期刊文献+
共找到67,865篇文章
< 1 2 250 >
每页显示 20 50 100
Network pharmacology and molecular docking identify mechanisms of medicinal plant-derived 1,2,3,4,6-penta-O-galloyl-beta-D-glucose treating gastric cancer
1
作者 MAN REN YUAN YANG +3 位作者 DAN LI NANNAN ZHAO YUPING WANG YONGNING ZHOU 《BIOCELL》 SCIE 2023年第5期977-989,共13页
Background:1,2,3,4,6-penta-O-galloyl-beta-D-glucose(PGG)is a natural polyphenolic compound derived from multiple medicinal plants with favorable anticancer activity.Methods:In this study,the mechanisms of PGG against ... Background:1,2,3,4,6-penta-O-galloyl-beta-D-glucose(PGG)is a natural polyphenolic compound derived from multiple medicinal plants with favorable anticancer activity.Methods:In this study,the mechanisms of PGG against gastric cancer were explored through network pharmacology and molecular docking.First,the targets of PGG were searched in the Herbal Ingredients’Targets(HIT),Similarity Ensemble Approach(SEA),and Super-PRED databases.The potential targets related to gastric cancer were predicted from the Human Gene Database(GeneCards)and DisGeNET databases.The intersecting targets of PGG and gastric cancer were obtained by Venn diagram and then subjected to protein-protein interaction analysis to screen hub targets.Functional and pathway enrichment of hub targets were analyzed through Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway databases.The differential expression and survival analysis of hub targets in gastric cancer were performed based on The Cancer Genome Atlas database.Finally,the affinity of PGG with hub targets was visualized by molecular docking.Results:Three hub targets were screened,including mitogen-activated protein kinase 14(MAPK14),BCL2 like 1(BCL2L1),and vascular endothelial growth factor A(VEGFA).MAPK14 had a higher expression,while BCL2L1 and VEGFA had lower expression in gastric cancer than in normal conditions.Enrichment analysis indicated enrichment of these hub targets in MAPK,neurotrophin,programmed death-ligand 1(PD-L1)checkpoint,phosphatidylinositol 3-kinases/protein kinase B(PI3K-Akt),Ras,and hypoxia-inducible factor-1(HIF-1)signaling pathways.Conclusion:Therefore,network pharmacology and molecular docking analyses revealed that PGG exerts a therapeutic efficacy on gastric cancer by multiple targets(MAPK14,BCL2L1,and VEGFA)and pathways(MAPK,PD-L1 checkpoint,PI3K-Akt,Ras,and HIF-1 pathways). 展开更多
关键词 1 2 3 4 6-penta-O-galloyl-beta-D-glucose Gastric cancer Network pharmacology Molecular docking MAPK14 BCL2L1 VEGFA
下载PDF
Periodic Addition of Glucose Suppressed Cyanobacterial Abundance in Additive Lake Water Samples during the Entire Bloom Season
2
作者 David Linz Ian Struewing +6 位作者 Nathan Sienkiewicz Alan David Steinman Charlyn Gwen Partridge Kyle McIntosh Joel Allen Jingrang Lu Stephen Vesper 《Journal of Water Resource and Protection》 CAS 2024年第2期140-155,共16页
Previously, we showed that prophylactic addition of glucose to Harsha Lake water samples could inhibit cyanobacteria growth, at least for a short period of time. The current study tested cyanobacterial control with gl... Previously, we showed that prophylactic addition of glucose to Harsha Lake water samples could inhibit cyanobacteria growth, at least for a short period of time. The current study tested cyanobacterial control with glucose for the entire Harsha Lake bloom season. Water samples (1000 ml) were collected weekly from Harsha Lake during the algal-bloom season starting June 9 and lasting until August 24, 2022. To each of two 7-liter polypropylene containers, 500 ml of Harsha Lake water was added, and the containers were placed in a controlled environment chamber. To one container labeled “Treated,” 0.15 g of glucose was added, and nothing was added to the container labeled “Control.” After that, three 25 ml samples from each container were collected and used for 16S rRNA gene sequencing each week. Then 1000 ml of Harsha Lake water was newly collected each week, with 500 ml added to each container, along with the addition of 0.15 g glucose to the “Treated” container. Sequencing data were used to examine differences in the composition of bacterial communities between Treated and Control containers. Treatment with glucose altered the microbial communities by 1) reducing taxonomic diversity, 2) largely eliminating cyanobacterial taxa, and 3) increasing the relative abundance of subsets of non-cyanobacterial taxa (such as Proteobacteria and Actinobacteriota). These effects were observed across time despite weekly inputs derived directly from Lake water. The addition of glucose to a container receiving weekly additions of Lake water suppressed the cyanobacterial populations during the entire summer bloom season. The glucose appears to stimulate the diversity of certain bacterial taxa at the expense of the cyanobacteria. 展开更多
关键词 glucose CYANOBACTERIA 16S Amplicon Sequencing Microbial Community
下载PDF
Metabologenomics and network pharmacology to understand the molecular mechanism of cancer research
3
作者 Yusuf Tutar 《World Journal of Clinical Cases》 SCIE 2024年第3期474-478,共5页
In this editorial I comment on the article“Network pharmacological and molecular docking study of the effect of Liu-Wei-Bu-Qi capsule on lung cancer”published in the recent issue of the World Journal of Clinical Cas... In this editorial I comment on the article“Network pharmacological and molecular docking study of the effect of Liu-Wei-Bu-Qi capsule on lung cancer”published in the recent issue of the World Journal of Clinical Cases 2023 November 6;11(31):7593-7609.Almost all living forms are able to manufacture particular chemicals-metabolites that enable them to differentiate themselves from one another and to overcome the unique obstacles they encounter in their natural habitats.Numerous methods for chemical warfare,communication,nutrition acquisition,and stress prevention are made possible by these specialized metabolites.Metabolomics is a popular technique for collecting direct mea-surements of metabolic activity from many biological systems.However,con-fusing metabolite identification is a typical issue,and biochemical interpretation is frequently constrained by imprecise and erroneous genome-based estimates of enzyme activity.Metabolite annotation and gene integration uses a biochemical reaction network to obtain a metabolite-gene association so called metabologe-nomics.This network uses an approach that emphasizes metabolite-gene consensus via biochemical processes.Combining metabolomics and genomics data is beneficial.Furthermore,computer networking proposes that using meta-bolomics data may improve annotations in sequenced species and provide testable hypotheses for specific biochemical processes.CONCLUSION The genome and metabolites of biological organisms are not fully characterized with current technologies.However,increasing high-throughput metabolomics and genomics data provide promising generation of paired data sets to understand the molecular mechanism of biochemical processes as well as determining targets for pharmaceutical drug design.Contemporary network infrastructures to integrate omics analysis can provide molecular mechanism of biochemical pathways.Furthermore,clinical data may be integrated to gene expression–metabolite expression by system genetics approach.Calculating pair-wise correlations and weighted correlation network analysis provide the basis of this integration[11-13].The occurrence of strong correlations between classified metabolites and co-expression transcripts implies either various roles of metabolites or linkages between metabolic pathways and the immune system. 展开更多
关键词 Network pharmacology Metabologenomics GENOME PATHWAYS CANCER
下载PDF
Boosted Electrocatalytic Glucose Oxidation Reaction on Noble-Metal-Free MoO_(3)-Decorated Carbon Nanotubes
4
作者 Yu-Long Men Ning Dou +3 位作者 Yiyi Zhao Yan Huang Lei Zhang Peng Liu 《Transactions of Tianjin University》 EI CAS 2024年第1期63-73,共11页
Electrocatalytic glucose oxidation reaction(GOR)has attracted much attention owing to its crucial role in biofuel cell fabrication.Herein,we load MoO_(3)nanoparticles on carbon nanotubes(CNTs)and use a discharge proce... Electrocatalytic glucose oxidation reaction(GOR)has attracted much attention owing to its crucial role in biofuel cell fabrication.Herein,we load MoO_(3)nanoparticles on carbon nanotubes(CNTs)and use a discharge process to prepare a noblemetal-free MC-60 catalyst containing MoO_(3),Mo_(2)C,and a Mo_(2)C–MoO_(3)interface.In the GOR,MC-60 shows activity as high as 745μA/(mmol/L cm^(2)),considerably higher than those of the Pt/CNT(270μA/(mmol/L cm^(2)))and Au/CNT catalysts(110μA/(mmol/L cm^(2))).In the GOR,the response minimum on MC-60 is as low as 8μmol/L,with a steady-state response time of only 3 s.Moreover,MC-60 has superior stability and anti-interference ability to impurities in the GOR.The better performance of MC-60 in the GOR is attributed to the abundant Mo sites bonding to C and O atoms at the MoO_(3)–Mo_(2)C interface.These Mo sites create active sites for promoting glucose adsorption and oxidation,enhancing MC-60 performance in the GOR.Thus,these results help to fabricate more effi cient noble-metal-free catalysts for the fabrication of glucose-based biofuel cells. 展开更多
关键词 Interface eff ect ELECTROCATALYSIS Molybdenum oxide glucose Oxidation reaction
下载PDF
Fecal microbiota transplantation:whole grain highland barley improves glucose metabolism by changing gut microbiota
5
作者 Xin Ren Fulong Zhang +3 位作者 Min Zhang Yuan Fang Zenglong Chen Meili Huan 《Food Science and Human Wellness》 SCIE CAS CSCD 2024年第4期2014-2024,共11页
Highland barley(HB)is a high-altitude cereal with rich nutritional components and potential health benefits.To clarify its hypoglycemic effect and mechanism,we investigated the effect of whole grain HB and fecal micro... Highland barley(HB)is a high-altitude cereal with rich nutritional components and potential health benefits.To clarify its hypoglycemic effect and mechanism,we investigated the effect of whole grain HB and fecal microbiota transplantation(FMT)on glucose metabolism and gut microbiota in high-fat diet and streptozotocin(HFD/STZ)-induced diabetic mice.The results showed that HB(40%)significantly decreased fasting blood glucose and the area under the glucose tolerance curve,significantly increased insulin secretion and improved insulin resistance in HFD/STZ-induced diabetic mice(P<0.05).Inflammatory factors and blood lipid indices were also significantly alleviated after 12 weeks of 40%HB intervention(P<0.05).Additionally,beneficial bacteria,such as Bifidobacterium and Akkermansia,were significantly enriched in the gut of diabetic mice after whole grain HB intervention.Meanwhile,the results of further FMT experiments verified that the fecal microbiota after the 40%HB intervention not only significantly increased the relative abundance of Bifidobacterium and Akkermansia but also effectively improved glucose metabolism and alleviated the inflammatory state in HFD/STZ-induced diabetic mice.Collectively,our study confirmed the bridge role of gut microbiota in improving glucose metabolism of whole grain HB,which could promote the development of precision nutrition. 展开更多
关键词 Highland barley DIABETES glucose metabolism Gut microbiota Fecal bacteria transplantation
下载PDF
Effects of different doses of glucose and fructose on central metabolic pathways and intercellular wireless communication networks in humans
6
作者 Dingqiang Lu Yujiao Liu +9 位作者 Miao Zhao Shuai Yuan Danyang Liu Xinqian Wang Yixuan Liu Yifei Zhang Ming Li Yufeng Lü Guangchang Pang Ruijuan Ren 《Food Science and Human Wellness》 SCIE CAS CSCD 2024年第4期1906-1916,共11页
Fructose and glucose are often widely used in food processing and may contribute to many metabolic diseases.To observe the effects of different doses of glucose and fructose on human metabolism and cellular communicat... Fructose and glucose are often widely used in food processing and may contribute to many metabolic diseases.To observe the effects of different doses of glucose and fructose on human metabolism and cellular communication,volunteers were given low,medium,and high doses of glucose and fructose.Serum cytokines,glucose,lactate,nicotinamide adenine dinucleotide(NADH)and metabolic enzymes were assayed,and central carbon metabolic pathway networks and cytokine communication networks were constructed.The results showed that the glucose and fructose groups basically maintained the trend of decreasing catabolism and increasing anabolism with increasing dose.Compared with glucose,low-dose fructose decreased catabolism and increased anabolism,significantly enhanced the expression of the inflammatory cytokine interferon-γ(IFN-γ),macrophage-derived chemokine(MDC),induced protein-10(IP-10),and eotaxin,and significantly reduced the activity of isocitrate dehydrogenase(ICDH)and pyruvate dehydrogenase complexes(PDHC).Both medium and high doses of fructose increase catabolism and anabolism,and there are more cytokines and enzymes with significant changes.Furthermore,multiple cytokines and enzymes show strong relevance to metabolic regulation by altering the transcription and expression of enzymes in central carbon metabolic pathways.Therefore,excessive intake of fructose should be reduced to avoid excessive inflammatory responses,allergic reactions and autoimmune diseases. 展开更多
关键词 FRUCTOSE glucose Central carbon metabolic pathway Metabolic enzymes Cytokine network
下载PDF
Voluntary wheel running ameliorated the deleterious effects of high-fat diet on glucose metabolism,gut microbiota and microbial-associated metabolites
7
作者 Ling Zhang Wenyu Zou +4 位作者 Yongyan Hu Honghua Wu Ying Gao Junqing Zhang Jia Zheng 《Food Science and Human Wellness》 SCIE CSCD 2024年第3期1672-1684,共13页
Exercise training is critical for the early prevention and treatment of obesity and diabetes mellitus.However,the mechanism with gut microbiota and fecal metabolites underlying the effects of voluntary wheel running o... Exercise training is critical for the early prevention and treatment of obesity and diabetes mellitus.However,the mechanism with gut microbiota and fecal metabolites underlying the effects of voluntary wheel running on high-fat diet induced abnormal glucose metabolism has not been fully elaborated.C57BL/6 male mice were randomly assigned to 4 groups according to diets(fed with normal chow diet or high-fat diet)and running paradigm(housed in static cage or with voluntary running wheel).An integrative 16S rDNA sequencing and metabolites profiling was synchronously performed to characterize the effects of voluntary wheel running on gut microbiota and metabolites.It showed that voluntary wheel running prevented the detrimental effects of high-fat feeding on glucose metabolism 16S rDNA sequencing showed remarkable changes in Rikenella and Marvinbryantia genera.Metabolic profiling indicated multiple altered metabolites,which were enriched in secondary bile acid biosynthesis signaling.In conclusion,our study indicated that voluntary wheel running significantly improved glucose metabolism and counteracted the deleterious effects of high-fat feeding on body weight and glucose intolerance.We further found that voluntary wheel running could integratively program gut microbiota composition and fecal metabolites changes,and may regulate muricholic acid metabolism and secondary bile acid biosynthesis in high-fat fed mice. 展开更多
关键词 High-fat diet Voluntary wheel running Gut microbiota Metabolomics glucose metabolism
下载PDF
Identification of anti-gastric cancer effects and molecular mechanisms of resveratrol: From network pharmacology and bioinformatics to experimental validation
8
作者 Ying-Qian Ma Ming Zhang +5 位作者 Zhen-Hua Sun Hong-Yue Tang Ying Wang Jiang-Xue Liu Zhan-Xue Zhang Chao Wang 《World Journal of Gastrointestinal Oncology》 SCIE 2024年第2期493-513,共21页
BACKGROUND Gastric cancer(GC)is one of the most aggressive malignancies with limited therapeutic options and a poor prognosis.Resveratrol,a non-flavonoid poly-phenolic compound found in a variety of Chinese medicinal ... BACKGROUND Gastric cancer(GC)is one of the most aggressive malignancies with limited therapeutic options and a poor prognosis.Resveratrol,a non-flavonoid poly-phenolic compound found in a variety of Chinese medicinal materials,has shown excellent anti-GC effect.However,its exact mechanisms of action in GC have not been clarified.AIM To identify the effects of resveratrol on GC progression and explore the related molecular mechanisms.METHODS Action targets of resveratrol and GC-related targets were screened from public databases.The overlapping targets between the two were confirmed using a Venn diagram,and a“Resveratrol-Target-GC”network was constructed using Cyto-scape software version 3.9.1.The protein-protein interaction(PPI)network was constructed using STRING database and core targets were identified by PPI network analysis.The Database for Annotation,Visualization and Integrated A total of 378 resveratrol action targets and 2154 GC disease targets were obtained from public databases,and 181 intersection targets between the two were screened by Venn diagram.The top 20 core targets were identified by PPI network analysis of the overlapping targets.GO function analysis mainly involved protein binding,identical protein binding,cytoplasm,nucleus,negative regulation of apoptotic process and response to xenobiotic stimulus.KEGG enrichment analysis suggested that the involved signaling pathways mainly included PI3K-AKT signaling pathway,MAPK signaling pathway,IL-17 signaling pathway,TNF signaling pathway,ErbB signaling pathway,etc.FBJ murine osteosarcoma viral oncogene homolog(FOS)and matrix metallopeptidase 9(MMP9)were selected by differential expression analysis,and they were closely associated with immune infiltration.Molecular docking results showed that resveratrol docked well with these two targets.Resveratrol treatment arrested the cell cycle at the S phase,induced apoptosis,and weakened viability,migration and invasion in a dose-dependent manner.Furthermore,resveratrol could exhibit anti-GC effect by regulating FOS and MMP9 expression.CONCLUSION The anti-GC effects of resveratrol are related to the inhibition of cell proliferation,migration,invasion and induction of cell cycle arrest and apoptosis by targeting FOS and MMP9. 展开更多
关键词 RESVERATROL Gastric cancer Network pharmacology BIOINFORMATICS Molecular docking
下载PDF
Novel Sustainable Cellulose Acetate Based Biosensor for Glucose Detection
9
作者 M.F.Elkady E.M.El-Sayed +2 位作者 Mahmoud Samy Omneya A.Koriem H.Shokry Hassan 《Journal of Renewable Materials》 EI CAS 2024年第2期369-380,共12页
In this study,green zinc oxide(ZnO)/polypyrrole(Ppy)/cellulose acetate(CA)film has been synthesized via solvent casting.This film was used as supporting material for glucose oxidase(GOx)to sensitize a glucose biosenso... In this study,green zinc oxide(ZnO)/polypyrrole(Ppy)/cellulose acetate(CA)film has been synthesized via solvent casting.This film was used as supporting material for glucose oxidase(GOx)to sensitize a glucose biosensor.ZnO nanoparticles have been prepared via the green route using olive leaves extract as a reductant.ZnO/Ppy nanocomposite has been synthesized by a simple in-situ chemical oxidative polymerization of pyrrole(Py)monomer using ferric chloride(FeCl3)as an oxidizing agent.The produced materials and the composite films were characterized using X-ray diffraction analysis(XRD),scanning electron microscope(SEM),Fourier transform infrared(FTIR)and thermogravimetric analysis(TGA).Glucose oxidase was successfully immobilized on the surface of the prepared film and then ZnO/Ppy/CA/GOx composite was sputtered with platinum electrode for the current determination at different initial concentrations of glucose.Current measurements proved the suitability and the high sensitivity of the constructed biosensor for the detection of glucose levels in different samples.The performance of the prepared biosensor has been assessed by measuring and comparing glucose concentrations up to 800 ppm.The results affirmed the reliability of the developed biosensor towards real samples which suggests the wide-scale application of the proposed biosensor. 展开更多
关键词 Biosensors composite films glucose POLYPYRROLE green ZnO cellulose acetate
下载PDF
Protective mechanism of quercetin in alleviating sepsis-related acute respiratory distress syndrome based on network pharmacology and in vitro experiments
10
作者 Weichao Ding Wei Zhang +7 位作者 Juan Chen Mengmeng Wang Yi Ren Jing Feng Xiaoqin Han Xiaohang Ji Shinan Nie Zhaorui Sun 《World Journal of Emergency Medicine》 SCIE CAS CSCD 2024年第2期111-120,共10页
BACKGROUND:Sepsis-related acute respiratory distress syndrome(ARDS)has a high mortality rate,and no effective treatment is available currently.Quercetin is a natural plant product with many pharmacological activities,... BACKGROUND:Sepsis-related acute respiratory distress syndrome(ARDS)has a high mortality rate,and no effective treatment is available currently.Quercetin is a natural plant product with many pharmacological activities,such as antioxidative,anti-apoptotic,and anti-inflammatory effects.This study aimed to elucidate the protective mechanism of quercetin against sepsis-related ARDS.METHODS:In this study,network pharmacology and in vitro experiments were used to investigate the underlying mechanisms of quercetin against sepsis-related ARDS.Core targets and signaling pathways of quercetin against sepsis-related ARDS were screened and were verified by in vitro experiments.RESULTS:A total of 4,230 targets of quercetin,360 disease targets of sepsis-related ARDS,and 211 intersection targets were obtained via database screening.Among the 211 intersection targets,interleukin-6(IL-6),tumor necrosis factor(TNF),albumin(ALB),AKT serine/threonine kinase 1(AKT1),and interleukin-1β(IL-1β)were identified as the core targets.A Gene Ontology(GO)enrichment analysis revealed 894 genes involved in the inflammatory response,apoptosis regulation,and response to hypoxia.Kyoto Encyclopedia of Genes and Genomes(KEGG)enrichment analysis identified 106 pathways.After eliminating and generalizing,the hypoxia-inducible factor-1(HIF-1),TNF,nuclear factor-κB(NF-κB),and nucleotide-binding and oligomerization domain(NOD)-like receptor signaling pathways were identified.Molecular docking revealed that quercetin had good binding activity with the core targets.Moreover,quercetin blocked the HIF-1,TNF,NF-κB,and NODlike receptor signaling pathways in lipopolysaccharide(LPS)-induced murine alveolar macrophage(MH-S)cells.It also suppressed the inflammatory response,oxidative reactions,and cell apoptosis.CONCLUSION:Quercetin ameliorates sepsis-related ARDS by binding to its core targets and blocking the HIF-1,TNF,NF-κB,and NOD-like receptor signaling pathways to reduce inflammation,cell apoptosis,and oxidative stress. 展开更多
关键词 QUERCETIN Sepsis-related acute respiratory distress syndrome Network pharmacology
下载PDF
Microarrow sensor array with enhanced skin adhesion for transdermal continuous monitoring of glucose and reactive oxygen species
11
作者 Xinshuo Huang Baoming Liang +9 位作者 Shantao Zheng Feifei Wu Mengyi He Shuang Huang Jingbo Yang Qiangqiang Ouyang Fanmao Liu Jing Liu Hui-jiuan Chen Xi Xie 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第1期14-30,共17页
Conventional blood sampling for glucose detection is prone to cause pain and fails to continuously record glucose fluctuations in vivo.Continuous glucose monitoring based on implantable electrodes could induce pain an... Conventional blood sampling for glucose detection is prone to cause pain and fails to continuously record glucose fluctuations in vivo.Continuous glucose monitoring based on implantable electrodes could induce pain and potential tissue inflammation,and the presence of reactive oxygen species(ROS)due to inflammationmay affect glucose detection.Microneedle technology is less invasive,yet microneedle adhesion with skin tissue is limited.In this work,we developed a microarrow sensor array(MASA),which provided enhanced skin surface adhesion and enabled simultaneous detection of glucose and H_(2)O_(2)(representative of ROS)in interstitial fluid in vivo.The microarrows fabricated via laser micromachining were modified with functional coating and integrated into a patch of a three-dimensional(3D)microneedle array.Due to the arrow tip mechanically interlocking with the tissue,the microarrow array could better adhere to the skin surface after penetration into skin.The MASA was demonstrated to provide continuous in vivo monitoring of glucose and H_(2)O_(2) concentrations,with the detection of H_(2)O_(2) providing a valuable reference for assessing the inflammation state.Finally,the MASA was integrated into a monitoring system using custom circuitry.This work provides a promising tool for the stable and reliable monitoring of blood glucose in diabetic patients. 展开更多
关键词 Microarrow sensor array glucose sensing Reactive oxygen species sensing Integrated system Continuous monitoring
下载PDF
Mechanism of pachymic acid in the treatment of gastric cancer based on network pharmacology and experimental verification
12
作者 Yu-Hua Du Jian-Jun Zhao +6 位作者 Xia Li Shi-Cong Huang Na Ning Guo-Qing Chen Yi Yang Yi Nan Ling Yuan 《World Journal of Gastrointestinal Oncology》 SCIE 2024年第1期30-50,共21页
BACKGROUND Pachymic acid(PA)is derived from Poria cocos.PA has a variety of pharmacological and inhibitory effects on various tumors.However,the mechanism of action of PA in gastric cancer(GC)remains unclear.AIM To in... BACKGROUND Pachymic acid(PA)is derived from Poria cocos.PA has a variety of pharmacological and inhibitory effects on various tumors.However,the mechanism of action of PA in gastric cancer(GC)remains unclear.AIM To investigate the mechanism of PA in treating GC via the combination of network pharmacology and experimental verification.METHODS The GeneCards and OMIM databases were used to derive the GC targets,while the Pharm Mapper database provided the PA targets.Utilizing the STRING database,a protein-protein interaction network was constructed and core targets were screened.The analyses of Gene Ontology,Kyoto Encyclopedia of Genes and Genomes(KEGG),and gene set enrichment analysis were conducted,and molecular docking and clinical correlation analyses were performed on the core targets.Ultimately,the network pharmacology findings were validated through in vitro cell assays,encompassing assessments of cell viability,apoptosis,cell cycle,cloning,and western blot analysis.RESULTS According to network pharmacology analysis,the core targets were screened,and the PI3K/AKT signaling pathway is likely to be the mechanism by which PA effectively treats GC,according to KEGG enrichment analysis.The experimental findings showed that PA could control PI3K/AKT signaling to prevent GC cell proliferation,induce apoptosis,and pause the cell cycle.CONCLUSION Network pharmacology demonstrated that PA could treat GC by controlling a variety of signaling pathways and acting on a variety of targets.This has also been supported by in vitro cell studies,which serve as benchmarks for further research. 展开更多
关键词 Pachymic acid Gastric cancer Network pharmacology Enrichment analysis Cell proliferation
下载PDF
Evaluation of the famous classic formula Sanhua decoction based on network pharmacology and multi-component quantitative analysis
13
作者 Xin Zhang Wan-Cui Wang +6 位作者 Jin-Kui Zhang Wei-Mei Zhang Peng-Wang Wang Peng-Cheng Lin Yong-Chang Lu Xia Li Wen-Yuan Gao 《Traditional Medicine Research》 2024年第1期1-13,共13页
Background:Sanhua decoction has significant effects in the treatment of stroke.The study of the Sanhua decoction material benchmark was carried out to analyze the value transfer relationship between the Chinese herbal... Background:Sanhua decoction has significant effects in the treatment of stroke.The study of the Sanhua decoction material benchmark was carried out to analyze the value transfer relationship between the Chinese herbal pieces and the substance benchmark.Methods:Network pharmacology was employed to investigate the potential active components and molecular mechanisms of Sanhua decoction in the treatment of stroke.15 batches of Sanhua decoction lyophilized powder were prepared using traditional formulas and subjected to high-performance liquid chromatography analysis to generate fingerprints of the Sanhua decoction substance benchmarks.Then,a multi-component quantitative analysis method was established,allowing for the simultaneous determination of ten components,to study the transfer of quantity values between pieces and substance benchmarks.Results:60 active ingredients were screened from Sanhua decoction by network pharmacology,of which gallic acid,magnolol honokiol,physcion,and aloe-emodin may have a greater effect than other active components.63 key targets and 134 pathways were predicted as the potential mechanism of Sanhua decoction in treating stroke.The fingerprint similarity of the Sanhua decoction substance benchmarks was found to be good among the 15 batches,confirming the 19 common peaks.The content of the 10 components was basically consistent.The components’transfer rates were within 30%of their respective means.Conclusions:This study provided a comprehensive and reliable strategy for the quality evaluation of Sanhua decoction substance benchmarks and held significant importance in improving its application value. 展开更多
关键词 Sanhua decoction classic famous formula HPLC fingerprinting value transfer network pharmacology
下载PDF
Value of glucose transport protein 1 expression in detecting lymph node metastasis in patients with colorectal cancer
14
作者 Hongsik Kim Song-Yi Choi +5 位作者 Tae-Young Heo Kyeong-Rok Kim Jisun Lee Min Young Yoo Taek-Gu Lee Joung-Ho Han 《World Journal of Clinical Cases》 SCIE 2024年第5期931-941,共11页
BACKGROUND There are limited data on the use of glucose transport protein 1(GLUT-1)expre-ssion as a biomarker for predicting lymph node metastasis in patients with colorectal cancer.GLUT-1 and GLUT-3,hexokinase(HK)-II... BACKGROUND There are limited data on the use of glucose transport protein 1(GLUT-1)expre-ssion as a biomarker for predicting lymph node metastasis in patients with colorectal cancer.GLUT-1 and GLUT-3,hexokinase(HK)-II,and hypoxia-induced factor(HIF)-1 expressions may be useful biomarkers for detecting primary tumors and lymph node metastasis when combined with fluorodeoxyglucose(FDG)uptake on positron emission tomography/computed tomography(PET/CT).AIM To evaluate GLUT-1,GLUT-3,HK-II,and HIF-1 expressions as biomarkers for detecting primary tumors and lymph node metastasis with 18F-FDG-PET/CT.METHODS This retrospective study included 169 patients with colorectal cancer who underwent colectomy and preoperative 18F-FDG-PET/CT at Chungbuk National University Hospital between January 2009 and May 2012.Two tissue cores from the central and peripheral areas of the tumors were obtained and were examined by a dedicated pathologist,and the expressions of GLUT-1,GLUT-3,HK-II,and HIF-1 were determined using immunohisto-chemical staining.We analyzed the correlations among their expressions,various clinicopathological factors,and the maximum standardized uptake value(SUVmax)of PET/CT.RESULTS GLUT-1 was found at the center or periphery of the tumors in 109(64.5%)of the 169 patients.GLUT-1 positivity was significantly correlated with the SUVmax of the primary tumor and lymph nodes,regardless of the biopsy site(tumor center,P<0.001 and P=0.012;tumor periphery,P=0.030 and P=0.010,respectively).GLUT-1 positivity and negativity were associated with higher and lower sensitivities of PET/CT,respectively,for the detection of lymph node metastasis,regardless of the biopsy site.GLUT3,HK-II,and HIF-1 expressions were not significantly correlated with the SUVmax of the primary tumor and lymph nodes.CONCLUSION GLUT-1 expression was significantly correlated with the SUVmax of 18F-FDG-PET/CT for primary tumors and lymph nodes.Clinicians should consider GLUT-1 expression in preoperative endoscopic biopsy in interpreting PET/CT findings. 展开更多
关键词 18F-FDG-PET-CT BIOMARKER Colorectal neoplasms glucose transporter type 1 Lymph node
下载PDF
Influence of blood glucose fluctuations on chemotherapy efficacy and safety in type 2 diabetes mellitus patients complicated with lung carcinoma
15
作者 Tian-Zheng Fang Xian-Qiao Wu +4 位作者 Ting-Qi Zhao Shan-Shan Wang Guo-Mei-Zhi Fu Qing-Long Wu Cheng-Wei Zhou 《World Journal of Diabetes》 SCIE 2024年第4期645-653,共9页
BACKGROUND Patients with type 2 diabetes mellitus(T2DM)have large fluctuations in blood glucose(BG),abnormal metabolic function and low immunity to varying degrees,which increases the risk of malignant tumor diseases ... BACKGROUND Patients with type 2 diabetes mellitus(T2DM)have large fluctuations in blood glucose(BG),abnormal metabolic function and low immunity to varying degrees,which increases the risk of malignant tumor diseases and affects the efficacy of tumor chemotherapy.Controlling hyperglycemia may have important therapeutic implications for cancer patients.AIM To clarify the influence of BG fluctuations on chemotherapy efficacy and safety in T2DM patients complicated with lung carcinoma(LC).METHODS The clinical data of 60 T2DM+LC patients who presented to the First Affiliated Hospital of Ningbo University between January 2019 and January 2021 were retrospectively analyzed.All patients underwent chemotherapy and were grouped as a control group(CG;normal BG fluctuation with a mean fluctuation<3.9 mmol/L)and an observation group(OG;high BG fluctuation with a mean fluctuation≥3.9 mmol/L)based on their BG fluctuations,with 30 cases each.BGrelated indices,tumor markers,serum inflammatory cytokines and adverse reactions were comparatively analyzed.Pearson correlation analysis was performed to analyze the correlation between BG fluctuations and tumor markers.RESULTS The fasting blood glucose and 2-hour postprandial blood glucose levels in the OG were notably elevated compared with those in the CG,together with markedly higher mean amplitude of glycemic excursions(MAGE),mean of daily differences,largest amplitude of glycemic excursions and standard deviation of blood glucose(P<0.05).In addition,the OG exhibited evidently higher levels of carbohydrate antigen 19-9,carbohydrate antigen 125,carcinoembryonic antigen,neuron-specific enolase,cytokeratin 19,tumor necrosis factor-α,interleukin-6,and highsensitivity C-reactive protein than the CG(P<0.05).Pearson analysis revealed a positive association of MAGE with serum tumor markers.The incidence of adverse reactions was significantly higher in the OG than in the CG(P<0.05).CONCLUSION The greater the BG fluctuation in LC patients after chemotherapy,the more unfavorable the therapeutic effect of chemotherapy;the higher the level of tumor markers and inflammatory cytokines,the more adverse reactions the patient experiences. 展开更多
关键词 Blood glucose fluctuation Type 2 diabetes mellitus Lung carcinoma Tumor markers
下载PDF
Potential pharmacological mechanisms of digallate in the treatment of enteritis based on network pharmacology and molecular docking
16
作者 Ning Tang Lian-Dong Zhao +3 位作者 Yang Zhao Yu-Meng Han Yue Cao Yan Wang 《Integrative Medicine Discovery》 2024年第7期1-10,共10页
Background:In order to investigate the possible pharmacological mechanism of digallate in Galla Chinensis for treating enteritis,providing reference for the search and exploration of effective drugs for treating enter... Background:In order to investigate the possible pharmacological mechanism of digallate in Galla Chinensis for treating enteritis,providing reference for the search and exploration of effective drugs for treating enteritis.Method:Traditional Chinese Medicines Systems Pharmacology Database and Analysis Platform,PharmMapper,DisGeNET,DrugBank,and GeneCards databases were used to obtain drug and disease-related target information.Gene ontology functional annotation and Kyoto Encyclopedia of Genes and Genomes pathway enrichment were performed,and the main therapeutic pathways and targets were identified by combining protein-protein interaction networks and cytoHubba plug-in.Molecular docking was used to validate the results.Result:297 drug related targets,2436 disease related targets,and 66 target points related to digallate were predicted to be associated with enteritis.10 related signal pathways and 10 key genes were identified.Conclusion:Digallate may be utilized to treat enteritis by acting on similar pathways,such those related to pathways in cancer,lipid and atherosclerosis,proteoglycans in cancer,Rap1 signaling pathway,PI3K-Akt signaling pathway and other targets such as IGF1,EGFR,SRC,IGF1R,PPARG. 展开更多
关键词 digallate ENTERITIS network pharmacology molecular docking
下载PDF
Application and management of continuous glucose monitoring in diabetic kidney disease
17
作者 Xin-Miao Zhang Quan-Quan Shen 《World Journal of Diabetes》 SCIE 2024年第4期591-597,共7页
Diabetic kidney disease(DKD)is a common complication of diabetes mellitus that contributes to the risk of end-stage kidney disease(ESKD).Wide glycemic var-iations,such as hypoglycemia and hyperglycemia,are broadly fou... Diabetic kidney disease(DKD)is a common complication of diabetes mellitus that contributes to the risk of end-stage kidney disease(ESKD).Wide glycemic var-iations,such as hypoglycemia and hyperglycemia,are broadly found in diabetic patients with DKD and especially ESKD,as a result of impaired renal metabolism.It is essential to monitor glycemia for effective management of DKD.Hemoglobin A1c(HbA1c)has long been considered as the gold standard for monitoring glycemia for>3 months.However,assessment of HbA1c has some bias as it is susceptible to factors such as anemia and liver or kidney dysfunction.Continuous glucose monitoring(CGM)has provided new insights on glycemic assessment and management.CGM directly measures glucose level in interstitial fluid,reports real-time or retrospective glucose concentration,and provides multiple glycemic metrics.It avoids the pitfalls of HbA1c in some contexts,and may serve as a precise alternative to estimation of mean glucose and glycemic variability.Emerging studies have demonstrated the merits of CGM for precise monitoring,which allows fine-tuning of glycemic management in diabetic patients.Therefore,CGM technology has the potential for better glycemic monitoring in DKD patients.More research is needed to explore its application and management in different stages of DKD,including hemodialysis,peritoneal dialysis and kidney transplantation. 展开更多
关键词 Diabetic kidney disease Continuous glucose monitoring Glycemic monitoring HEMODIALYSIS Peritoneal dialysis Kidney transplantation
下载PDF
Study on the Mechanism of Action of Glyasperin A in the Treatment of Atherosclerosis Based on Network Pharmacology and Molecular Docking
18
作者 Na LI Xiang PU +2 位作者 Yihui CHAI Yuqi YANG Lailai LI 《Agricultural Biotechnology》 2024年第2期53-57,共5页
[Objectives] This study was conducted to investigate the mechanism of action of glyasperin A in the treatment of atherosclerosis using a network pharmacology approach. [Methods] Targets related to atherosclerosis were... [Objectives] This study was conducted to investigate the mechanism of action of glyasperin A in the treatment of atherosclerosis using a network pharmacology approach. [Methods] Targets related to atherosclerosis were searched in GeneCards database. An active ingredient-disease-target network was constructed by Cytoscape 3.7.1. A target protein interaction network was constructed by String database. Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed on the DAVID database. [Results] Glyasperin A acted on 36 atherosclerosis-related targets, and the biofunctional and pathway enrichment analyses showed that it was mainly involved in response to xenobiotic stimulus, drug transport across blood-brain barrier, lipid oxidation, barrier, and lipid oxidation, etc. The results showed that glyasperin A acted on 36 atherosclerosis-related targets. The biofunctional and pathway enrichment analyses showed that it was mainly involved in response to xenobiotic stimulus, drug transport across blood-brain barrier, lipid oxidation, positive regulation of protein localization to nucleus, and hepoxilin biosynthetic process, and it played an anti-fatigue role through signal pathways such as serotonergic synapse, efferocytosis, arachidonic acid metabolism, chemical carcinogenesis-receptor activation and platelet activation. [Conclusions] Glyasperin A has multi-target and multi-pathway effects in the treatment of atherosclerosis. This study provides reference for further research on glyasperin A in the treatment of atherosclerosis. 展开更多
关键词 Glyasperin A ATHEROSCLEROSIS Network pharmacology Mechanism of action
下载PDF
A Network Pharmacology Study on Active Components and Targets of Citri Reticulatae Pericarpium for Treating Keloids
19
作者 Chang REN Ru CHEN +2 位作者 Lei SONG Kun GUO Liying QIU 《Medicinal Plant》 2024年第1期18-23,31,共7页
[Objectives]To investigate the mechanisms and pharmacologic effects of Citri Reticulatae Pericarpium against keloids by network pharmacology systematically.[Methods]TCMSP,Uniprot and BATMAN-TCM databases were used to ... [Objectives]To investigate the mechanisms and pharmacologic effects of Citri Reticulatae Pericarpium against keloids by network pharmacology systematically.[Methods]TCMSP,Uniprot and BATMAN-TCM databases were used to obtain the active constituents and targets of Citri Reticulatae Pericarpium."Keloid"was used as key word to search for related therapeutic targets from Drug Bank,OMIM,TTD,and GEO databases.The Chinese medicine compound-target network was constructed by Cytoscape software.Besides,gene ontology(GO)and Kyoto Encyclopedia of genes and genome enrichment analysis were also performed.Afterward,Discovery Studio software was used to assess the interaction of key components and genes.[Results]Five active components of Citri Reticulatae Pericarpium,773 compound targets and 676 keloid treatment targets were obtained in the databases.After the intersection,there are 47 targets of Citri Reticulatae Pericarpium for treating keloids.Hub genes were identified such as MMP9,IL6,TNF,TP53,and VEGFA,which were enriched in tumor necrosis factor-α,nuclear factor kappa-B,and other signaling pathways.The molecular docking stimulation confirmed the interaction between the MMP9 and three components of Citri Reticulatae Pericarpium.[Conclusions]Citri Reticulatae Pericarpium may play an important role in treating keloids through modulating genes and signaling pathways.The present study sheds light on the mechanisms of active compounds of Citri Reticulatae Pericarpium for the treatment of keloids. 展开更多
关键词 Network pharmacology KELOIDS Citri Reticulatae Pericarpium
下载PDF
Continuous glucose monitoring metrics in pregnancy with type 1 diabetes mellitus
20
作者 Mohammad Sadiq Jeeyavudeen Mairi Crosby Joseph M Pappachan 《World Journal of Methodology》 2024年第1期6-17,共12页
Managing diabetes during pregnancy is challenging,given the significant risk it poses for both maternal and foetal health outcomes.While traditional methods involve capillary self-monitoring of blood glucose level mon... Managing diabetes during pregnancy is challenging,given the significant risk it poses for both maternal and foetal health outcomes.While traditional methods involve capillary self-monitoring of blood glucose level monitoring and periodic HbA1c tests,the advent of continuous glucose monitoring(CGM)systems has revolutionized the approach.These devices offer a safe and reliable means of tracking glucose levels in real-time,benefiting both women with diabetes during pregnancy and the healthcare providers.Moreover,CGM systems have shown a low rate of side effects and high feasibility when used in pregnancies complicated by diabetes,especially when paired with continuous subcutaneous insulin infusion pump as hybrid closed loop device.Such a combined approach has been demonstrated to improve overall blood sugar control,lessen the occurrence of preeclampsia and neonatal hypoglycaemia,and minimize the duration of neonatal intensive care unit stays.This paper aims to offer a comprehensive evaluation of CGM metrics specifically tailored for pregnancies impacted by type 1 diabetes mellitus. 展开更多
关键词 Type 1 diabetes mellitus Continuous glucose monitoring PREGNANCY Glycaemic control Continuous glucose monitoring system
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部