Objective To evaluate the effect of low-dose insulin [1 U/(kg·d)] in combination with selenium [180 g/(kg·d)] on general physiological parameters and glucose transporter (GLUT4) level in skeletal muscle of s...Objective To evaluate the effect of low-dose insulin [1 U/(kg·d)] in combination with selenium [180 g/(kg·d)] on general physiological parameters and glucose transporter (GLUT4) level in skeletal muscle of streptozotocin (STZ)-induced diabetic rats. Methods Diabetic rats were treated with insulin,selenium,and insulin and selenium in combination for four weeks. The level of blood glucose was determined using One Touch SureStep Blood Glucose meter and the level of GLUT4 in skeletal muscle was examined by immunoblotting and immunohistochemistry. Results Our data showed that insulin in combination with selenium could significantly lower blood glucose level and restore the disturbance in GLUT4 level in skeletal muscle. Treatment with insulin was only partially effective in restoring diabetic alterations. Conclusion It can be concluded that there is a synergistic action between insulin and selenium,and that treatment of diabetic rats with combined doses of insulin and selenium is effective in the normalization of blood glucose level and correction of altered GLUT4 distribution in skeletal muscle of diabetic rats.展开更多
BACKGROUND Synaptotagmins(SYTs)are a family of 17 membrane transporters that function as calcium ion sensors during the release of Ca2+-dependent neurotransmitters and hormones.However,few studies have reported whethe...BACKGROUND Synaptotagmins(SYTs)are a family of 17 membrane transporters that function as calcium ion sensors during the release of Ca2+-dependent neurotransmitters and hormones.However,few studies have reported whether members of the SYT family play a role in glucose uptake in diabetic retinopathy(DR)through Ca2+/glucose transporter-1(GLUT1)and the possible regulatory mechanism of SYTs.AIM To elucidate the role of the SYT family in the regulation of glucose transport in retinal pigment epithelial cells and explore its potential as a therapeutic target for the clinical management of DR.METHODS DR was induced by streptozotocin in C57BL/6J mice and by high glucose medium in human retinal pigment epithelial cells(ARPE-19).Bioinformatics analysis,reverse transcriptase-polymerase chain reaction,Western blot,flow cytometry,ELISA,HE staining,and TUNEL staining were used for analysis.RESULTS Six differentially expressed proteins(SYT2,SYT3,SYT4,SYT7,SYT11,and SYT13)were found between the DR and control groups,and SYT4 was highly expressed.Hyperglycemia induces SYT4 overexpression,manipulates Ca2+influx to induce GLUT1 fusion with the plasma membrane,promotes abnormal expression of the glucose transporter GLUT1 and excessive glucose uptake,induces ARPE-19 cell apoptosis,and promotes DR progression.Parkin deficiency inhibits the proteasomal degradation of SYT4 in DR,resulting in SYT4 accumulation and enhanced GLUT1 fusion with the plasma membrane,and these effects were blocked by oe-Parkin treatment.Moreover,dysregulation of the myelin transcription factor 1(Myt1)-induced transcription of SYT4 in DR further activated the SYT4-mediated stimulus-secretion coupling process,and this process was inhibited in the oe-MYT1-treated group.CONCLUSION Our study reveals the key role of SYT4 in regulating glucose transport in retinal pigment epithelial cells during the pathogenesis of DR and the underlying mechanism and suggests potential therapeutic targets for clinical DR.展开更多
Objective: The main goal of the present study was to investigate the effect of iron supplementation on glucose transporter 4 expressions in adipose tissue and skeletal muscle in female rats during pregnancy. Methods: ...Objective: The main goal of the present study was to investigate the effect of iron supplementation on glucose transporter 4 expressions in adipose tissue and skeletal muscle in female rats during pregnancy. Methods: Twenty-four pregnant Sprague-Dawley rats were randomly divided into 2 groups: a control group with a standard diet (containing iron 150 mg/kg) and an iron-supplementation group with a high-iron diet (containing iron 700 mg/kg) from day 0 to day 21 of pregnancy. Intraperitoneal glucose tolerance test was performed on gestational day 19. On gestational day 21, all of the pregnant rats from each group were sacrificed. The mean neonatal weights were measured and samples of maternal intraabdominal adipose tissue and skeletal muscle were taken to measure the expression of Glucose Transporter 4 (GLUT4) mRNA and protein. Results: Glucose tolerance decreased significantly in the iron supplementation group compared to the control group. The mean neonatal weights in the iron supplementation group were higher than that in the control group. Levels of GLUT4 mRNA in the adipose tissue were reduced by the administrations of high-iron diet. The skeletal muscle GLUT4 mRNA levels were not changed significantly by iron supplementation. Expression of GLUT4 protein both in the adipose tissue and skeletal muscle reduced significantly. Conclusion: These results suggest that iron supplementation during pregnancy would increase neonatal weights and could decrease maternal glucose tolerance by interfering GLUT4 expression in adipose tissue and skeletal muscle of rats.展开更多
Nuciferine contained in lotus leaves have been confirmed to have the effect of ameliorating hyperlipemia and hyperglycemia.A laser scanning confocal microscope was used to track the translocation of glucose transporte...Nuciferine contained in lotus leaves have been confirmed to have the effect of ameliorating hyperlipemia and hyperglycemia.A laser scanning confocal microscope was used to track the translocation of glucose transporter 4(GLUT4)in L6 cells and the changes in intracellular Ca^(2+)levels in real time,and related protease inhibitors combined with western blotting were used to explore the mechanism of nuciferine.Meanwhile,KK-Ay mice,the spontaneous type 2 diabetic mice,were used to evaluate the in vivo activity of nuciferine.In this study,the in vitro studies indicated that nuciferine-induced GLUT4 translocation was regulated by G protein-PLC-PKC and AMPK pathways and nuciferine-enhanced intracellular Ca^(2+)was mediated by G protein-PLC-IP3-IP3R pathway,the increase in intracellular Ca^(2+)caused by nuciferine was not directly related to GLUT4 translocation,but both promote glucose uptake.The in vivo results suggested that nuciferine ameliorated weight gain induced by high-fat diet,abnormal lipid metabolism and the symptoms of insulin resistance in KK-Ay diabetic mice.Western blot results suggested that nuciferine increased AMPK and PKC phosphorylation levels in skeletal muscle and liver,and enhanced GLUT4 expression in skeletal muscle.Taken together,this research showed that nuciferine has the non-negligible potential in the treatment of type 2 diabetes mellitus.展开更多
Dietary flavonoids are abundant in natural plants and possess multiple pharmacological and nutritional activities.In this study,apigenin,luteolin,and baicalein were chosen to evaluate their anti-diabetic effect in hig...Dietary flavonoids are abundant in natural plants and possess multiple pharmacological and nutritional activities.In this study,apigenin,luteolin,and baicalein were chosen to evaluate their anti-diabetic effect in high-glucose and dexamethasone induced insulin-resistant(IR)HepG2 cells.All flavonoids improves the glucose consumption and glycogen synthesis abilities in IR-HepG2 cells via activating glucose transporter protein 4(GLUT4)and phosphor-glycogen synthase kinase(GSK-3β).These fl avonoids signifi cantly inhibited the production of reactive oxygen species(ROS)and advanced glycation end-products(AGEs),which were closely related to the suppression of the phosphorylation form of NF-κB and P65.The expression levels of insulin receptor substrate-1(IRS-1),insulin receptor substrate-2(IRS-2)and phosphatidylinositol 3-kinase(PI3K)/protein kinase B(Akt)pathway in IR-HepG2 cells were all partially activated by the fl avonoids,with variable effects.Furthermore,the intracellular metabolic conditions of the fl avonoids were also evaluated.展开更多
The mechanisms of Gardeniae Fructus (GF) for anti-hyperglycemic action were demonstrated in streptozotocin (STZ)-diabetic mice. Six hours after single intraperitoneal administration of GF (300 mg/kg) or H2O into 3 hou...The mechanisms of Gardeniae Fructus (GF) for anti-hyperglycemic action were demonstrated in streptozotocin (STZ)-diabetic mice. Six hours after single intraperitoneal administration of GF (300 mg/kg) or H2O into 3 hour-fasted STZ-diabetic mice, glucose and insulin tolerances were assessed by intraperitoneal glucose (1.5 g/kg) tolerance test (IPGTT) and intraperitoneal insulin (0.65 U/kg) tolerance test (IPITT), respectively. Effects of GF on insulin signaling pathways in soleus muscle such as glucose uptake, expression of glucose transporter 4 (GLUT4) in the plasma membrane and phosphorylation of Akt (P-Akt) in cytosolic fraction were examined in STZ-diabetic mice. In IPGTT test, GF significantly accelerated clearance of exogenous glucose and its glucose-lowering action was greater than H2O-treated controlin STZ-diabetic mice. GF also promoted an exogenous glucose-increased insulin level in STZ-diabetic mice. In IPITT test, GF decreased glucose level to the greater extent than H2O-treated control in STZ-diabetic mice. Furthermore, GF significantly decreased high HOMA-IR in STZ-diabetic mice from 21.6 ± 2.4 to 12.4 ± 1.9 (mg/dl × μU/ml). These results implied that GF improved insulin resistance in STZ-diabetic mice. GF increased glucose uptake of soleus muscle 1.5 times greater than H2O-treated control in STZ-diabetic mice. GF enlarged insulin (10 nmol/ml)-increased glucose uptake to 1.8 time-greater. Correspondingly, GF increased expression of GLUT4 in the plasma membrane of soleus muscle to 1.4 time-greater, and P-Akt in the cytosolic fraction of soleus muscle to 1.9 time-greater than those in H2O-treated control. In conclusion, the improvement of GF on insulin resistance is associated with the repair of insulin signaling via P-Akt, GLUT4 and glucose uptake pathway in soleus muscle of STZ-diabetic mice.展开更多
Type 2 diabetes mellitus (T2DM) which is characterized by insulin resistance in muscle and adipose tissues is a major problem worldwide. Plant based medications are well known from ancient times for possessing antidia...Type 2 diabetes mellitus (T2DM) which is characterized by insulin resistance in muscle and adipose tissues is a major problem worldwide. Plant based medications are well known from ancient times for possessing antidiabetic properties. Amongst them, <em>Gymnema sylvestre</em> (GS) is one such antidiabetic medicinal plant which has been used traditionally over the years for the treatment of T2DM. The aim of the present study was to investigate the effect of triterpene glycoside (TG), an active fraction isolated from ethanolic extract of <em>Gymnema sylvestre</em> (EEGS) on a battery of targets;glucose transporter (GLUT- 4), peroxisome proliferator activator receptor gamma (PPAR-γ), adiponectin and leptin involved in glucose transport and metabolism. No cytotoxic effects were observed in treated cells up to 600 μg/ml of TG as measured by MTT and ROS assays. Elevation of GLUT-4 and PPAR-γ by TG in association with glucose transport supported the upregulation of glucose uptake at concentrations of 50 and 100 μg/ml respectively. Additionally, TG showed higher expression of adiponectin and leptin, confirming the favorable pharmacological effect of TG on insulin resistance. The results were comparable to the known antidiabetic drug pioglitazone and commercial standard DAG. Thus TG could be considered as a safe nutraceutical candidate/functional phytoingredient in amelioration of insulin resistance.展开更多
Glucose is vital to embryogenesis,as are glucose transporters.Glucose transporter 4(Glut4)is one of the glucose transporters,which is involved in rapid uptake of glucose by various cells and promotes glucose homeostas...Glucose is vital to embryogenesis,as are glucose transporters.Glucose transporter 4(Glut4)is one of the glucose transporters,which is involved in rapid uptake of glucose by various cells and promotes glucose homeostasis.Although energy metabolism in insect reproduction is well known,the molecular mechanism of Glut4 in insect reproduction is poorly understood.We suspect that Glut4 is involved in maintaining glucose concentrations in the ovaries and affecting vitellogenesis,which is critical for subsequent oocyte maturation and insect fertility.Harmonia axyridis(Pallas)is a model organism for genetic research and a natural enemy of insect pests.We studied the influence of the Glut4 gene on the reproduction and development of H.axyridis using RNA interference technology.Reverse transcription quantitative polymerase chain reaction analysis revealed that HaGlut4 was most highly expressed in adults.Knockdown of the HaGlut4 gene reduced the transcript levels of HaGlut4,and the weight and number of eggs produced significantly decreased.In addition,the transcript levels of vitellogenin receptor and vitellogenin in the fat bodies and the ovaries of H.axyridis decreased after the interference of Glut4,and decreased the triglyceride,fatty acid,total amino acid and adenosine triphosphate content of H.axyridis.This resulted in severe blockage of ovary development and reduction of yolk formation;there was no development of ovarioles in the developing oocytes.These changes indicate that a lack of HaGlut4 can impair ovarian development and oocyte maturation and result in decreased fecundity.展开更多
Insulin stimulates the production of PI(3,4,5)P3 in muscle cells, and this is required to stimulate GLUT4 fusion with the plasma membrane. Introduction of exogenous PI(3,4,5)P3 to muscle cells recapitulates insulin...Insulin stimulates the production of PI(3,4,5)P3 in muscle cells, and this is required to stimulate GLUT4 fusion with the plasma membrane. Introduction of exogenous PI(3,4,5)P3 to muscle cells recapitulates insulin's effects on GLUT4 fusion with the plasma membrane, but not glucose uptake. This study aims to explore the mechanism behind this difference. In L6-GLUT4myc muscle cells, the availability of the GLUT4 intracellular C-terminus and extracellular myc epitopes for immunoreactivity on plasma membrane lawns was detected with the corresponding antibody. The availability of the active site of GLUT4 from extracellular medium was assessed by affinity photolabeling with the cell impermeant compound Bio-LC-ATB-BMPA. 100nmol/L insulin and 10μmol/L PI(3,4,5)P3 caused myc signal gain on the plasma membrane lawns by 1.64-fold and 1.58-fold over basal, respectively. Insulin, but not PI(3,4,5)P3, increased photolabeling of GLUT4 and immunolabeling with C-terminus antibody by 2.47-fold and 2.04-fold over basal, respectively. Upon insulin stimulation, the C-terminus signal gain was greater than myc signal gain (2.04-fold vs. 1.64-fold over basal, respectively) in plasma membrane lawns. These results indicate that (i) PI(3,4,5)P3 does not make the active site of GLUT4 available from the extracellular surface despite causing GLUT4 fusion with the plasma membrane; (ii) the availability of the active site of GLUT4 from the extracellular medium and availability of the C-terminus from the cytosolic site are correlated; (iii) in addition to stimulating GLUT4 translocation, insulin stimulation displaces a protein which masks the GLUT4 C-terminus. We propose that a protein which masks the C-terminus also prevents the active site from being available for photolabelling and possibly glucose uptake after treatment with PI(3,4,5)P3.展开更多
Decreased glucose tolerance and diabetes are frequently observed in advanced liver cirrhosis patients and may be related to insulin resistance.Glucose transporter-4 (GLUT4),one of the most important glucose transporte...Decreased glucose tolerance and diabetes are frequently observed in advanced liver cirrhosis patients and may be related to insulin resistance.Glucose transporter-4 (GLUT4),one of the most important glucose transporters,plays a key role in the development of type 2 diabetes.In order to study the mechanism of insulin resistance in liver cirrhosis patients,we measured the insulin sensitivity index and determined the GLUT4 protein and mRNA contents of skeletal muscle by Western blotting and reverse transcription-polymerase chain reaction (RT-PCR),respectively,in normal people and liver cirrhosis patients.The results showed that the levels of glucose,insulin,and C-peptide in two liver cirrhosis groups were higher and the insulin sensitivity index lower than those of the normal control group.The sensitivity of insulin may decrease with the decline of liver function.However,the contents of GLUT4 protein and mRNA in patients with advanced liver cirrhosis were similar to those of normal controls.In conclusion,insulin resistance is observed in patients with advanced liver cirrhosis but may not be correlated with the skeletal contents of GLUT4 protein and mRNA.展开更多
基金supported by the National Basic Research Program of China (973Program) ( No.2007CB512005)the National Natural Science Foundation of China (No.30770785)+1 种基金the Cultivation Fund of the Key Scientific and Technological Innovation Pro-ject of the Ministry of Education of China (No.705045)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20050698012)
文摘Objective To evaluate the effect of low-dose insulin [1 U/(kg·d)] in combination with selenium [180 g/(kg·d)] on general physiological parameters and glucose transporter (GLUT4) level in skeletal muscle of streptozotocin (STZ)-induced diabetic rats. Methods Diabetic rats were treated with insulin,selenium,and insulin and selenium in combination for four weeks. The level of blood glucose was determined using One Touch SureStep Blood Glucose meter and the level of GLUT4 in skeletal muscle was examined by immunoblotting and immunohistochemistry. Results Our data showed that insulin in combination with selenium could significantly lower blood glucose level and restore the disturbance in GLUT4 level in skeletal muscle. Treatment with insulin was only partially effective in restoring diabetic alterations. Conclusion It can be concluded that there is a synergistic action between insulin and selenium,and that treatment of diabetic rats with combined doses of insulin and selenium is effective in the normalization of blood glucose level and correction of altered GLUT4 distribution in skeletal muscle of diabetic rats.
文摘BACKGROUND Synaptotagmins(SYTs)are a family of 17 membrane transporters that function as calcium ion sensors during the release of Ca2+-dependent neurotransmitters and hormones.However,few studies have reported whether members of the SYT family play a role in glucose uptake in diabetic retinopathy(DR)through Ca2+/glucose transporter-1(GLUT1)and the possible regulatory mechanism of SYTs.AIM To elucidate the role of the SYT family in the regulation of glucose transport in retinal pigment epithelial cells and explore its potential as a therapeutic target for the clinical management of DR.METHODS DR was induced by streptozotocin in C57BL/6J mice and by high glucose medium in human retinal pigment epithelial cells(ARPE-19).Bioinformatics analysis,reverse transcriptase-polymerase chain reaction,Western blot,flow cytometry,ELISA,HE staining,and TUNEL staining were used for analysis.RESULTS Six differentially expressed proteins(SYT2,SYT3,SYT4,SYT7,SYT11,and SYT13)were found between the DR and control groups,and SYT4 was highly expressed.Hyperglycemia induces SYT4 overexpression,manipulates Ca2+influx to induce GLUT1 fusion with the plasma membrane,promotes abnormal expression of the glucose transporter GLUT1 and excessive glucose uptake,induces ARPE-19 cell apoptosis,and promotes DR progression.Parkin deficiency inhibits the proteasomal degradation of SYT4 in DR,resulting in SYT4 accumulation and enhanced GLUT1 fusion with the plasma membrane,and these effects were blocked by oe-Parkin treatment.Moreover,dysregulation of the myelin transcription factor 1(Myt1)-induced transcription of SYT4 in DR further activated the SYT4-mediated stimulus-secretion coupling process,and this process was inhibited in the oe-MYT1-treated group.CONCLUSION Our study reveals the key role of SYT4 in regulating glucose transport in retinal pigment epithelial cells during the pathogenesis of DR and the underlying mechanism and suggests potential therapeutic targets for clinical DR.
文摘Objective: The main goal of the present study was to investigate the effect of iron supplementation on glucose transporter 4 expressions in adipose tissue and skeletal muscle in female rats during pregnancy. Methods: Twenty-four pregnant Sprague-Dawley rats were randomly divided into 2 groups: a control group with a standard diet (containing iron 150 mg/kg) and an iron-supplementation group with a high-iron diet (containing iron 700 mg/kg) from day 0 to day 21 of pregnancy. Intraperitoneal glucose tolerance test was performed on gestational day 19. On gestational day 21, all of the pregnant rats from each group were sacrificed. The mean neonatal weights were measured and samples of maternal intraabdominal adipose tissue and skeletal muscle were taken to measure the expression of Glucose Transporter 4 (GLUT4) mRNA and protein. Results: Glucose tolerance decreased significantly in the iron supplementation group compared to the control group. The mean neonatal weights in the iron supplementation group were higher than that in the control group. Levels of GLUT4 mRNA in the adipose tissue were reduced by the administrations of high-iron diet. The skeletal muscle GLUT4 mRNA levels were not changed significantly by iron supplementation. Expression of GLUT4 protein both in the adipose tissue and skeletal muscle reduced significantly. Conclusion: These results suggest that iron supplementation during pregnancy would increase neonatal weights and could decrease maternal glucose tolerance by interfering GLUT4 expression in adipose tissue and skeletal muscle of rats.
基金financially supported by National Natural Science Foundation of China grants(81573561,81911540487,31070744)the Fundamental Research Funds for the Central Universities,South-Central University for Nationalities(CZR18003).
文摘Nuciferine contained in lotus leaves have been confirmed to have the effect of ameliorating hyperlipemia and hyperglycemia.A laser scanning confocal microscope was used to track the translocation of glucose transporter 4(GLUT4)in L6 cells and the changes in intracellular Ca^(2+)levels in real time,and related protease inhibitors combined with western blotting were used to explore the mechanism of nuciferine.Meanwhile,KK-Ay mice,the spontaneous type 2 diabetic mice,were used to evaluate the in vivo activity of nuciferine.In this study,the in vitro studies indicated that nuciferine-induced GLUT4 translocation was regulated by G protein-PLC-PKC and AMPK pathways and nuciferine-enhanced intracellular Ca^(2+)was mediated by G protein-PLC-IP3-IP3R pathway,the increase in intracellular Ca^(2+)caused by nuciferine was not directly related to GLUT4 translocation,but both promote glucose uptake.The in vivo results suggested that nuciferine ameliorated weight gain induced by high-fat diet,abnormal lipid metabolism and the symptoms of insulin resistance in KK-Ay diabetic mice.Western blot results suggested that nuciferine increased AMPK and PKC phosphorylation levels in skeletal muscle and liver,and enhanced GLUT4 expression in skeletal muscle.Taken together,this research showed that nuciferine has the non-negligible potential in the treatment of type 2 diabetes mellitus.
基金supported by National Natural Science Foundation of China(32072212)Multi-Year Research Grant of University of Macao(MYRG2018-00169-ICMS)+5 种基金Science and Technology Development Fund of Macao(FDCT)(0098/2020/A)MICINN supporting the Ramón y Cajal grant for M.A.Prieto(RYC-201722891)Jianbo Xiao(RYC2020-030365-I)Xunta de Galicia supporting the Axudas Conecta Peme,the IN852A 2018/58 Neuro Food Project,the program EXCELENCIA-ED431F 2020/12the pre-doctoral grants of P.García-Oliveira(ED481A-2019/295)to Ibero-American Program on Science and Technology(CYTED-AQUA-CIBUS,P317RT0003).
文摘Dietary flavonoids are abundant in natural plants and possess multiple pharmacological and nutritional activities.In this study,apigenin,luteolin,and baicalein were chosen to evaluate their anti-diabetic effect in high-glucose and dexamethasone induced insulin-resistant(IR)HepG2 cells.All flavonoids improves the glucose consumption and glycogen synthesis abilities in IR-HepG2 cells via activating glucose transporter protein 4(GLUT4)and phosphor-glycogen synthase kinase(GSK-3β).These fl avonoids signifi cantly inhibited the production of reactive oxygen species(ROS)and advanced glycation end-products(AGEs),which were closely related to the suppression of the phosphorylation form of NF-κB and P65.The expression levels of insulin receptor substrate-1(IRS-1),insulin receptor substrate-2(IRS-2)and phosphatidylinositol 3-kinase(PI3K)/protein kinase B(Akt)pathway in IR-HepG2 cells were all partially activated by the fl avonoids,with variable effects.Furthermore,the intracellular metabolic conditions of the fl avonoids were also evaluated.
文摘The mechanisms of Gardeniae Fructus (GF) for anti-hyperglycemic action were demonstrated in streptozotocin (STZ)-diabetic mice. Six hours after single intraperitoneal administration of GF (300 mg/kg) or H2O into 3 hour-fasted STZ-diabetic mice, glucose and insulin tolerances were assessed by intraperitoneal glucose (1.5 g/kg) tolerance test (IPGTT) and intraperitoneal insulin (0.65 U/kg) tolerance test (IPITT), respectively. Effects of GF on insulin signaling pathways in soleus muscle such as glucose uptake, expression of glucose transporter 4 (GLUT4) in the plasma membrane and phosphorylation of Akt (P-Akt) in cytosolic fraction were examined in STZ-diabetic mice. In IPGTT test, GF significantly accelerated clearance of exogenous glucose and its glucose-lowering action was greater than H2O-treated controlin STZ-diabetic mice. GF also promoted an exogenous glucose-increased insulin level in STZ-diabetic mice. In IPITT test, GF decreased glucose level to the greater extent than H2O-treated control in STZ-diabetic mice. Furthermore, GF significantly decreased high HOMA-IR in STZ-diabetic mice from 21.6 ± 2.4 to 12.4 ± 1.9 (mg/dl × μU/ml). These results implied that GF improved insulin resistance in STZ-diabetic mice. GF increased glucose uptake of soleus muscle 1.5 times greater than H2O-treated control in STZ-diabetic mice. GF enlarged insulin (10 nmol/ml)-increased glucose uptake to 1.8 time-greater. Correspondingly, GF increased expression of GLUT4 in the plasma membrane of soleus muscle to 1.4 time-greater, and P-Akt in the cytosolic fraction of soleus muscle to 1.9 time-greater than those in H2O-treated control. In conclusion, the improvement of GF on insulin resistance is associated with the repair of insulin signaling via P-Akt, GLUT4 and glucose uptake pathway in soleus muscle of STZ-diabetic mice.
文摘Type 2 diabetes mellitus (T2DM) which is characterized by insulin resistance in muscle and adipose tissues is a major problem worldwide. Plant based medications are well known from ancient times for possessing antidiabetic properties. Amongst them, <em>Gymnema sylvestre</em> (GS) is one such antidiabetic medicinal plant which has been used traditionally over the years for the treatment of T2DM. The aim of the present study was to investigate the effect of triterpene glycoside (TG), an active fraction isolated from ethanolic extract of <em>Gymnema sylvestre</em> (EEGS) on a battery of targets;glucose transporter (GLUT- 4), peroxisome proliferator activator receptor gamma (PPAR-γ), adiponectin and leptin involved in glucose transport and metabolism. No cytotoxic effects were observed in treated cells up to 600 μg/ml of TG as measured by MTT and ROS assays. Elevation of GLUT-4 and PPAR-γ by TG in association with glucose transport supported the upregulation of glucose uptake at concentrations of 50 and 100 μg/ml respectively. Additionally, TG showed higher expression of adiponectin and leptin, confirming the favorable pharmacological effect of TG on insulin resistance. The results were comparable to the known antidiabetic drug pioglitazone and commercial standard DAG. Thus TG could be considered as a safe nutraceutical candidate/functional phytoingredient in amelioration of insulin resistance.
基金This work was supported by the National Key Research and Development Program of China(Grant No.2017YFD0201000)the Hangzhou Science and Technology Development Program of China(Grant No.20190101A01).
文摘Glucose is vital to embryogenesis,as are glucose transporters.Glucose transporter 4(Glut4)is one of the glucose transporters,which is involved in rapid uptake of glucose by various cells and promotes glucose homeostasis.Although energy metabolism in insect reproduction is well known,the molecular mechanism of Glut4 in insect reproduction is poorly understood.We suspect that Glut4 is involved in maintaining glucose concentrations in the ovaries and affecting vitellogenesis,which is critical for subsequent oocyte maturation and insect fertility.Harmonia axyridis(Pallas)is a model organism for genetic research and a natural enemy of insect pests.We studied the influence of the Glut4 gene on the reproduction and development of H.axyridis using RNA interference technology.Reverse transcription quantitative polymerase chain reaction analysis revealed that HaGlut4 was most highly expressed in adults.Knockdown of the HaGlut4 gene reduced the transcript levels of HaGlut4,and the weight and number of eggs produced significantly decreased.In addition,the transcript levels of vitellogenin receptor and vitellogenin in the fat bodies and the ovaries of H.axyridis decreased after the interference of Glut4,and decreased the triglyceride,fatty acid,total amino acid and adenosine triphosphate content of H.axyridis.This resulted in severe blockage of ovary development and reduction of yolk formation;there was no development of ovarioles in the developing oocytes.These changes indicate that a lack of HaGlut4 can impair ovarian development and oocyte maturation and result in decreased fecundity.
基金the National Natural Science Foundation of China (Grant No. 30570912)the National Natural Science Foundation of China (China-Canada Joint Health Research) (Grant No. 30611120532)+1 种基金the Foundation of Tianjin Education Bureau, China to Niu Wenyan (Grant No. 20040106)the Tianjin Municipal Science and Technology Commission, China (Grant Nos. 06YFGPSH03300 and 07JCZDJC07900)
文摘Insulin stimulates the production of PI(3,4,5)P3 in muscle cells, and this is required to stimulate GLUT4 fusion with the plasma membrane. Introduction of exogenous PI(3,4,5)P3 to muscle cells recapitulates insulin's effects on GLUT4 fusion with the plasma membrane, but not glucose uptake. This study aims to explore the mechanism behind this difference. In L6-GLUT4myc muscle cells, the availability of the GLUT4 intracellular C-terminus and extracellular myc epitopes for immunoreactivity on plasma membrane lawns was detected with the corresponding antibody. The availability of the active site of GLUT4 from extracellular medium was assessed by affinity photolabeling with the cell impermeant compound Bio-LC-ATB-BMPA. 100nmol/L insulin and 10μmol/L PI(3,4,5)P3 caused myc signal gain on the plasma membrane lawns by 1.64-fold and 1.58-fold over basal, respectively. Insulin, but not PI(3,4,5)P3, increased photolabeling of GLUT4 and immunolabeling with C-terminus antibody by 2.47-fold and 2.04-fold over basal, respectively. Upon insulin stimulation, the C-terminus signal gain was greater than myc signal gain (2.04-fold vs. 1.64-fold over basal, respectively) in plasma membrane lawns. These results indicate that (i) PI(3,4,5)P3 does not make the active site of GLUT4 available from the extracellular surface despite causing GLUT4 fusion with the plasma membrane; (ii) the availability of the active site of GLUT4 from the extracellular medium and availability of the C-terminus from the cytosolic site are correlated; (iii) in addition to stimulating GLUT4 translocation, insulin stimulation displaces a protein which masks the GLUT4 C-terminus. We propose that a protein which masks the C-terminus also prevents the active site from being available for photolabelling and possibly glucose uptake after treatment with PI(3,4,5)P3.
文摘Decreased glucose tolerance and diabetes are frequently observed in advanced liver cirrhosis patients and may be related to insulin resistance.Glucose transporter-4 (GLUT4),one of the most important glucose transporters,plays a key role in the development of type 2 diabetes.In order to study the mechanism of insulin resistance in liver cirrhosis patients,we measured the insulin sensitivity index and determined the GLUT4 protein and mRNA contents of skeletal muscle by Western blotting and reverse transcription-polymerase chain reaction (RT-PCR),respectively,in normal people and liver cirrhosis patients.The results showed that the levels of glucose,insulin,and C-peptide in two liver cirrhosis groups were higher and the insulin sensitivity index lower than those of the normal control group.The sensitivity of insulin may decrease with the decline of liver function.However,the contents of GLUT4 protein and mRNA in patients with advanced liver cirrhosis were similar to those of normal controls.In conclusion,insulin resistance is observed in patients with advanced liver cirrhosis but may not be correlated with the skeletal contents of GLUT4 protein and mRNA.