activity,and decreasing the inflammato ry response.This review summarizes recent advances linked to the anti-inflammato ry prope rties of glucagon-like peptide 1 receptor activation in the brain related to multiple sclerosis,Alzheimer’s disease,Parkinson’s disease,vascular dementia,or chronic migraine.展开更多
Glucagon-like peptide-1 receptor(GLP-1R)agonist,a subgroup of incretin-based anti-diabetic therapies,is an emerging medication with benefits in reducing blood glucose and weight and increasing cardiovascular protectio...Glucagon-like peptide-1 receptor(GLP-1R)agonist,a subgroup of incretin-based anti-diabetic therapies,is an emerging medication with benefits in reducing blood glucose and weight and increasing cardiovascular protection.Contrarily,concerns have been raised about GLP-1R agonists increasing the risk of particular cancers.Recently,several epidemiological studies reported contradictory findings of incretin-based therapy on the risk modification for cholangiocarcinoma(CCA).The first cohort study demonstrated that incretin-based therapy was associated with an increased risk of CCA.Later studies,however,showed a null effect of incretinbased therapy on CCA risk for dipeptidyl peptidase-4 inhibitor nor GLP-1R agonist.Mechanistically,glucagon-like peptide 1 receptor is multifunctional,including promoting cell growth.High GLP-1R expressions were associated with progressive phenotypes of CCA cells in vitro.Unexpectedly,the GLP-1R agonist showed anti-tumor effects on CCA cells in vitro and in vivo with unclear mechanisms.Our recent report also showed that GLP-1R agonists suppressed the expression of GLP-1R in CCA cells in vitro and in vivo,leading to the inhibition of CCA tumor growth.This editorial reviews recent evidence,discusses the potential effects of GLP-1R agonists in CCA patients,and proposes underlying mechanisms that would benefit from further basic and clinical investigation.展开更多
Background: The objective of this study was to compare and analyze the variations in clinical indices before and after treatment of type 2 mellitus (T2DM) combined with nonalcoholic fatty liver disease (NAFLD) that we...Background: The objective of this study was to compare and analyze the variations in clinical indices before and after treatment of type 2 mellitus (T2DM) combined with nonalcoholic fatty liver disease (NAFLD) that were treated with glucagon-like peptide 1 receptor agonists (GLP-1RAs). Methods: The electronic medical record system was utilized to search for a total of 16 patients with type 2 diabetes complicated by NAFLD who were hospitalized at the First Affiliated Hospital of Yangtze University from October 2022 to April 2023 and treated with GLP-1RA for the first time. The clinical indices were compared before and after 12 weeks of treatment with GLP-1RA. Results: The liver-spleen CT ratio (L/S), alanine aminotransferase (ALT), gamma-glutamyltransferase (GGT), total cholesterol (TC), triglyceride (TG), and low-density lipoprotein cholesterol (LDL-C) in all patients treated with GLP-1RA after 12 weeks were significantly different (P 0.05). The patients were categorized into two groups based on the types of GLP-1RAs. The changes in L/S, TC, TG, and LDL-C in the long-acting group after treatment were statistically significant (P Conclusions: GLP-1RAs can improve liver function, regulate lipid metabolism, and reduce the severity of fatty liver in patients with T2DM complicated by NAFLD, which demonstrates the importance of clinical applications.展开更多
Glucagon-like peptide- 1 (GLP- 1) has been endorsed as a promising and attractive agent in the treatment of type 2 diabetes mellitus (T2DM). Both Alzheimer's disease (AD) and T2DM share some common pathophysiol...Glucagon-like peptide- 1 (GLP- 1) has been endorsed as a promising and attractive agent in the treatment of type 2 diabetes mellitus (T2DM). Both Alzheimer's disease (AD) and T2DM share some common pathophysiologic hallmarks, such as amyloid β (Aβ), phosphoralation of tau protein, and glycogen synthase kinase-3. GLP-1 possesses neurotropic properties and can reduce amyloid protein levels in the brain. Based on extensive studies during the past decades, the understanding on AD leads us to believe that the primary targets in AD are the Aβ and tau protein. Combine these findings, GLP- 1 is probably a promising agent in the therapy of AD. This review was focused on the biochemistry and physiology of GLP- 1, communities between T2DM and AD, new progresses of GLP - 1 in treating T2MD and improving some pathologic hanmarks of AD.展开更多
Glucagon-like peptide-1(GLP-1)receptor agonists result in greater improvements in glycemic control than placebo and promote weight loss with minimal hypoglycemia in patients with type 2 diabetes mellitus.A number of c...Glucagon-like peptide-1(GLP-1)receptor agonists result in greater improvements in glycemic control than placebo and promote weight loss with minimal hypoglycemia in patients with type 2 diabetes mellitus.A number of case reports show an association of GLP-1receptor agonists,mainly exenatide,with the development of acute kidney injury.The present review aims to present the available data regarding the effects of GLP-1 receptor agonists on renal function,their use in subjects with chronic renal failure and their possible association with acute kidney injury.Based on the current evidence,exenatide is eliminated by renal mechanisms and should not be given in patients with severe renal impairment or end stage renal disease.Liraglutide is not eliminated by renal or hepatic mechanisms,but it should be used with caution since there are only limited data in patients with renal or hepatic impairment.There is evidence from animal studies that GLP-1 receptor agonists exert protective role in diabetic nephropathy with mechanisms that seem to be independent of their glucose-lowering effect.Additionally,there is evidence that GLP-1 receptor agonists influence water and electrolyte balance.These effects may represent new ways to improve or even prevent diabetic nephropathy.展开更多
Though the pathophysiology of clinical obesity is un-doubtedly multifaceted, several lines of clinical evidence implicate an important functional role for glucagon-like peptide 1(GLP-1) signalling. Clinical studies as...Though the pathophysiology of clinical obesity is un-doubtedly multifaceted, several lines of clinical evidence implicate an important functional role for glucagon-like peptide 1(GLP-1) signalling. Clinical studies assessing GLP-1 responses in normal weight and obese subjects suggest that weight gain may induce functional deficits in GLP-1 signalling that facilitates maintenance of the obesity phenotype. In addition, genetic studies implicate a possible role for altered GLP-1 signalling as a risk factor towards the development of obesity. As reductions in functional GLP-1 signalling seem to play a role in clinical obesity, the pharmacological replenishment seems a promising target for the medical management of obesity in clinical practice. GLP-1 analogue liraglutide at a high dose(3 mg/d) has shown promising results in achieving and maintaining greater weight loss in obese individuals compared to placebo control, and currently licensed antiobesity medications. Generally well tolerated, provided that longer-term data in clinical practice supports the currently available evidence of superior short- and longterm weight loss efficacy, GLP-1 analogues provide promise towards achieving the successful, sustainable medical management of obesity that remains as yet, an unmet clinical need.展开更多
Nonalcoholic fatty liver disease(NAFLD)is the most rapidly growing contributor to liver mortality and morbidity.Hepatocellular injury in nonalcoholic steatohepatitis(NASH)is caused by an increase in metabolic substrat...Nonalcoholic fatty liver disease(NAFLD)is the most rapidly growing contributor to liver mortality and morbidity.Hepatocellular injury in nonalcoholic steatohepatitis(NASH)is caused by an increase in metabolic substrates(glucose,fructose,and fatty acids),leading fatty acids to participate in pathways that cause cellular injury and a poor response to injury.The pathogenesis of this disease is largely associated with obesity,type 2 diabetes,and increasing age.To date,there are no Food and Drug Administration-approved treatments for NAFLD/NASH or its associated fibrosis.Since one of the pathogenic drivers of NASH is insulin resistance,therapies approved for the treatment of type 2 diabetes are being evaluated in patients with NASH.Currently,the glucagon-like peptide-1 receptor agonist(GLP-1RA)semaglutide is a safe,well-studied therapeutic for NAFLD/NASH patients.Existing research demonstrates that semaglutide can increase the resolution of NASH but not improve fibrosis.However,improving the fibrosis of NAFLD is the only way to improve the long-term prognosis of NAFLD.Given the complex pathophysiology of NASH,combining therapies with complementary mechanisms may be beneficial.Researchers have conducted trials of semaglutide in combination with antifibrotic drugs.However,the results have not fully met expectations,and it cannot be ruled out that the reason is the short trial time.We should continue to pay increasing attention to GLP-1RAs.展开更多
Objective: To observe the effect of glucagon-like peptide 1 (GLP-1) on the gene expressions of transcription factors (PDX-1, PAX-6 and NKx2.2 ) in freshly isolated rat pancreatic islets and investigate the associ...Objective: To observe the effect of glucagon-like peptide 1 (GLP-1) on the gene expressions of transcription factors (PDX-1, PAX-6 and NKx2.2 ) in freshly isolated rat pancreatic islets and investigate the associated physiological and therapeutic implication of GLP-1. Methods: The isolated rat islets were incubated with 10 nmol/L GLP-1 for 1, 3 and 5 days, respectively. Total cellular RNA was extracted and the expressions of PDX-1, PAX-6 and NKx2.2 gene were detected by semiquantity RT-PCR. Results: Compared with the control group, the PDX-1, PAX-6 and NKx2.2 gene expressions were significantly increased after co-cultured with GLP-1 for 1 day (P 〈 0.05). The effect was shown in a time-dependent manner. All three gene expressions reached the peak on the 5th day. Conclusion: GLP-1 can improve the function of pancreatic islet by regulating the gene expressions of transcription factors in β cells.展开更多
Our previous investigation found that exendin-4 (Ex-4) , a peptide analogue of glucagon-like peptide 1 (GLP-1) , induced bone formation probably by osteoblast activation. Nevertheless, previous investigations did ...Our previous investigation found that exendin-4 (Ex-4) , a peptide analogue of glucagon-like peptide 1 (GLP-1) , induced bone formation probably by osteoblast activation. Nevertheless, previous investigations did not observe any expression of GLP-1 receptors in osteoblasts, indicating that the direct cell target of GLP-1 and its ana- logues might not be osteoblasts but some other types of cells yet to be identified. To elucidate the underlying mecha- nisms, we performed further investigation in the present study and found that GLP-1 receptor was only identified in bone marrow mesenchymal stem cells (BMSCs). Furthermore, activation of GLP-1 receptor by Ex-4 promoted the differentiation of B MSCs into osteoblast, which was associated with activation of PKA, nuclear translocation of [5- catenin, activation of PI3K/AKT and inhibition of GSK3β. Ex-4 also inhibited the adipocyte differentiation of BM- SCs, as evidenced by inhibition of PPARγ, lipoprotein lipase expression and lipid production. Blockade of GLP-1 receptor, PKA, PI3K or Wnt pathway, or respective knock-down of GLP-1 receptor and β-catenin in BMSCs inhib- ited the Ex-4 mediated effects. The results indicated that the GLP-1 receptor mediated osteoblastic differentiation and bone formation through stimulation of PKA/β-catenin signaling and inhibition of PKA/PI3IC/AKT/GSK3β? signaling pathway in BMSCs. The findings reveal a new role of GLP-1 receptor for regulating osteoblastic differentia- tion of B MSCs and may provide a molecular basis for novel anabolic therapeutics against osteoporosis.展开更多
BACKGROUND Microalbuminuria is an early and informative marker of diabetic nephropathy.Our study found that microalbuminuria developed in patients with newly diagnosed type 2 diabetes mellitus(T2DM).AIM To investigate...BACKGROUND Microalbuminuria is an early and informative marker of diabetic nephropathy.Our study found that microalbuminuria developed in patients with newly diagnosed type 2 diabetes mellitus(T2DM).AIM To investigate the association between glucagon-like peptide 1(GLP-1)and microalbuminuria in newly diagnosed T2DM patients.METHODS In total,760 patients were recruited for this cross-sectional study.The GLP-1 levels during a standard meal test and urinary albumin-creatinine ratio(UACR)were determined.RESULTS Patients with microalbuminuria exhibited lower GLP-1 levels at 30 min and 120 min during a standard meal test than patients with normal albuminuria(30 min GLP-1,16.7±13.3 pmol vs 19.9±15.6 pmol,P=0.007;120 min GLP-1,16.0±14.1 pmol vs 18.4±13.8 pmol,P=0.037).The corresponding area under the curve for active GLP-1(AUCGLP-1)was also lower in microalbuminuria patients(2257,1585 to 3506 vs 2896,1763 to 4726,pmol×min,P=0.003).Postprandial GLP-1 levels at 30 min and 120 min and AUCGLP-1 were negatively correlated with the UACR(r=0.159,r=0.132,r=0.206,respectively,P<0.001).The prevalence of microalbuminuria in patients with newly diagnosed T2DM was 21.7%,which decreased with increasing quartiles of AUCGLP-1 levels(27.4%,25.3%,18.9%and 15.8%).After logistic regression analysis adjusted for sex,age,hemoglobin A1c,body mass index,systolic blood pressure,estimated glomerular filtration rate,homeostasis model assessment of insulin resistance,AUC_(glucose)and AUC_(glucagon)patients in quartile 4 of the AUCGLP-1 presented a lower risk of microalbuminuria compared with the patients in quartile 1(odds ratio=0.547,95%confidence interval:0.325-0.920,P=0.01).A consistent association was also found between 30 min GLP-1 or 120 min GLP-1 and microalbuminuria.CONCLUSION Postprandial GLP-1 levels were independently associated with microalbuminuria in newly diagnosed Chinese T2DM patients.展开更多
AIM To examine the role that enzyme Acyl-CoA:diacylglycerol acyltransferase-1(DGAT1) plays in postprandial gut peptide secretion and signaling.METHODS The standard experimental paradigm utilized to evaluate the incret...AIM To examine the role that enzyme Acyl-CoA:diacylglycerol acyltransferase-1(DGAT1) plays in postprandial gut peptide secretion and signaling.METHODS The standard experimental paradigm utilized to evaluate the incretin response was a lipid challenge.Following a lipid challenge,plasma was collected via cardiac puncture at each time point from a cohort of 5-8 mice per group from baseline at time zero to 10 h.Incretin hormones [glucagon like peptide-1(GLP-1),peptide tyrosine-tyrosine(PYY) and glucose dependent insulinotropic polypeptide(GIP)] were then quantitated.The impact of pharmacological inhibition of DGAT1 on the incretin effect was evaluated in WT mice.Additionally,a comparison of loss of DGAT1 function either by genetic ablation or pharmacological inhibition.To further elucidate the pathways and mechanisms involved in the incretin response to DGAT1 inhibition,other interventions [inhibitors of dipeptidyl peptidase-IV(sitagliptin),pancreatic lipase(Orlistat),GPR119 knockout mice] were evaluated.RESULTS DGAT1 deficient mice and wildtype C57/BL6J mice werelipid challenged and levels of both active and total GLP-1 in the plasma were increased.This response was further augmented with DGAT1 inhibitor PF-04620110 treated wildtype mice.Furthermore,PF-04620110 was able to dose responsively increase GLP-1 and PYY,but blunt GIP at all doses of PF-04620110 during lipid challenge.Combination treatment of PF-04620110 and Sitagliptin in wildtype mice during a lipid challenge synergistically enhanced postprandial levels of active GLP-1.In contrast,in a combination study with Orlistat,the ability of PF-04620110 to elicit an enhanced incretin response was abrogated.To further explore this observation,GPR119 knockout mice were evaluated.In response to a lipid challenge,GPR119 knockout mice exhibited no increase in active or total GLP-1 and PYY.However,PF-04620110 was able to increase total GLP-1 and PYY in GPR119 knockout mice as compared to vehicle treated wildtype mice.CONCLUSION Collectively,these data provide some insight into the mechanism by which inhibition of DGAT1 enhances intestinal hormone release.展开更多
BACKGROUND: L-3-n-butylphthalide (L-NBP) can inhibit phosphorylation of tau protein and reduce the neurotoxicity of beta-amyloid peptide 1-42 (Aβ1-42). OBJECTIVE: To observe the neuroprotective effects of L-NBP...BACKGROUND: L-3-n-butylphthalide (L-NBP) can inhibit phosphorylation of tau protein and reduce the neurotoxicity of beta-amyloid peptide 1-42 (Aβ1-42). OBJECTIVE: To observe the neuroprotective effects of L-NBP on caspase-3 and nuclear factor kappa-B (NF- K B) expression in a rat model of Alzheimer's disease. DESIGN, TIME AND SETTING: A cell experiment was performed at the Central Laboratory of Provincial Hospital affiliated to Shandong University between January 2008 and August 2008. MATERIALS: L-NBP (purity 〉 98%) was provided by Shijiazhuang Pharma Group NBP Pharmaceutical Company Limited. Aβ1-42, 3-[4,5-dimethylthiazolo-2]-2,5 iphenyltetrazolium bromide (MTT), and rabbit anti-Caspase-3 polyclonal antibody were provided by Cell Signaling, USA; goat anti-choactase and rabbit anti-NF- kB antibodies were provided by Santa Cruz, USA. METHODS: Primary cultures were generated from rat basal forebrain and hippocampal neurons at 17 or 19 days of gestation. The cells were assigned into five groups: the control group, the Aβ1-42 group (2 μmol/L), the Aβ1-42 + 0.1 μmol/L L-NBP group, the Aβ1-42 + 1 μ mol/L L-NBP group, and the Aβ1-42 + 10μmol/L L-NBP group. The neurons were treated with Aβ1-42 (2 μmol/L) alone or in combination with L-NBP (0.1, 1, 10 μmol/L) for 48 hours. Cells in the control group were incubated in PBS. MAIN OUTCOME MEASURES: Morphologic changes were evaluated using inverted microscopy, viability using the M-I-I- method, and the changes in caspase-3 and NF- k B expression using Western blot. RESULTS: Induction with Aβ1-42 for 48 hours caused cell death and soma atrophy, and increased caspase-3 and NF- K B expression (P 〈 0.05). L-NBP blocked these changes in cell morphology, decreased caspase-3 and NF- k B expression (P 〈 0.05), and improved cell viability, especially at the high dose (P 〈 0.05). CONCLUSION: AI3^-42 is toxic to basal forebrain and hippocampal primary neurons; L-NBP protects against this toxicity and inhibits the induction of caspase-3 and NF- K B expression.展开更多
Objective To study the therapeutic effects of Ginsenoside Rg-1 and Gastrodine on rats model of Alzheimer's disease(AD). Methods Aggregated β-Amyloid peptide (25-35) was injected into the lateral ventricle of rats...Objective To study the therapeutic effects of Ginsenoside Rg-1 and Gastrodine on rats model of Alzheimer's disease(AD). Methods Aggregated β-Amyloid peptide (25-35) was injected into the lateral ventricle of rats to establish AD models. Ginsenoside Rg-1, Gastrodine and Ginsenoside Rg-1+Gastrodine were intraperitoneally injected into rats of each test group(Ginsenoside Rg-1∶10mg/kg·day; Gastrodine 100mg/kg·day) for 4 weeks, the rats of control group received equal volume of saline. Passive avoidance task and Morris maze test were done to assess the ability of learning and memory. The content of superoxide dismutase (SOD), malondiadehyde (MDA), total-antioxidative capability (T-AOC), Choline acetyltransferase (ChAT) and acetylcholinesterase (AchE) in brain tissue were measured. Results Ginsenoside Rg-1 and Gastrodine significantly improved learning and memory deficits in the rats with AD induced by β-Amyloid peptide (25-35) (P<0.05). Ginsenoside Rg-1+Gastrodine group were better than Ginsenoside Rg-1 group and Gastrodine group (P<0.05). Ginsenoside Rg-1 reduced the increase of SOD, MDA, but inhibited the decrease of T-AOC, AchE and ChAT; Gastrodine reduced the increase of SOD, MDA, while inhibited the decrease of T-AOC. Gastrodine could also prevent the activity of ChAT and AchE decline in AD rats. Conclusion Both Ginsenoside Rg-1 and Gastrodine have therapeutic effects on rats with AD; Ginsenoside Rg-1 and Gastrodine injection at the same time were better than only using one of them. Their mechanisms might different. Ginsenoside Rg-1 can not only inhibit peroxidation but also increase the activity of AchE and ChAT in brain tissue, while Gastrodine can inhibit peroxidation only, but it can't prevent the decline of ChAT and AchE activity in AD rats.展开更多
BACKGROUND: Studies have shown that scorpion venom heat-resistant protein (SVHRP) exhibits protective effects on primary cultured hippocampal neurons. OBJECTIVE: To determine the effects of SVHRP on astrocyte acti...BACKGROUND: Studies have shown that scorpion venom heat-resistant protein (SVHRP) exhibits protective effects on primary cultured hippocampal neurons. OBJECTIVE: To determine the effects of SVHRP on astrocyte activity and synaptic density in the hippocampus induced by amyloid β peptide 1-40 (Aβ1-40) neurotoxicity. DESIGN, TIME AND SETTING: The randomized, controlled, animal experiment was performed at the Central Laboratory, the Laboratory of Human Anatomy, and the Laboratory of Physiology, in Dalian Medical University between March 2006 and June 2008. MATERIALS: Aβ1-40 was provided by Biosource, USA; SVHRP was a patented biological product of Dalian Medical University (No. ZL01 1 06166.9). METHODS: A total of 27 healthy, 2-month-old, male SD rats were randomly assigned to 3 groups: control, Aβ, and SVHRP, with 9 rats in each group. Alzheimer's disease was simulated with 10 μg Aβ1-40 bilaterally injected into the hippocampus of the Aβ and SVHRP groups. The control group was injected with 2 μL 0.05% trifluoroacetic acid. One day following model establishment, the SVHRP group received an intraperitoneal injection of 2 μg/100 g SVHRP, while the control group and Aβ group received 0.5 mL/100 g tri-distilled water, once per day, for 10 consecutive days. MAIN OUTCOME MEASURES: At 16 days following model establishment, synaptophysin (p38) expression in CA1-CA4 regions of the rat hippocampus was determined by immunohistochemistry. Glial fibrillary acidic protein (GFAP) expression surrounding the hippocampal Aβ1-40 injected area was also detected. At 11 days following model establishment, escape latency, swimming time, and distance to target quadrant were measured using the Morris water maze. RESULTS: Compared with the control group, the Aβ group exhibited notably reduced p38 expression (P 〈 0.05) and notably increased GFAP expression in the rat hippocampus (P 〈 0.05). Water maze results demonstrated that escape latency was prolonged (P 〈 0.05), and swimming time and distance to the target quadrant were shortened in the Aβ group. Compared with the Aβ group, the SVHRP group exhibited notably increased p38 expression (P 〈 0.05) and notably decreased GFAP expression in the rat hippocampus (P 〈 0.05). Water maze results demonstrated that escape latency was significantly reduced (P 〈 0.05), and swimming time and distance to the target quadrant were significantly prolonged. CONCLUSION: SVHRP inhibited exogenous Aβ1-40-induced astrocyte activation and synaptic density decline in the rat hippocampus. Place navigation and spatial searching results showed that SVHRP blocked Aβ1-40-induced impaired learning and memory.展开更多
An increasing body of evidence shows that new antidiabetic drugs—particularly sodium-glucose cotransporter 2(SGLT2)inhibitors and glucagon-like peptide 1(GLP-1)receptor agonists—have a beneficial effect on cardiovas...An increasing body of evidence shows that new antidiabetic drugs—particularly sodium-glucose cotransporter 2(SGLT2)inhibitors and glucagon-like peptide 1(GLP-1)receptor agonists—have a beneficial effect on cardiovascular outcome.The majority of these studies have been performed in patients with heart failure and the results have shown first positive effect on blood pressure(BP)reduction.These effects are more pronounced with SGLT2 inhibitors than with GLP-1 receptor agonists.However,the reasons and mechanisms of action inducing BP reduction are still not sufficiently clear.Proposed mechanisms of SGLT2 inhibitors involve the natriuretic effect,modification of the renin-angiotensin-aldosterone system,and/or the reduction in the sympathetic nervous system.GLP-1 receptor agonists have several mechanisms that are related to glycemic,weight,and BP control.Current data show that SGLT2 inhibitors have a stronger antihypertensive effect than GLP-1 receptor agonists,which is mainly related to their renal effect.Briefly,SGLT2 inhibitors increase the response to diuretics and decrease the meal-related antinatriuretic pressure by lowering post-prandial hyperglycemia and hyperinsulinemia and prevent proximal sodium reabsorption.SGLT2 inhibitors can be used as second-line therapy in patients with diabetes mellitus or heart disease and concomitant hypertension.This article aims to summarize current knowledge regarding the antihypertensive effect of SGLT2 inhibitors and GLP-1 receptor agonists.展开更多
Classical inhibitors of PDE4 lack subtype selectivity due to exact amino acid sequence conservation of the catalytic site,and consequently,development of these drugs has stalled due to dose-limiting side effects of na...Classical inhibitors of PDE4 lack subtype selectivity due to exact amino acid sequence conservation of the catalytic site,and consequently,development of these drugs has stalled due to dose-limiting side effects of nausea and emesis.While use of subtype-selective inhibitors(i.e.,for PDE4A,B,or D)could overcome this issue,conservation of the catalytic region,to which classical inhibitors bind,limits this approach.The present study examined the effects of BPN14770,an allosteric inhibitor of PDE4D,which binds to a primate-specific,N-terminal region,conferring greater than 260-fold selectivity for PDE4D.BPN14770 was 100-fold more potent for improving memory and cognition in humanized PDE4D(hPDE4D)mice,which expressed the primate-specific binding sequence,compared to wild-type mice;meanwhile,it exhibited low potency in a mouse surrogate model for emesis.The behavioral and matching neurochemical data presented established a relationship between PDE4D target engagement and effects on cognition for BPN14770.Furthermore,BPN14770 reversed memory and cognitive deficits induced byβ-amyloid peptide 1-42(Aβ42)in Morris water maze,Y maze and novel object recognition tests in the humanized PDE4D mice.The morphological analyses suggested that the number of dendrites and the dendritic length in the CA1 of hippocampus were significantly increased after the Aβ42-treated hPDE4D mice were administered of BPN14770 for two weeks.The neurochemical and molecular biological assays suggested that neuroplasticity-related proteins and neurotrophic factor BDNF in the hippocampus of hPDE4D mice were significantly increased after the hPDE4D mice were treated with BPN14770.These findings suggest clinical potential for PDE4D selective inhibitors in disorders with cognitive deficits such as Alzheimer’s disease,which affects approximately 20 million people worldwide and nearly 5 million people in the United States.展开更多
BACKGROUND Diabesity(diabetes as a consequence of obesity)has emerged as a huge healthcare challenge across the globe due to the obesity pandemic.Judicious use of antidiabetic medications including semaglutide is impo...BACKGROUND Diabesity(diabetes as a consequence of obesity)has emerged as a huge healthcare challenge across the globe due to the obesity pandemic.Judicious use of antidiabetic medications including semaglutide is important for optimal management of diabesity as proven by multiple randomized controlled trials.However,more real-world data is needed to further improve the clinical practice.AIM To study the real-world benefits and side effects of using semaglutide to manage patients with diabesity.METHODS We evaluated the efficacy and safety of semaglutide use in managing patients with diabesity in a large academic hospital in the United States.Several parameters were analyzed including demographic information,the data on improvement of glycated hemoglobin(HbA1c),body weight reduction and insulin dose adjustments at 6 and 12 months,as well as at the latest follow up period.The data was obtained from the electronic patient records between January 2019 to May 2023.RESULTS 106 patients(56 males)with type 2 diabetes mellitus(T2DM),mean age 60.8±11.2 years,mean durations of T2DM 12.4±7.2 years and mean semaglutide treatment for 2.6±1.1 years were included.Semaglutide treatment was associated with significant improvement in diabesity outcomes such as mean weight reductions from baseline 110.4±24.6 kg to 99.9±24.9 kg at 12 months and 96.8±22.9 kg at latest follow up and HbA1c improvement from baseline of 82±21 mmol/mol to 67±20 at 12 months and 71±23 mmol/mol at the latest follow up.An insulin dose reduction from mean baseline of 95±74 units to 76.5±56.2 units was also observed at the latest follow up.Side effects were mild and mainly gastrointestinal like bloating and nausea improving with prolonged use of semaglutide.CONCLUSION Semaglutide treatment is associated with significant improvement in diabesity outcomes such as reduction in body weight,HbA1c and insulin doses without major adverse effects.Reviews of largescale real-world data are expected to inform better clinical practice decision making to improve the care of patients with diabesity.展开更多
Diabetes,characterized by hyperglycemia,is a major cause of death and disability worldwide.Peptides,such as insulin and glucagon-like peptide-1(GLP-1)analogs,have shown promise as treatments for diabetes due to their ...Diabetes,characterized by hyperglycemia,is a major cause of death and disability worldwide.Peptides,such as insulin and glucagon-like peptide-1(GLP-1)analogs,have shown promise as treatments for diabetes due to their ability to mimic or enhance insulin's actions in the body.Compared to subcutaneous injection,oral administration of anti-diabetic peptides is a preferred approach.However,biological barriers significantly reduce the efficacy of oral peptide therapeutics.Recent advancements in drug delivery systems and formulation techniques have greatly improved the oral delivery of peptide therapeutics and their efficacy in treating diabetes.This review will highlight(1)the benefits of oral anti-diabetic peptide therapeutics;(2)the biological barriers for oral peptide delivery,including pH and enzyme degradation,intestinal mucosa barrier,and biodistribution barrier;(3)the delivery platforms to overcome these biological barriers.Additionally,the review will discuss the prospects in this field.The information provided in this review will serve as a valuable guide for future developments in oral anti-diabetic peptide therapeutics.展开更多
文摘In this editorial,we comment on Yin et al’s recently published Letter to the editor.In particular,we focus on the potential use of glucagon-like peptide 1 receptor agonists(GLP-1RAs)alone,but even more so in combination therapy,as one of the most promising therapies in metabolic dysfunction-associated steatotic liver disease(MASLD),the new definition of an old condition,non-alcoholic fatty liver disease,which aims to better define the spectrum of steatotic pathology.It is well known that GLP-1RAs,having shown outstanding performance in fat loss,weight loss,and improvement of insulin resistance,could play a role in protecting the liver from progressive damage.Several clinical trials have shown that,among GLP-1RAs,semaglutide is a safe,well-studied therapeutic choice for MASLD patients;however,most studies demonstrate that,while semaglutide can reduce steatosis,including steatohepatitis histological signs(in terms of inflammatory cell infiltration and hepatocyte ballooning),it does not improve fibrosis.Combinations of therapies with different but complementary mechanisms of action are considered the best way to improve efficiency and slow disease progression due to the complex pathophysiology of the disease.In particular,GLP-1RAs associated with antifibrotic drug therapy,dual glucose-dependent insulinotropic polypeptide(GIP)/GLP-1RA or GLP-1 and glucagon RAs have promoted greater improvement in hepatic steatosis,liver biochemistry,and non-invasive fibrosis tests than monotherapy.Therefore,although to date there are no definitive indications from international drug agencies,there is the hope that soon the therapeutic lines in the most advanced phase of study will be able to provide a therapy for MASLD,one that will certainly include the use of GLP-1RAs as combination therapy.
基金supported by the European Union Grant Alehoop(H2020-BBIJTI-2019-887259)And from the Xunta de Galicia(Centro singular de Investigación de Galicia accreditation 2016-2019),ED431 G/02(to FM)。
文摘The glucagon-like peptide 1 is a pleiotropic hormone that has potent insulinotropic effects and is key in treating metabolic diseases such as diabetes and obesity.Glucagon-like peptide 1 exerts its effects by activating a membrane receptor identified in many tissues,including diffe rent brain regions.Glucagon-like peptide 1 activates several signaling pathways related to neuroprotection,like the support of cell growth/survival,enhancement promotion of synapse formation,autophagy,and inhibition of the secretion of proinflammatory cytokines,microglial activation,and apoptosis during neural morphogenesis.The glial cells,including astrocytes and microglia,maintain metabolic homeostasis and defe nse against pathogens in the central nervous system.After brain insult,microglia are the first cells to respond,followed by reactive astrocytosis.These activated cells produce proinflammato ry mediators like cytokines or chemokines to react to the insult.Furthermore,under these circumstances,mic roglia can become chro nically inflammatory by losing their homeostatic molecular signature and,consequently,their functions during many diseases.Several processes promote the development of neurological disorders and influence their pathological evolution:like the formation of protein aggregates,the accumulation of abnormally modified cellular constituents,the formation and release by injured neurons or synapses of molecules that can dampen neural function,and,of critical impo rtance,the dysregulation of inflammato ry control mechanisms.The glucagonlike peptide 1 receptor agonist emerges as a critical tool in treating brain-related inflammatory pathologies,restoring brain cell homeostasis under inflammatory conditions,modulating mic roglia activity,and decreasing the inflammato ry response.This review summarizes recent advances linked to the anti-inflammato ry prope rties of glucagon-like peptide 1 receptor activation in the brain related to multiple sclerosis,Alzheimer’s disease,Parkinson’s disease,vascular dementia,or chronic migraine.
基金Supported by Mekong-Lancang Cooperation Special FundCho-Kalaphruek Excellent Research Project for Medical StudentsThe International Internship Pilot Program,No.IIPP2023283.
文摘Glucagon-like peptide-1 receptor(GLP-1R)agonist,a subgroup of incretin-based anti-diabetic therapies,is an emerging medication with benefits in reducing blood glucose and weight and increasing cardiovascular protection.Contrarily,concerns have been raised about GLP-1R agonists increasing the risk of particular cancers.Recently,several epidemiological studies reported contradictory findings of incretin-based therapy on the risk modification for cholangiocarcinoma(CCA).The first cohort study demonstrated that incretin-based therapy was associated with an increased risk of CCA.Later studies,however,showed a null effect of incretinbased therapy on CCA risk for dipeptidyl peptidase-4 inhibitor nor GLP-1R agonist.Mechanistically,glucagon-like peptide 1 receptor is multifunctional,including promoting cell growth.High GLP-1R expressions were associated with progressive phenotypes of CCA cells in vitro.Unexpectedly,the GLP-1R agonist showed anti-tumor effects on CCA cells in vitro and in vivo with unclear mechanisms.Our recent report also showed that GLP-1R agonists suppressed the expression of GLP-1R in CCA cells in vitro and in vivo,leading to the inhibition of CCA tumor growth.This editorial reviews recent evidence,discusses the potential effects of GLP-1R agonists in CCA patients,and proposes underlying mechanisms that would benefit from further basic and clinical investigation.
文摘Background: The objective of this study was to compare and analyze the variations in clinical indices before and after treatment of type 2 mellitus (T2DM) combined with nonalcoholic fatty liver disease (NAFLD) that were treated with glucagon-like peptide 1 receptor agonists (GLP-1RAs). Methods: The electronic medical record system was utilized to search for a total of 16 patients with type 2 diabetes complicated by NAFLD who were hospitalized at the First Affiliated Hospital of Yangtze University from October 2022 to April 2023 and treated with GLP-1RA for the first time. The clinical indices were compared before and after 12 weeks of treatment with GLP-1RA. Results: The liver-spleen CT ratio (L/S), alanine aminotransferase (ALT), gamma-glutamyltransferase (GGT), total cholesterol (TC), triglyceride (TG), and low-density lipoprotein cholesterol (LDL-C) in all patients treated with GLP-1RA after 12 weeks were significantly different (P 0.05). The patients were categorized into two groups based on the types of GLP-1RAs. The changes in L/S, TC, TG, and LDL-C in the long-acting group after treatment were statistically significant (P Conclusions: GLP-1RAs can improve liver function, regulate lipid metabolism, and reduce the severity of fatty liver in patients with T2DM complicated by NAFLD, which demonstrates the importance of clinical applications.
文摘Glucagon-like peptide- 1 (GLP- 1) has been endorsed as a promising and attractive agent in the treatment of type 2 diabetes mellitus (T2DM). Both Alzheimer's disease (AD) and T2DM share some common pathophysiologic hallmarks, such as amyloid β (Aβ), phosphoralation of tau protein, and glycogen synthase kinase-3. GLP-1 possesses neurotropic properties and can reduce amyloid protein levels in the brain. Based on extensive studies during the past decades, the understanding on AD leads us to believe that the primary targets in AD are the Aβ and tau protein. Combine these findings, GLP- 1 is probably a promising agent in the therapy of AD. This review was focused on the biochemistry and physiology of GLP- 1, communities between T2DM and AD, new progresses of GLP - 1 in treating T2MD and improving some pathologic hanmarks of AD.
文摘Glucagon-like peptide-1(GLP-1)receptor agonists result in greater improvements in glycemic control than placebo and promote weight loss with minimal hypoglycemia in patients with type 2 diabetes mellitus.A number of case reports show an association of GLP-1receptor agonists,mainly exenatide,with the development of acute kidney injury.The present review aims to present the available data regarding the effects of GLP-1 receptor agonists on renal function,their use in subjects with chronic renal failure and their possible association with acute kidney injury.Based on the current evidence,exenatide is eliminated by renal mechanisms and should not be given in patients with severe renal impairment or end stage renal disease.Liraglutide is not eliminated by renal or hepatic mechanisms,but it should be used with caution since there are only limited data in patients with renal or hepatic impairment.There is evidence from animal studies that GLP-1 receptor agonists exert protective role in diabetic nephropathy with mechanisms that seem to be independent of their glucose-lowering effect.Additionally,there is evidence that GLP-1 receptor agonists influence water and electrolyte balance.These effects may represent new ways to improve or even prevent diabetic nephropathy.
文摘Though the pathophysiology of clinical obesity is un-doubtedly multifaceted, several lines of clinical evidence implicate an important functional role for glucagon-like peptide 1(GLP-1) signalling. Clinical studies assessing GLP-1 responses in normal weight and obese subjects suggest that weight gain may induce functional deficits in GLP-1 signalling that facilitates maintenance of the obesity phenotype. In addition, genetic studies implicate a possible role for altered GLP-1 signalling as a risk factor towards the development of obesity. As reductions in functional GLP-1 signalling seem to play a role in clinical obesity, the pharmacological replenishment seems a promising target for the medical management of obesity in clinical practice. GLP-1 analogue liraglutide at a high dose(3 mg/d) has shown promising results in achieving and maintaining greater weight loss in obese individuals compared to placebo control, and currently licensed antiobesity medications. Generally well tolerated, provided that longer-term data in clinical practice supports the currently available evidence of superior short- and longterm weight loss efficacy, GLP-1 analogues provide promise towards achieving the successful, sustainable medical management of obesity that remains as yet, an unmet clinical need.
文摘Nonalcoholic fatty liver disease(NAFLD)is the most rapidly growing contributor to liver mortality and morbidity.Hepatocellular injury in nonalcoholic steatohepatitis(NASH)is caused by an increase in metabolic substrates(glucose,fructose,and fatty acids),leading fatty acids to participate in pathways that cause cellular injury and a poor response to injury.The pathogenesis of this disease is largely associated with obesity,type 2 diabetes,and increasing age.To date,there are no Food and Drug Administration-approved treatments for NAFLD/NASH or its associated fibrosis.Since one of the pathogenic drivers of NASH is insulin resistance,therapies approved for the treatment of type 2 diabetes are being evaluated in patients with NASH.Currently,the glucagon-like peptide-1 receptor agonist(GLP-1RA)semaglutide is a safe,well-studied therapeutic for NAFLD/NASH patients.Existing research demonstrates that semaglutide can increase the resolution of NASH but not improve fibrosis.However,improving the fibrosis of NAFLD is the only way to improve the long-term prognosis of NAFLD.Given the complex pathophysiology of NASH,combining therapies with complementary mechanisms may be beneficial.Researchers have conducted trials of semaglutide in combination with antifibrotic drugs.However,the results have not fully met expectations,and it cannot be ruled out that the reason is the short trial time.We should continue to pay increasing attention to GLP-1RAs.
基金135 Project Foundation of Jiangsu Province (NO2001)
文摘Objective: To observe the effect of glucagon-like peptide 1 (GLP-1) on the gene expressions of transcription factors (PDX-1, PAX-6 and NKx2.2 ) in freshly isolated rat pancreatic islets and investigate the associated physiological and therapeutic implication of GLP-1. Methods: The isolated rat islets were incubated with 10 nmol/L GLP-1 for 1, 3 and 5 days, respectively. Total cellular RNA was extracted and the expressions of PDX-1, PAX-6 and NKx2.2 gene were detected by semiquantity RT-PCR. Results: Compared with the control group, the PDX-1, PAX-6 and NKx2.2 gene expressions were significantly increased after co-cultured with GLP-1 for 1 day (P 〈 0.05). The effect was shown in a time-dependent manner. All three gene expressions reached the peak on the 5th day. Conclusion: GLP-1 can improve the function of pancreatic islet by regulating the gene expressions of transcription factors in β cells.
文摘Our previous investigation found that exendin-4 (Ex-4) , a peptide analogue of glucagon-like peptide 1 (GLP-1) , induced bone formation probably by osteoblast activation. Nevertheless, previous investigations did not observe any expression of GLP-1 receptors in osteoblasts, indicating that the direct cell target of GLP-1 and its ana- logues might not be osteoblasts but some other types of cells yet to be identified. To elucidate the underlying mecha- nisms, we performed further investigation in the present study and found that GLP-1 receptor was only identified in bone marrow mesenchymal stem cells (BMSCs). Furthermore, activation of GLP-1 receptor by Ex-4 promoted the differentiation of B MSCs into osteoblast, which was associated with activation of PKA, nuclear translocation of [5- catenin, activation of PI3K/AKT and inhibition of GSK3β. Ex-4 also inhibited the adipocyte differentiation of BM- SCs, as evidenced by inhibition of PPARγ, lipoprotein lipase expression and lipid production. Blockade of GLP-1 receptor, PKA, PI3K or Wnt pathway, or respective knock-down of GLP-1 receptor and β-catenin in BMSCs inhib- ited the Ex-4 mediated effects. The results indicated that the GLP-1 receptor mediated osteoblastic differentiation and bone formation through stimulation of PKA/β-catenin signaling and inhibition of PKA/PI3IC/AKT/GSK3β? signaling pathway in BMSCs. The findings reveal a new role of GLP-1 receptor for regulating osteoblastic differentia- tion of B MSCs and may provide a molecular basis for novel anabolic therapeutics against osteoporosis.
文摘BACKGROUND Microalbuminuria is an early and informative marker of diabetic nephropathy.Our study found that microalbuminuria developed in patients with newly diagnosed type 2 diabetes mellitus(T2DM).AIM To investigate the association between glucagon-like peptide 1(GLP-1)and microalbuminuria in newly diagnosed T2DM patients.METHODS In total,760 patients were recruited for this cross-sectional study.The GLP-1 levels during a standard meal test and urinary albumin-creatinine ratio(UACR)were determined.RESULTS Patients with microalbuminuria exhibited lower GLP-1 levels at 30 min and 120 min during a standard meal test than patients with normal albuminuria(30 min GLP-1,16.7±13.3 pmol vs 19.9±15.6 pmol,P=0.007;120 min GLP-1,16.0±14.1 pmol vs 18.4±13.8 pmol,P=0.037).The corresponding area under the curve for active GLP-1(AUCGLP-1)was also lower in microalbuminuria patients(2257,1585 to 3506 vs 2896,1763 to 4726,pmol×min,P=0.003).Postprandial GLP-1 levels at 30 min and 120 min and AUCGLP-1 were negatively correlated with the UACR(r=0.159,r=0.132,r=0.206,respectively,P<0.001).The prevalence of microalbuminuria in patients with newly diagnosed T2DM was 21.7%,which decreased with increasing quartiles of AUCGLP-1 levels(27.4%,25.3%,18.9%and 15.8%).After logistic regression analysis adjusted for sex,age,hemoglobin A1c,body mass index,systolic blood pressure,estimated glomerular filtration rate,homeostasis model assessment of insulin resistance,AUC_(glucose)and AUC_(glucagon)patients in quartile 4 of the AUCGLP-1 presented a lower risk of microalbuminuria compared with the patients in quartile 1(odds ratio=0.547,95%confidence interval:0.325-0.920,P=0.01).A consistent association was also found between 30 min GLP-1 or 120 min GLP-1 and microalbuminuria.CONCLUSION Postprandial GLP-1 levels were independently associated with microalbuminuria in newly diagnosed Chinese T2DM patients.
文摘AIM To examine the role that enzyme Acyl-CoA:diacylglycerol acyltransferase-1(DGAT1) plays in postprandial gut peptide secretion and signaling.METHODS The standard experimental paradigm utilized to evaluate the incretin response was a lipid challenge.Following a lipid challenge,plasma was collected via cardiac puncture at each time point from a cohort of 5-8 mice per group from baseline at time zero to 10 h.Incretin hormones [glucagon like peptide-1(GLP-1),peptide tyrosine-tyrosine(PYY) and glucose dependent insulinotropic polypeptide(GIP)] were then quantitated.The impact of pharmacological inhibition of DGAT1 on the incretin effect was evaluated in WT mice.Additionally,a comparison of loss of DGAT1 function either by genetic ablation or pharmacological inhibition.To further elucidate the pathways and mechanisms involved in the incretin response to DGAT1 inhibition,other interventions [inhibitors of dipeptidyl peptidase-IV(sitagliptin),pancreatic lipase(Orlistat),GPR119 knockout mice] were evaluated.RESULTS DGAT1 deficient mice and wildtype C57/BL6J mice werelipid challenged and levels of both active and total GLP-1 in the plasma were increased.This response was further augmented with DGAT1 inhibitor PF-04620110 treated wildtype mice.Furthermore,PF-04620110 was able to dose responsively increase GLP-1 and PYY,but blunt GIP at all doses of PF-04620110 during lipid challenge.Combination treatment of PF-04620110 and Sitagliptin in wildtype mice during a lipid challenge synergistically enhanced postprandial levels of active GLP-1.In contrast,in a combination study with Orlistat,the ability of PF-04620110 to elicit an enhanced incretin response was abrogated.To further explore this observation,GPR119 knockout mice were evaluated.In response to a lipid challenge,GPR119 knockout mice exhibited no increase in active or total GLP-1 and PYY.However,PF-04620110 was able to increase total GLP-1 and PYY in GPR119 knockout mice as compared to vehicle treated wildtype mice.CONCLUSION Collectively,these data provide some insight into the mechanism by which inhibition of DGAT1 enhances intestinal hormone release.
基金Supported by:the Medicine and Health Scientific Research Projects of Shandong Province,No. 2007HZ065
文摘BACKGROUND: L-3-n-butylphthalide (L-NBP) can inhibit phosphorylation of tau protein and reduce the neurotoxicity of beta-amyloid peptide 1-42 (Aβ1-42). OBJECTIVE: To observe the neuroprotective effects of L-NBP on caspase-3 and nuclear factor kappa-B (NF- K B) expression in a rat model of Alzheimer's disease. DESIGN, TIME AND SETTING: A cell experiment was performed at the Central Laboratory of Provincial Hospital affiliated to Shandong University between January 2008 and August 2008. MATERIALS: L-NBP (purity 〉 98%) was provided by Shijiazhuang Pharma Group NBP Pharmaceutical Company Limited. Aβ1-42, 3-[4,5-dimethylthiazolo-2]-2,5 iphenyltetrazolium bromide (MTT), and rabbit anti-Caspase-3 polyclonal antibody were provided by Cell Signaling, USA; goat anti-choactase and rabbit anti-NF- kB antibodies were provided by Santa Cruz, USA. METHODS: Primary cultures were generated from rat basal forebrain and hippocampal neurons at 17 or 19 days of gestation. The cells were assigned into five groups: the control group, the Aβ1-42 group (2 μmol/L), the Aβ1-42 + 0.1 μmol/L L-NBP group, the Aβ1-42 + 1 μ mol/L L-NBP group, and the Aβ1-42 + 10μmol/L L-NBP group. The neurons were treated with Aβ1-42 (2 μmol/L) alone or in combination with L-NBP (0.1, 1, 10 μmol/L) for 48 hours. Cells in the control group were incubated in PBS. MAIN OUTCOME MEASURES: Morphologic changes were evaluated using inverted microscopy, viability using the M-I-I- method, and the changes in caspase-3 and NF- k B expression using Western blot. RESULTS: Induction with Aβ1-42 for 48 hours caused cell death and soma atrophy, and increased caspase-3 and NF- K B expression (P 〈 0.05). L-NBP blocked these changes in cell morphology, decreased caspase-3 and NF- k B expression (P 〈 0.05), and improved cell viability, especially at the high dose (P 〈 0.05). CONCLUSION: AI3^-42 is toxic to basal forebrain and hippocampal primary neurons; L-NBP protects against this toxicity and inhibits the induction of caspase-3 and NF- K B expression.
文摘Objective To study the therapeutic effects of Ginsenoside Rg-1 and Gastrodine on rats model of Alzheimer's disease(AD). Methods Aggregated β-Amyloid peptide (25-35) was injected into the lateral ventricle of rats to establish AD models. Ginsenoside Rg-1, Gastrodine and Ginsenoside Rg-1+Gastrodine were intraperitoneally injected into rats of each test group(Ginsenoside Rg-1∶10mg/kg·day; Gastrodine 100mg/kg·day) for 4 weeks, the rats of control group received equal volume of saline. Passive avoidance task and Morris maze test were done to assess the ability of learning and memory. The content of superoxide dismutase (SOD), malondiadehyde (MDA), total-antioxidative capability (T-AOC), Choline acetyltransferase (ChAT) and acetylcholinesterase (AchE) in brain tissue were measured. Results Ginsenoside Rg-1 and Gastrodine significantly improved learning and memory deficits in the rats with AD induced by β-Amyloid peptide (25-35) (P<0.05). Ginsenoside Rg-1+Gastrodine group were better than Ginsenoside Rg-1 group and Gastrodine group (P<0.05). Ginsenoside Rg-1 reduced the increase of SOD, MDA, but inhibited the decrease of T-AOC, AchE and ChAT; Gastrodine reduced the increase of SOD, MDA, while inhibited the decrease of T-AOC. Gastrodine could also prevent the activity of ChAT and AchE decline in AD rats. Conclusion Both Ginsenoside Rg-1 and Gastrodine have therapeutic effects on rats with AD; Ginsenoside Rg-1 and Gastrodine injection at the same time were better than only using one of them. Their mechanisms might different. Ginsenoside Rg-1 can not only inhibit peroxidation but also increase the activity of AchE and ChAT in brain tissue, while Gastrodine can inhibit peroxidation only, but it can't prevent the decline of ChAT and AchE activity in AD rats.
基金Supported by: the National Natural Science Foundation of China, No. 30770737
文摘BACKGROUND: Studies have shown that scorpion venom heat-resistant protein (SVHRP) exhibits protective effects on primary cultured hippocampal neurons. OBJECTIVE: To determine the effects of SVHRP on astrocyte activity and synaptic density in the hippocampus induced by amyloid β peptide 1-40 (Aβ1-40) neurotoxicity. DESIGN, TIME AND SETTING: The randomized, controlled, animal experiment was performed at the Central Laboratory, the Laboratory of Human Anatomy, and the Laboratory of Physiology, in Dalian Medical University between March 2006 and June 2008. MATERIALS: Aβ1-40 was provided by Biosource, USA; SVHRP was a patented biological product of Dalian Medical University (No. ZL01 1 06166.9). METHODS: A total of 27 healthy, 2-month-old, male SD rats were randomly assigned to 3 groups: control, Aβ, and SVHRP, with 9 rats in each group. Alzheimer's disease was simulated with 10 μg Aβ1-40 bilaterally injected into the hippocampus of the Aβ and SVHRP groups. The control group was injected with 2 μL 0.05% trifluoroacetic acid. One day following model establishment, the SVHRP group received an intraperitoneal injection of 2 μg/100 g SVHRP, while the control group and Aβ group received 0.5 mL/100 g tri-distilled water, once per day, for 10 consecutive days. MAIN OUTCOME MEASURES: At 16 days following model establishment, synaptophysin (p38) expression in CA1-CA4 regions of the rat hippocampus was determined by immunohistochemistry. Glial fibrillary acidic protein (GFAP) expression surrounding the hippocampal Aβ1-40 injected area was also detected. At 11 days following model establishment, escape latency, swimming time, and distance to target quadrant were measured using the Morris water maze. RESULTS: Compared with the control group, the Aβ group exhibited notably reduced p38 expression (P 〈 0.05) and notably increased GFAP expression in the rat hippocampus (P 〈 0.05). Water maze results demonstrated that escape latency was prolonged (P 〈 0.05), and swimming time and distance to the target quadrant were shortened in the Aβ group. Compared with the Aβ group, the SVHRP group exhibited notably increased p38 expression (P 〈 0.05) and notably decreased GFAP expression in the rat hippocampus (P 〈 0.05). Water maze results demonstrated that escape latency was significantly reduced (P 〈 0.05), and swimming time and distance to the target quadrant were significantly prolonged. CONCLUSION: SVHRP inhibited exogenous Aβ1-40-induced astrocyte activation and synaptic density decline in the rat hippocampus. Place navigation and spatial searching results showed that SVHRP blocked Aβ1-40-induced impaired learning and memory.
文摘An increasing body of evidence shows that new antidiabetic drugs—particularly sodium-glucose cotransporter 2(SGLT2)inhibitors and glucagon-like peptide 1(GLP-1)receptor agonists—have a beneficial effect on cardiovascular outcome.The majority of these studies have been performed in patients with heart failure and the results have shown first positive effect on blood pressure(BP)reduction.These effects are more pronounced with SGLT2 inhibitors than with GLP-1 receptor agonists.However,the reasons and mechanisms of action inducing BP reduction are still not sufficiently clear.Proposed mechanisms of SGLT2 inhibitors involve the natriuretic effect,modification of the renin-angiotensin-aldosterone system,and/or the reduction in the sympathetic nervous system.GLP-1 receptor agonists have several mechanisms that are related to glycemic,weight,and BP control.Current data show that SGLT2 inhibitors have a stronger antihypertensive effect than GLP-1 receptor agonists,which is mainly related to their renal effect.Briefly,SGLT2 inhibitors increase the response to diuretics and decrease the meal-related antinatriuretic pressure by lowering post-prandial hyperglycemia and hyperinsulinemia and prevent proximal sodium reabsorption.SGLT2 inhibitors can be used as second-line therapy in patients with diabetes mellitus or heart disease and concomitant hypertension.This article aims to summarize current knowledge regarding the antihypertensive effect of SGLT2 inhibitors and GLP-1 receptor agonists.
文摘Classical inhibitors of PDE4 lack subtype selectivity due to exact amino acid sequence conservation of the catalytic site,and consequently,development of these drugs has stalled due to dose-limiting side effects of nausea and emesis.While use of subtype-selective inhibitors(i.e.,for PDE4A,B,or D)could overcome this issue,conservation of the catalytic region,to which classical inhibitors bind,limits this approach.The present study examined the effects of BPN14770,an allosteric inhibitor of PDE4D,which binds to a primate-specific,N-terminal region,conferring greater than 260-fold selectivity for PDE4D.BPN14770 was 100-fold more potent for improving memory and cognition in humanized PDE4D(hPDE4D)mice,which expressed the primate-specific binding sequence,compared to wild-type mice;meanwhile,it exhibited low potency in a mouse surrogate model for emesis.The behavioral and matching neurochemical data presented established a relationship between PDE4D target engagement and effects on cognition for BPN14770.Furthermore,BPN14770 reversed memory and cognitive deficits induced byβ-amyloid peptide 1-42(Aβ42)in Morris water maze,Y maze and novel object recognition tests in the humanized PDE4D mice.The morphological analyses suggested that the number of dendrites and the dendritic length in the CA1 of hippocampus were significantly increased after the Aβ42-treated hPDE4D mice were administered of BPN14770 for two weeks.The neurochemical and molecular biological assays suggested that neuroplasticity-related proteins and neurotrophic factor BDNF in the hippocampus of hPDE4D mice were significantly increased after the hPDE4D mice were treated with BPN14770.These findings suggest clinical potential for PDE4D selective inhibitors in disorders with cognitive deficits such as Alzheimer’s disease,which affects approximately 20 million people worldwide and nearly 5 million people in the United States.
文摘BACKGROUND Diabesity(diabetes as a consequence of obesity)has emerged as a huge healthcare challenge across the globe due to the obesity pandemic.Judicious use of antidiabetic medications including semaglutide is important for optimal management of diabesity as proven by multiple randomized controlled trials.However,more real-world data is needed to further improve the clinical practice.AIM To study the real-world benefits and side effects of using semaglutide to manage patients with diabesity.METHODS We evaluated the efficacy and safety of semaglutide use in managing patients with diabesity in a large academic hospital in the United States.Several parameters were analyzed including demographic information,the data on improvement of glycated hemoglobin(HbA1c),body weight reduction and insulin dose adjustments at 6 and 12 months,as well as at the latest follow up period.The data was obtained from the electronic patient records between January 2019 to May 2023.RESULTS 106 patients(56 males)with type 2 diabetes mellitus(T2DM),mean age 60.8±11.2 years,mean durations of T2DM 12.4±7.2 years and mean semaglutide treatment for 2.6±1.1 years were included.Semaglutide treatment was associated with significant improvement in diabesity outcomes such as mean weight reductions from baseline 110.4±24.6 kg to 99.9±24.9 kg at 12 months and 96.8±22.9 kg at latest follow up and HbA1c improvement from baseline of 82±21 mmol/mol to 67±20 at 12 months and 71±23 mmol/mol at the latest follow up.An insulin dose reduction from mean baseline of 95±74 units to 76.5±56.2 units was also observed at the latest follow up.Side effects were mild and mainly gastrointestinal like bloating and nausea improving with prolonged use of semaglutide.CONCLUSION Semaglutide treatment is associated with significant improvement in diabesity outcomes such as reduction in body weight,HbA1c and insulin doses without major adverse effects.Reviews of largescale real-world data are expected to inform better clinical practice decision making to improve the care of patients with diabesity.
基金This study was supported by the National Science Fund of Distinguished Young Scholars(No.82025032,China)the National Natural Science Foundation of China(No.82073773,China)+1 种基金the Key Research Program of Chinese Academy of Sciences(ZDBS-ZRKJZ-TLC005,China)Young Elite Scientists Sponsorship Program by CAST(No.2022QNRC001,China).
文摘Diabetes,characterized by hyperglycemia,is a major cause of death and disability worldwide.Peptides,such as insulin and glucagon-like peptide-1(GLP-1)analogs,have shown promise as treatments for diabetes due to their ability to mimic or enhance insulin's actions in the body.Compared to subcutaneous injection,oral administration of anti-diabetic peptides is a preferred approach.However,biological barriers significantly reduce the efficacy of oral peptide therapeutics.Recent advancements in drug delivery systems and formulation techniques have greatly improved the oral delivery of peptide therapeutics and their efficacy in treating diabetes.This review will highlight(1)the benefits of oral anti-diabetic peptide therapeutics;(2)the biological barriers for oral peptide delivery,including pH and enzyme degradation,intestinal mucosa barrier,and biodistribution barrier;(3)the delivery platforms to overcome these biological barriers.Additionally,the review will discuss the prospects in this field.The information provided in this review will serve as a valuable guide for future developments in oral anti-diabetic peptide therapeutics.