Cruciferous sprout is a new form of vegetable product rich in bioactive compounds,especially glucosinolates.Previous studies have focused on increasing the accumulation of glucosinolates in cruciferous sprouts by appl...Cruciferous sprout is a new form of vegetable product rich in bioactive compounds,especially glucosinolates.Previous studies have focused on increasing the accumulation of glucosinolates in cruciferous sprouts by applying different chemical regulators,with a particular focus on their contribution to nutritional quality and health benefits.Nevertheless,the effects of melatonin and UV-B irradiation on glucosinolate biosynthesis remain unclear.In this study,it was found that changes in melatonin concentrations significantly affected the contents of individual as well as total aliphatic and indolic glucosinolates.The 5μmol·L^(-1)melatonin was decided as the optimum concentration that could increase the content of beneficial glucosinolates including glucoraphanin and 4-methoxy glucobrassicin in Chinese kale sprouts.Notably,the enhancement of glucosinolate accumulation by melatonin treatment could be further amplified by UV-B irradiation.Furthermore,our results showed that R2R3-MYB transcription factor BoaMYB28 and BoaMYB51,which are central regulators of aliphatic and indolic glucosinolate biosynthesis respectively,were both involved in the regulation of glucosinolate biosynthesis by melatonin and UV-B irradiation.Additionally,the expression of glucosinolate biosynthetic genes,including BoaCYP79F1,BoaCYP83A1,BoaSUR1,BoaUGT74B1,BoaCYP79B2,BoaCYP79B3,and BoaCYP83B1 participated in the formation of core structures and BoaFMOGS-OX5,BoaAOP2,BoaCYP81F2,and BoaIGMT1 involved in the sidechain modification of aliphatic and indolic glucosinolate,was regulated by melatonin or UV-B irradiation.Taken together,these findings provide a potential strategy for improving the nutritional quality and resistance of Chinese kale sprouts.展开更多
Rapeseed meal is a promising food ingredient, but its utilization is limited by the presence of some potentially harmful ingredients, such as glucosinolates. Fermentation is a cost-effective method of detoxication but...Rapeseed meal is a promising food ingredient, but its utilization is limited by the presence of some potentially harmful ingredients, such as glucosinolates. Fermentation is a cost-effective method of detoxication but a food-grade starter culture with glucosinolates degradation capacity is required. In this study, 46 strains of lactic acid bacteria from traditional paocai brines were screened for their ability to glucosinolate degradation. The results showed that more than 50% of the strains significantly degraded glucosinolates. Two strains of Lactiplantibacillus(p7 and s7) with high capacity of glucosinolates degradation through producing enzymes were identified. Then,an optimized condition for rapeseed meal fermentation by p7 was established to degrade glucosinolates, which can achieve about 80% degradation. UPLC/Q-TOF-MS analysis showed that the degradation rate of individual glucosinolates was different and the degradation rate of gluconapin and progoitrin in rapeseed meal can reach more than 90%. Meanwhile, fermentation with p7 can improve safety of rapeseed meal by inhibiting the growth of Enterobacteriaceae and improve its nutritional properties by degrading phytic acid. The in vitro digestion experiments showed that the content of glucosinolates in rapeseed meal decreased significantly during gastric digestion. Meanwhile, fermentation with p7 can greatly improve the release of soluble protein and increase the contents of free essential amino acids, such as lysine(increased by 12 folds) and methionine(increased by 10 folds).展开更多
Selenocysteine methyltransferase(SMT)is a key enzyme involved in the Se metabolism pathway,and it is responsible for the catalysis of Se-methylselenocysteine(SeMSC)compound formation.Previous studies showed that selen...Selenocysteine methyltransferase(SMT)is a key enzyme involved in the Se metabolism pathway,and it is responsible for the catalysis of Se-methylselenocysteine(SeMSC)compound formation.Previous studies showed that selenium treatment activated SMT expression and promoted the accumulation of glucosinolates(GSLs)and sulforaphane,but the roles and functional mechanisms of SMT in mediating GSLs and sulforaphane synthesis remain unclear.In this study,we identified the BoSMT gene in broccoli and uncovered its roles in mediating GSLs biosynthesis.Transgenic assays revealed that BoSMT is involved in SeMSC biosynthesis in broccoli.More importantly,the contents of GSLs and sulforaphane were significantly increased in the BoSMT-overexpressing broccoli lines but decreased in the knockdown lines,suggesting that BoSMT played a positive role in regulating GSLs and sulforaphane synthesis.Further evidence indicated that BoSMT-mediated overaccumulation of GSLs and sulforaphane might be due to the increase in the endogenous SeMSC content.Compared with the mock(water)treatment,selenite-induced significantly increases of the SeMSC content in the BoSMT-knockdown plants partially compensated the phenotype of GSLs and sulforaphane loss.Compared with the mock treatment,exogenous SeMSC treatment significantly increased the contents of GSL and sulforaphane and activated GSL synthesis-related gene expression,suggesting that SeMSC acted as a positive regulator for GSL and sulforaphane production.Our findings provided novel insights into selenium-mediated GSLs and sulforaphane accumulation.The genetic manipulation of BoSMT might be a useful strategy for improving the dietary nutritional values of broccoli.展开更多
Brassicaceae vegetables are an important traditional daily food in China and around the world, which provide nutrients and phytochemicals that are beneficial for human health. Among them, Brassica and Raphanus are wid...Brassicaceae vegetables are an important traditional daily food in China and around the world, which provide nutrients and phytochemicals that are beneficial for human health. Among them, Brassica and Raphanus are widely cultivated and eaten, have been evolved and/or bred for special characteristics during the long history of cultivation. Epidemiological studies suggest that the health benefits of Brassicaceae vegetables are mainly associated with glucosinolates(GSLs) and their hydrolytic products. In this review, we discuss the diversity of common consumed Brassicaceae vegetables and their GSL composition in edible parts. We also discuss the diversity factors affecting GSL content, and the diversity roles and functions of GSL. The information in this review provides guidance for consumers to select vegetables with a high GSL content,optimum edible stages, suitable edible methods, and provides a theoretical basis for crop molecular breeding and market development of GSL products.展开更多
Glucosinolates and their hydrolysis products, found in plants of the order Brassicales, are well-known for their defensive properties against insect herbivores. Arabidopsis thaliana (Col-0) genetic lines with mutation...Glucosinolates and their hydrolysis products, found in plants of the order Brassicales, are well-known for their defensive properties against insect herbivores. Arabidopsis thaliana (Col-0) genetic lines with mutations that modify the type of glucosinolates (i.e. myb28myb29 and cyp79B2cyp79B3 are deficient in the production of aliphatic and indolyl glucosinolates, respectively) make it possible to test for the specific effects of these secondary chemicals on insect herbivores. The Pad3 mutant (deficient in camalexin), which has a role in resistance to pathogens, was also tested. Likewise, the effects of different glucosinolate hydrolysis products can be evaluated using genetically modified (GM) lines of the wild type Col-0 ecotype, which naturally produces isothiocyanates. These GM lines include the nitrile-producing 35S: ESP and the double knockout tgg1tgg2, which virtually lacks hydrolysis products. In both no-choice and choice experiments, the crucifer specialist Pieris rapae was virtually unaffected by differences in the type of glucosinolates or hydrolysis products. In contrast, the generalist insect Spodoptera exigua had statistically significant increases in pupae/adult weight and faster developmental times when reared on mutants deficient in the production of aliphatic and indolyl glucosinolates and their hydrolysis products. There were no differences in the performance of either insect species when reared on wild type Col-0 or Pad3. Results from feeding choice trials showed that Pieris rapae had no statistically significant preference for any of the genetic lines. In contrast, Spodoptera exigua had a significant feeding preference for the double mutant tgg1tgg2. This study provides evidence that variation in the type of glucosinolates and their hydrolysis products can influence insect performance and feeding choices, and that responses are species-specific.展开更多
Glucosinolates(GLS) contribute to the unique flavour, nutrition, and plant defence of the Cruciferous vegetables. Understanding the GLS changes through postharvest processing is essential for defined preservation. In ...Glucosinolates(GLS) contribute to the unique flavour, nutrition, and plant defence of the Cruciferous vegetables. Understanding the GLS changes through postharvest processing is essential for defined preservation. In this study, four different fresh-cut types, whole flower(W),floret(F), quarterly cut floret(QF) and shredded floret(FS) of broccoli, were stored for 0, 1, 2 and 3 day(s) to explore GLS responses to postharvest treatments. As a result, seven GLS were identified, mainly including glucoraphanin(RAA), neoglucobrassicin(NEO), and glucobrassicin(GBC)and accounting for 52.69%, 20.12% and 14.99% of the total GLS(21.92 ± 0.48) μmol · g ^(-1 )DW, respectively. FS had the sharpest decrease in GLS after three days of storage(6.55 ± 0.37) μmol · g-1DW, while QF had the least(10.16 ± 0.33) μmol · g ^(-1 )DW. All GLS components decreased over storage, except for 4-methoxyglucobrassicin(4 ME) in FS and QF, suggesting its key role in serious wound defence. The results suggested certain postharvest approaches influenced the flavour and nutrition of broccoli.展开更多
[Objective] The paper aimed to study effects of drought stress simulated by PEG on glucosinolates content in Arabidopsis thaliana.[Method] Drought stress was simulated by PEG-6000,ecological seeds of Arabidopsis thali...[Objective] The paper aimed to study effects of drought stress simulated by PEG on glucosinolates content in Arabidopsis thaliana.[Method] Drought stress was simulated by PEG-6000,ecological seeds of Arabidopsis thaliana were cultivated by the control group and drought treatment group respectively,Physical signs of Arabidopsis thaliana and contents of glucosinolates were determined after 0,4,5,6,7 d treatment.[Result] The results showed that leaf water content of rosette leaves was obviously decreased,leaf relative conductivity (characterized by membrane permeability) and the concentration of MDA increased,the extent of damage increased with the increased time.Content of total glucosinolate,aliphatic glucosinolate and indole glucosinolate increased got their maximum after 5 days treatment,and rapidly decreased after 6 and 7 days of treatment,even much lower than the control group.Each kind of glucosinolate changed with difference from each other.4MSOB which made the most proportion of the total glucosinolate changed consistently with the total glucosinolate and difference significant.As a whole,aliphatic glucosinolates were more sensitive to drought than indole glucosinolate.The proportion of some kind glucosinolate,like 4MSOB varied had correlation with the content change.[Conclusion] Drought stress had an effects on the contents of total glucosinolate,aliphatic glucosinolate and indole glucosinolate,which made the glucosinolate participated in defense response of plant to the outside of drought stress,but long-term drought stress in leaves was not conducive to the accumulation of glucosinolates.展开更多
Background: Rapeseed cake is a good source of protein for animal feed but its utilization is limited due to the presence of anti-nutritional substances, such as glucosinolates (GIs), phytic acid, tannins etc. In th...Background: Rapeseed cake is a good source of protein for animal feed but its utilization is limited due to the presence of anti-nutritional substances, such as glucosinolates (GIs), phytic acid, tannins etc. In the present study, a solid state fermentation (SSF) using Aspergillus niger was carried out with the purpose of degrading glucosinolates and improving the nutritional quality of rapeseed cake (RSC). The effects of medium composition and incubation conditions on the GIs content in fermented rapeseed cake (FRSC) were investigated, and chemical composition and amino acid in vitro digestibility of RSC substrate fermented under optimal conditions were determined. Results: After 72 h of incubation at 34℃, a 76.89% decrease in GIs of RSC was obtained in solid medium containing 70% RSC, 30% wheat bran at optimal moisture content 60% (w/w). Compared to unfermented RSC, trichloroacetic acid soluble protein (TCA-SP), crude protein and ether extract contents of the FRSC were increased (P〈 0.05) 103.71, 23.02 and 23.54%, respectively. As expected, the contents of NDF and phytic acid declined (P〈 0.05) by 9.12 and 44.60%, respectively. Total amino acids (TAA) and essential amino acids (EAA) contents as well as AA in vitro digestibility of FRSC were improved significantly (P 〈 0.05). Moreover, the enzyme activity of endoglucanase, xylanase, acid protease and phytase were increased (P 〈 0.05) during SSF. Conclusions: Our results indicate that the solid state fermentation offers an effective approach to improving the quality of proteins sources such as rapeseed cake.展开更多
Allopolyploid Brassica juncea is particularly enriched in sinigrin,a kind of 3C aliphatic glucosinolates(GSLs),giving rise to characteristic taste after picking.However,the molecular mechanism underlying 3C aliphatic ...Allopolyploid Brassica juncea is particularly enriched in sinigrin,a kind of 3C aliphatic glucosinolates(GSLs),giving rise to characteristic taste after picking.However,the molecular mechanism underlying 3C aliphatic GSLs biosynthesis in this species remains unknown.In this study,we genome-widely identified GSLs metabolic genes,indicating different evolutionary rate of GSLs metabolic genes between subgenomes of B.juncea.Eight methythioalkylmalate synthase(MAMs)homologs were identified from B.juncea,in which six MAM1s were located in chloroplast and the other two were not detected with any expression.Furthermore,BjMAM1-4,BjMAM1-5,and BjMAM1-6 displayed higher expression levels in leaves than other tissues.Silenced expression analysis revealed that BjMAM1-4 and BjMAM1-6 function in 3C and 4C aliphatic GSLs accumulation.The specificity of the substrate selection for the second cycle reaction is much lower than that of the first cycle,suggesting these genes may preferentially catalyze 3C aliphatic GSLs biosynthesis.Our study provides insights into the molecular mechanism underlying the accumulation of 3C aliphatic GSLs,thereby facilitating the manipulation of aliphatic GSLs content in B.juncea.展开更多
Lactobacillus delbrueckii and Bacillus subtilis were employed as a new combination of strains to treat rapeseed meal by solid-state fermentation,aiming to efficiently degrade the glucosinolates,which are the main toxi...Lactobacillus delbrueckii and Bacillus subtilis were employed as a new combination of strains to treat rapeseed meal by solid-state fermentation,aiming to efficiently degrade the glucosinolates,which are the main toxin in the meal.Single-factor tests and Response surface methodology(RSM)were used to optimize the fermentation parameters.Under the optimum fermentation parameters of 15%total injection volume of the mixture of Lactobacillus delbrueckii and Bacillus subtilis with a ratio of 2:1,bran content of16%,feed to water ratio of 1:1.5,fermentation temperature of 36°C and fermentation time of 72 h,the content of glucosinolates in rapeseed meal was decreased from 64.558μmol/g to 3.473μmol/g,reaching a high degradation rate(94.62%).The high detoxification rate by a consortium of Lactobacillus delbrueckii and Bacillus subtilis provides a bright application prospect in feed utilization of rapeseed meal.展开更多
Forty seven accessions of camelina (Camelina sativa L. Crantz) were analyzed for glucosinolates (GSLs) and sinapine in defatted meal. These antinutritional compounds are undesirable in camelina meal for use in animal ...Forty seven accessions of camelina (Camelina sativa L. Crantz) were analyzed for glucosinolates (GSLs) and sinapine in defatted meal. These antinutritional compounds are undesirable in camelina meal for use in animal feeding and therefore we show their variability to identify the best varieties for future breeding programs. Total GSLs ranged from 19.6 to 40.3 mmol Kg-1 dry weight (DW) with an average of 30.3 mmol kg-1 DW. Great variability has also been observed in the levels of individual GSLs (GSL1, GSL2 and GSL3), so that the content of GSL1 and GSL3 were not correlated to each other in the accessions of camelina. Five out of six winter forms of camelina showed low content of GSLs. Sinapine ranged from 1.09 to 4.75 g Kg-1 DW with an average of 2.57 g kg-1 DW. The sinapine content was not correlated with that of GSLs. The use of camelina meal is only limited by the presence of GSLs while sinapine content can be ignored in camelina varieties.展开更多
Glucosinolate composition and content were evaluated in flowers and leaves of 12 different broccoli varieties. The results indicated that there were 9 glucosinolates in broccoli,namely Glucoiberin(IBE); Progoitrin(PRO...Glucosinolate composition and content were evaluated in flowers and leaves of 12 different broccoli varieties. The results indicated that there were 9 glucosinolates in broccoli,namely Glucoiberin(IBE); Progoitrin(PRO);Sinigrin(SIN);Glucoraphanin(RAA);Gluconapin(NAP);4-Hydroxyglucobrassicin(4OH);Glucobrassicin(GBC);4-Methoxyglucobrassicin(4ME);Neoglucobrassicin(NEO).Total glucosinolate content in flowers was 1-5 times higher than in leaves. The predominant glucosinolate in broccoli was glucoraphanin.展开更多
The components of glucosinolates( GSL) in the succulent roots and leaves of three kinds of fruity radish( Xinlimei,Super Zhengyan,and Shawo) were identified and analyzed by high performance liquid chromatography( HPLC...The components of glucosinolates( GSL) in the succulent roots and leaves of three kinds of fruity radish( Xinlimei,Super Zhengyan,and Shawo) were identified and analyzed by high performance liquid chromatography( HPLC). Results showed that there were nine kinds of glucosinolates in the succulent roots and leaves of three kinds of fruity radish,including six kinds of aliphatic glucosinolates( 4-methyl sulfinyl-3-butenyl glucosinolates,2-allyl glucosinolates,4-methyl sulfinyl butyl glucosinolates,5-methyl sulfinyl amyl glucosinolates,4-methyl n-butyl glucosinolates,4-methyl thio-3-butenyl glucosinolates) and three kinds of indole glucosinolates( 4-methoxy methyl indole glucosinolates,3-methyl indole glucosinolates,1-methoxy methyl indole glucosinolates),but there were significant differences in the content of glucosinolates between different varieties and organs. The total content of glucosinolates in succulent roots of three kinds of fruity radish was22 472. 84,13 585. 86,and 28 200. 70 μg/g DM respectively,and more than 95% were aliphatic glucosinolates. The content of glucosinolates in succulent roots was 4. 56,2. 71,and 4. 55 times of that in leaves of three kinds of fruity radish. Main aliphatic glucosinolates in succulent roots and leaves of three kinds of fruity radish were 4-methyl sulfinyl-3-butenyl glucosinolates,accounting for 90. 11%-93. 92% and63. 03%-73. 72% of total content of glucosinolates.展开更多
Glucosinolates (GSs) are a group of plant secondary metabolites containing abundant nitrogen (N) and sulfur (S) mainly in Brassica and have the beneficial effects on human health including anti-carcinogenic, cho...Glucosinolates (GSs) are a group of plant secondary metabolites containing abundant nitrogen (N) and sulfur (S) mainly in Brassica and have the beneficial effects on human health including anti-carcinogenic, cholesterol-reducing and other pharmacological effects. The objective of this study was to investigate the effect of different concentrations of N (5, 10, and 20 mmol L-a, denoted by N5, N10 and N20) and S (0,5, 1, and 2 mmol L^-1, denoted by S0.5, S1 and S2) on the yield and GSs in pakchoi (Brassica campestris L. ssp. chinensis var. communis) in hydroponics. Results showed that N10 and N20 significantly enhanced the yield compared with N5, however, N20 had a negative effect relative to N10. Only with N10 and N20 low S supply (S0.5) reduced the yield. The concentrations of aliphatic GSs, aromatic GS and total GSs were enhanced by N5 and indolyl GSs were enhanced by N20. S2 enhanced the concentration of individual GS and total GSs. The concentrations of indolyl GSs were maximized in N20S2 treatment, whereas the highest concentrations of aliphatic GSs, aromatic GS and total GSs were found in N5S2 treatment. Effects of N and S on aliphatic GSs were higher than on indolyl GSs. The results suggest that the accumulation of aliphatic GSs and aromatic GS could be enhanced by low N and high S and restricted by high N while that of indolyl GSs could be enhanced by high N and high S.展开更多
The chemical ionization mass spectra of ten different glucosinolates isolated from rape seed have been studied. More intense diagnostic ions were identified than in the electron impact mass spectra. The method is suit...The chemical ionization mass spectra of ten different glucosinolates isolated from rape seed have been studied. More intense diagnostic ions were identified than in the electron impact mass spectra. The method is suitable for the structure analysis of mixture of glucosinolates.展开更多
Glucosinolates(GSLs) are a group of nitrogen-and sulfur-containing secondary metabolites, synthesized primarily in members of the Brassicaceae family, that play an important role in food flavor, plant antimicrobial ac...Glucosinolates(GSLs) are a group of nitrogen-and sulfur-containing secondary metabolites, synthesized primarily in members of the Brassicaceae family, that play an important role in food flavor, plant antimicrobial activity, resistance to insect attack, stress tolerance, and human anti-cancer effects. As a sulfur-containing compound, glutathione has a strong connection with GSLs biosynthesis as a sulfur donor or redox system, and exists in reduced(glutathione;GSH) and oxidized(glutathione disulfide;GSSG) forms. However, the mechanism of GSH regulating GSLs biosynthesis remainds unclear. Hence, the exogenous therapy to pakchoi under normal growth condition and sulfur deficiency condition were conducted in this work to explore the relevant mechanism. The results showed that exogenous application of buthionine sulfoximine, an inhibitor of GSH synthesis, decreased the transcript levels of GSLs synthesis-related genes and transcription factors, as well as sulfur assimilation-related genes under the normal growth condition. Application of exogenous GSH inhibited the expression of GSLs synthesis-and sulfur assimilation-related genes under the normal condition, while the GSLs biosynthesis and the sulfur assimilation pathway were activated by exogenous application of GSH when the content of GSH in vivo of plants decreased owing to sulfur deficiency. Moreover,exogenous application of GSSG increased the transcript levels of GSLs synthesis-and sulfur assimilation-related genes under the normal growth condition and under sulfur deficiency. The present work provides new insights into the molecular mechanisms of GSLs biosynthesis underlying glutathione regulation.展开更多
Glucosinolates are important phytochemicals in Brassicaceae.We investigated the effect of CaCl_(2)-HCl electrolyzed water(CHEW)on glucosinolates biosynthesis in broccoli sprouts.The results showed that CHEW treatment ...Glucosinolates are important phytochemicals in Brassicaceae.We investigated the effect of CaCl_(2)-HCl electrolyzed water(CHEW)on glucosinolates biosynthesis in broccoli sprouts.The results showed that CHEW treatment significantly decreased reactive oxygen species(ROS)and malondialdeh yde(MDA)contents in broccoli sprouts.On the the 8^(th)day,compared to tap water treatment,the the total glucosinolate content of broccoli sprouts with CHEW treatment increased by 10.6%and calcium content was dramatically enhanced from 14.4 mg/g DW to 22.7 mg/g DW.Comparative transcriptome and metabolome analyses revealed that CHEW treatment activated ROS and calcium signaling transduction pathways in broccoli sprouts and they interacted through MAPK cascades.Besides,CHEW treatment not only promoted the biosynthesis of amino acids,but also enhanced the expression of structural genes in glucosinolate synthesis through transcription factors(MYBs,bHLHs,WRKYs,etc.).The results of this study provided new insights into the regulatory network of glucosinolates biosynthesis in broccoli sprouts under CHEW treatment.展开更多
Two consecutive trials were conducted to investigate the effects of glucosinolates(GLS)in rapeseed cake(RSC)on nitrogen(N)metabolism and urine nitrous oxide(N_(2)O)emissions in steers.In trial 1,8 steers and 4 levels ...Two consecutive trials were conducted to investigate the effects of glucosinolates(GLS)in rapeseed cake(RSC)on nitrogen(N)metabolism and urine nitrous oxide(N_(2)O)emissions in steers.In trial 1,8 steers and 4 levels of RSC,i.e.0,2.7%,5.4%and 8.0%dry matter(DM)(0,6.0,12.1,18.1 mmol GLS/g DM)were allocated in a replicated 4×4 Latin square.In trial 2,the static incubation technique was used for measuring the N_(2)O emissions of the urine samples collected from trial 1.The results of trial 1 indicated that dietary inclusion of RSC decreased the digested N and increased the fecal N excretion(P<0.01),whereas it did not affect the urinary N excretion,total N excretion and N retention(P>0.10).Dietary inclusion of RSC decreased the urinary excretion of urea while it increased allantoin,total purine derivatives,the predicted rumen microbial N flow and thiocyanate(SCN)(P<0.05).Dietary inclusion of RSC did not affect the plasma triiodothyronine and thyroxine while it down-regulated the plasma relative concentrations of 4-aminohippuric acid,3a,7a-dihydroxycoprostanic acid,phosphatidylserine(14:0/16:0),6b-hydroxyprogesterone,pyrrhoxanthinol,tatridin B,mandelonitrile rutinoside,taraxacoside(P<0.05),and up-regulated hypoglycin B,neuromedin N(1-4),dhurrin,5-deoxykievitone(P<0.01).The results of trial 2 indicated that dietary RSC increased the steer urine N_(2)OeN fluxes,the ratio of N_(2)OeN to N application and the estimated steer urine N_(2)OeN emissions(P<0.01).A close correlation was found between the estimated steer urine N_(2)OeN emissions and the output of urinary SCN(P<0.001).In conclusion,dietary RSC increased the fecal N excretion,whereas it did not affect the urinary N excretion and the N retention rate in steers.Dietary RSC increased rather than decreased the urine N_(2)OeN emissions even though it decreased the urinary excretion of urea.The SCN excreted in urine could be the major factor in increasing the urine N_(2)OeN emissions.Whether other metabolites excreted into urine from RSC have an impact on the urine N_(2)OeN emissions in steers needs to be investigated in the future.展开更多
Chinese cabbage is an important leafy vegetable crop with high water demand and susceptibility to drought stress.To explore the molecular mechanisms underlying the response to drought,we performed a transcriptome anal...Chinese cabbage is an important leafy vegetable crop with high water demand and susceptibility to drought stress.To explore the molecular mechanisms underlying the response to drought,we performed a transcriptome analysis of drought-tolerant and-sensitive Chinese cabbage genotypes under drought stress,and uncovered core drought-responsive genes and key signaling pathways.A co-expression network was constructed by a weighted gene coexpression network analysis(WGCNA)and candidate hub genes involved in drought tolerance were identified.Furthermore,abscisic acid(ABA)biosynthesis and signaling pathways and their drought responses in Chinese cabbage leaves were systemically explored.We also found that drought treatment increased the antioxidant enzyme activities and glucosinolate contents significantly.These results substantially enhance our understanding of the molecular mechanisms underlying drought responses in Chinese cabbage.展开更多
As of recent,microgreen vegetable production in controlled environments are being investigated for their bioactive properties.Phytochemicals like glucosinolates(GLS)are highly sensitive to varying spectral qualities o...As of recent,microgreen vegetable production in controlled environments are being investigated for their bioactive properties.Phytochemicals like glucosinolates(GLS)are highly sensitive to varying spectral qualities of light,especially in leafy greens of Brassica where the responses are highly species-dependent.The accumulation of bioactive GLS were studied under 8 different treatments of combined amber(590 nm),blue(455 nm),and red(655 nm)light-emitting diodes(rbaLED).A semi-targeted metabolomics approach was carried out to profile common intact-GLS in microgreen extracts of Brassica by means of LC-HRMS/MS.Thirteen GLS were identified,among them were 8 aliphatic,4 indolic and 1 aromatic GLS.Mass spectrometry data showed sinigrin had the highest average concentration and was highest in B.juncea,progoitrin was highest in B.rapa and glucobrassicin in R.sativus.The individual and total GLS in the microgreens of the present study were largely different under rbaLED;B.rapa microgreens contained the highest profile of total GLS,followed by R.sativus and B.juncea.Sinigrin was increased and gluconasturtiin was decreased under rbaLED lighting in most microgreens,glucoalyssin uniquely increased in R.sativus and decreased in B.rapa and glucobrassicin uniquely decreased in both B.rapa and B.juncea.The present study showed that rbaLED contributed to the altered profiles of GLS resulting in their significant modulation.Optimizing the light spectrum for improved GLS biosynthesis could lead to production of microgreens with targeted health-promoting properties.展开更多
基金supported by grants from the National Science Foundation of China (Grant Nos.32202466,32172593,and32272746)。
文摘Cruciferous sprout is a new form of vegetable product rich in bioactive compounds,especially glucosinolates.Previous studies have focused on increasing the accumulation of glucosinolates in cruciferous sprouts by applying different chemical regulators,with a particular focus on their contribution to nutritional quality and health benefits.Nevertheless,the effects of melatonin and UV-B irradiation on glucosinolate biosynthesis remain unclear.In this study,it was found that changes in melatonin concentrations significantly affected the contents of individual as well as total aliphatic and indolic glucosinolates.The 5μmol·L^(-1)melatonin was decided as the optimum concentration that could increase the content of beneficial glucosinolates including glucoraphanin and 4-methoxy glucobrassicin in Chinese kale sprouts.Notably,the enhancement of glucosinolate accumulation by melatonin treatment could be further amplified by UV-B irradiation.Furthermore,our results showed that R2R3-MYB transcription factor BoaMYB28 and BoaMYB51,which are central regulators of aliphatic and indolic glucosinolate biosynthesis respectively,were both involved in the regulation of glucosinolate biosynthesis by melatonin and UV-B irradiation.Additionally,the expression of glucosinolate biosynthetic genes,including BoaCYP79F1,BoaCYP83A1,BoaSUR1,BoaUGT74B1,BoaCYP79B2,BoaCYP79B3,and BoaCYP83B1 participated in the formation of core structures and BoaFMOGS-OX5,BoaAOP2,BoaCYP81F2,and BoaIGMT1 involved in the sidechain modification of aliphatic and indolic glucosinolate,was regulated by melatonin or UV-B irradiation.Taken together,these findings provide a potential strategy for improving the nutritional quality and resistance of Chinese kale sprouts.
基金provided by the Jiangsu Provincial Key Research and Development Program (Grant No. BE2022362)the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)。
文摘Rapeseed meal is a promising food ingredient, but its utilization is limited by the presence of some potentially harmful ingredients, such as glucosinolates. Fermentation is a cost-effective method of detoxication but a food-grade starter culture with glucosinolates degradation capacity is required. In this study, 46 strains of lactic acid bacteria from traditional paocai brines were screened for their ability to glucosinolate degradation. The results showed that more than 50% of the strains significantly degraded glucosinolates. Two strains of Lactiplantibacillus(p7 and s7) with high capacity of glucosinolates degradation through producing enzymes were identified. Then,an optimized condition for rapeseed meal fermentation by p7 was established to degrade glucosinolates, which can achieve about 80% degradation. UPLC/Q-TOF-MS analysis showed that the degradation rate of individual glucosinolates was different and the degradation rate of gluconapin and progoitrin in rapeseed meal can reach more than 90%. Meanwhile, fermentation with p7 can improve safety of rapeseed meal by inhibiting the growth of Enterobacteriaceae and improve its nutritional properties by degrading phytic acid. The in vitro digestion experiments showed that the content of glucosinolates in rapeseed meal decreased significantly during gastric digestion. Meanwhile, fermentation with p7 can greatly improve the release of soluble protein and increase the contents of free essential amino acids, such as lysine(increased by 12 folds) and methionine(increased by 10 folds).
基金the Projects of International Cooperation National Key R&D Program of China(Grant No.2022YFE0108300)the National Key Research and Development Program of China(Grant No.2022YFF1003000)the National Natural Science Foundation of China(Grant Nos.32372682,32272747,32072585,32072568).
文摘Selenocysteine methyltransferase(SMT)is a key enzyme involved in the Se metabolism pathway,and it is responsible for the catalysis of Se-methylselenocysteine(SeMSC)compound formation.Previous studies showed that selenium treatment activated SMT expression and promoted the accumulation of glucosinolates(GSLs)and sulforaphane,but the roles and functional mechanisms of SMT in mediating GSLs and sulforaphane synthesis remain unclear.In this study,we identified the BoSMT gene in broccoli and uncovered its roles in mediating GSLs biosynthesis.Transgenic assays revealed that BoSMT is involved in SeMSC biosynthesis in broccoli.More importantly,the contents of GSLs and sulforaphane were significantly increased in the BoSMT-overexpressing broccoli lines but decreased in the knockdown lines,suggesting that BoSMT played a positive role in regulating GSLs and sulforaphane synthesis.Further evidence indicated that BoSMT-mediated overaccumulation of GSLs and sulforaphane might be due to the increase in the endogenous SeMSC content.Compared with the mock(water)treatment,selenite-induced significantly increases of the SeMSC content in the BoSMT-knockdown plants partially compensated the phenotype of GSLs and sulforaphane loss.Compared with the mock treatment,exogenous SeMSC treatment significantly increased the contents of GSL and sulforaphane and activated GSL synthesis-related gene expression,suggesting that SeMSC acted as a positive regulator for GSL and sulforaphane production.Our findings provided novel insights into selenium-mediated GSLs and sulforaphane accumulation.The genetic manipulation of BoSMT might be a useful strategy for improving the dietary nutritional values of broccoli.
基金financially supported by the National Natural Science Foundation of China (Grant Nos. 31972394, 31501748)。
文摘Brassicaceae vegetables are an important traditional daily food in China and around the world, which provide nutrients and phytochemicals that are beneficial for human health. Among them, Brassica and Raphanus are widely cultivated and eaten, have been evolved and/or bred for special characteristics during the long history of cultivation. Epidemiological studies suggest that the health benefits of Brassicaceae vegetables are mainly associated with glucosinolates(GSLs) and their hydrolytic products. In this review, we discuss the diversity of common consumed Brassicaceae vegetables and their GSL composition in edible parts. We also discuss the diversity factors affecting GSL content, and the diversity roles and functions of GSL. The information in this review provides guidance for consumers to select vegetables with a high GSL content,optimum edible stages, suitable edible methods, and provides a theoretical basis for crop molecular breeding and market development of GSL products.
文摘Glucosinolates and their hydrolysis products, found in plants of the order Brassicales, are well-known for their defensive properties against insect herbivores. Arabidopsis thaliana (Col-0) genetic lines with mutations that modify the type of glucosinolates (i.e. myb28myb29 and cyp79B2cyp79B3 are deficient in the production of aliphatic and indolyl glucosinolates, respectively) make it possible to test for the specific effects of these secondary chemicals on insect herbivores. The Pad3 mutant (deficient in camalexin), which has a role in resistance to pathogens, was also tested. Likewise, the effects of different glucosinolate hydrolysis products can be evaluated using genetically modified (GM) lines of the wild type Col-0 ecotype, which naturally produces isothiocyanates. These GM lines include the nitrile-producing 35S: ESP and the double knockout tgg1tgg2, which virtually lacks hydrolysis products. In both no-choice and choice experiments, the crucifer specialist Pieris rapae was virtually unaffected by differences in the type of glucosinolates or hydrolysis products. In contrast, the generalist insect Spodoptera exigua had statistically significant increases in pupae/adult weight and faster developmental times when reared on mutants deficient in the production of aliphatic and indolyl glucosinolates and their hydrolysis products. There were no differences in the performance of either insect species when reared on wild type Col-0 or Pad3. Results from feeding choice trials showed that Pieris rapae had no statistically significant preference for any of the genetic lines. In contrast, Spodoptera exigua had a significant feeding preference for the double mutant tgg1tgg2. This study provides evidence that variation in the type of glucosinolates and their hydrolysis products can influence insect performance and feeding choices, and that responses are species-specific.
基金supported by the Collaborative Innovation Center of the Beijing Academy of Agriculture and Forestry Sciences(Grant No.KJCX201915)the Youth Scientific Research Funds of Beijing Academy of Agriculture and Forestry Sciences(Grant No.QNJJ201914)the Innovation and Capacity-building Project of Beijing Academy of Agriculture and Forestry Sciences(Grant No.KJCX20200213).
文摘Glucosinolates(GLS) contribute to the unique flavour, nutrition, and plant defence of the Cruciferous vegetables. Understanding the GLS changes through postharvest processing is essential for defined preservation. In this study, four different fresh-cut types, whole flower(W),floret(F), quarterly cut floret(QF) and shredded floret(FS) of broccoli, were stored for 0, 1, 2 and 3 day(s) to explore GLS responses to postharvest treatments. As a result, seven GLS were identified, mainly including glucoraphanin(RAA), neoglucobrassicin(NEO), and glucobrassicin(GBC)and accounting for 52.69%, 20.12% and 14.99% of the total GLS(21.92 ± 0.48) μmol · g ^(-1 )DW, respectively. FS had the sharpest decrease in GLS after three days of storage(6.55 ± 0.37) μmol · g-1DW, while QF had the least(10.16 ± 0.33) μmol · g ^(-1 )DW. All GLS components decreased over storage, except for 4-methoxyglucobrassicin(4 ME) in FS and QF, suggesting its key role in serious wound defence. The results suggested certain postharvest approaches influenced the flavour and nutrition of broccoli.
文摘[Objective] The paper aimed to study effects of drought stress simulated by PEG on glucosinolates content in Arabidopsis thaliana.[Method] Drought stress was simulated by PEG-6000,ecological seeds of Arabidopsis thaliana were cultivated by the control group and drought treatment group respectively,Physical signs of Arabidopsis thaliana and contents of glucosinolates were determined after 0,4,5,6,7 d treatment.[Result] The results showed that leaf water content of rosette leaves was obviously decreased,leaf relative conductivity (characterized by membrane permeability) and the concentration of MDA increased,the extent of damage increased with the increased time.Content of total glucosinolate,aliphatic glucosinolate and indole glucosinolate increased got their maximum after 5 days treatment,and rapidly decreased after 6 and 7 days of treatment,even much lower than the control group.Each kind of glucosinolate changed with difference from each other.4MSOB which made the most proportion of the total glucosinolate changed consistently with the total glucosinolate and difference significant.As a whole,aliphatic glucosinolates were more sensitive to drought than indole glucosinolate.The proportion of some kind glucosinolate,like 4MSOB varied had correlation with the content change.[Conclusion] Drought stress had an effects on the contents of total glucosinolate,aliphatic glucosinolate and indole glucosinolate,which made the glucosinolate participated in defense response of plant to the outside of drought stress,but long-term drought stress in leaves was not conducive to the accumulation of glucosinolates.
基金granted by the Earmarked Fund for Modern Agro-industry Technology Research System of China(CARS-36)Feed Biotechnology Project of Sichuan Province of China with grant number 2010GZ0193
文摘Background: Rapeseed cake is a good source of protein for animal feed but its utilization is limited due to the presence of anti-nutritional substances, such as glucosinolates (GIs), phytic acid, tannins etc. In the present study, a solid state fermentation (SSF) using Aspergillus niger was carried out with the purpose of degrading glucosinolates and improving the nutritional quality of rapeseed cake (RSC). The effects of medium composition and incubation conditions on the GIs content in fermented rapeseed cake (FRSC) were investigated, and chemical composition and amino acid in vitro digestibility of RSC substrate fermented under optimal conditions were determined. Results: After 72 h of incubation at 34℃, a 76.89% decrease in GIs of RSC was obtained in solid medium containing 70% RSC, 30% wheat bran at optimal moisture content 60% (w/w). Compared to unfermented RSC, trichloroacetic acid soluble protein (TCA-SP), crude protein and ether extract contents of the FRSC were increased (P〈 0.05) 103.71, 23.02 and 23.54%, respectively. As expected, the contents of NDF and phytic acid declined (P〈 0.05) by 9.12 and 44.60%, respectively. Total amino acids (TAA) and essential amino acids (EAA) contents as well as AA in vitro digestibility of FRSC were improved significantly (P 〈 0.05). Moreover, the enzyme activity of endoglucanase, xylanase, acid protease and phytase were increased (P 〈 0.05) during SSF. Conclusions: Our results indicate that the solid state fermentation offers an effective approach to improving the quality of proteins sources such as rapeseed cake.
基金The authors thank Prof.Q.Wang for GSLs analysis.This work was supported by grants from the National Natural Science Foundation of Zhejiang Province(Grant no.LZ20C150002)the National Natural Science Foundation of China(Grant no.31872095).
文摘Allopolyploid Brassica juncea is particularly enriched in sinigrin,a kind of 3C aliphatic glucosinolates(GSLs),giving rise to characteristic taste after picking.However,the molecular mechanism underlying 3C aliphatic GSLs biosynthesis in this species remains unknown.In this study,we genome-widely identified GSLs metabolic genes,indicating different evolutionary rate of GSLs metabolic genes between subgenomes of B.juncea.Eight methythioalkylmalate synthase(MAMs)homologs were identified from B.juncea,in which six MAM1s were located in chloroplast and the other two were not detected with any expression.Furthermore,BjMAM1-4,BjMAM1-5,and BjMAM1-6 displayed higher expression levels in leaves than other tissues.Silenced expression analysis revealed that BjMAM1-4 and BjMAM1-6 function in 3C and 4C aliphatic GSLs accumulation.The specificity of the substrate selection for the second cycle reaction is much lower than that of the first cycle,suggesting these genes may preferentially catalyze 3C aliphatic GSLs biosynthesis.Our study provides insights into the molecular mechanism underlying the accumulation of 3C aliphatic GSLs,thereby facilitating the manipulation of aliphatic GSLs content in B.juncea.
基金financially supported by the Education Department of Sichuan Province(18ZB0289)。
文摘Lactobacillus delbrueckii and Bacillus subtilis were employed as a new combination of strains to treat rapeseed meal by solid-state fermentation,aiming to efficiently degrade the glucosinolates,which are the main toxin in the meal.Single-factor tests and Response surface methodology(RSM)were used to optimize the fermentation parameters.Under the optimum fermentation parameters of 15%total injection volume of the mixture of Lactobacillus delbrueckii and Bacillus subtilis with a ratio of 2:1,bran content of16%,feed to water ratio of 1:1.5,fermentation temperature of 36°C and fermentation time of 72 h,the content of glucosinolates in rapeseed meal was decreased from 64.558μmol/g to 3.473μmol/g,reaching a high degradation rate(94.62%).The high detoxification rate by a consortium of Lactobacillus delbrueckii and Bacillus subtilis provides a bright application prospect in feed utilization of rapeseed meal.
文摘Forty seven accessions of camelina (Camelina sativa L. Crantz) were analyzed for glucosinolates (GSLs) and sinapine in defatted meal. These antinutritional compounds are undesirable in camelina meal for use in animal feeding and therefore we show their variability to identify the best varieties for future breeding programs. Total GSLs ranged from 19.6 to 40.3 mmol Kg-1 dry weight (DW) with an average of 30.3 mmol kg-1 DW. Great variability has also been observed in the levels of individual GSLs (GSL1, GSL2 and GSL3), so that the content of GSL1 and GSL3 were not correlated to each other in the accessions of camelina. Five out of six winter forms of camelina showed low content of GSLs. Sinapine ranged from 1.09 to 4.75 g Kg-1 DW with an average of 2.57 g kg-1 DW. The sinapine content was not correlated with that of GSLs. The use of camelina meal is only limited by the presence of GSLs while sinapine content can be ignored in camelina varieties.
基金Supported by Special Non-profit Sector Project of the Ministry of Agriculture(20130309)Special Science and Technology Innovation Capacity Building Project of Beijing Academy of Agriculture and Forestry Sciences(KJCX20140111)
文摘Glucosinolate composition and content were evaluated in flowers and leaves of 12 different broccoli varieties. The results indicated that there were 9 glucosinolates in broccoli,namely Glucoiberin(IBE); Progoitrin(PRO);Sinigrin(SIN);Glucoraphanin(RAA);Gluconapin(NAP);4-Hydroxyglucobrassicin(4OH);Glucobrassicin(GBC);4-Methoxyglucobrassicin(4ME);Neoglucobrassicin(NEO).Total glucosinolate content in flowers was 1-5 times higher than in leaves. The predominant glucosinolate in broccoli was glucoraphanin.
基金Supported by Wuhan City Huanghe Talents PlanSecond Batch Project for Modern Agricultural Industrial Technology System of Hubei Province
文摘The components of glucosinolates( GSL) in the succulent roots and leaves of three kinds of fruity radish( Xinlimei,Super Zhengyan,and Shawo) were identified and analyzed by high performance liquid chromatography( HPLC). Results showed that there were nine kinds of glucosinolates in the succulent roots and leaves of three kinds of fruity radish,including six kinds of aliphatic glucosinolates( 4-methyl sulfinyl-3-butenyl glucosinolates,2-allyl glucosinolates,4-methyl sulfinyl butyl glucosinolates,5-methyl sulfinyl amyl glucosinolates,4-methyl n-butyl glucosinolates,4-methyl thio-3-butenyl glucosinolates) and three kinds of indole glucosinolates( 4-methoxy methyl indole glucosinolates,3-methyl indole glucosinolates,1-methoxy methyl indole glucosinolates),but there were significant differences in the content of glucosinolates between different varieties and organs. The total content of glucosinolates in succulent roots of three kinds of fruity radish was22 472. 84,13 585. 86,and 28 200. 70 μg/g DM respectively,and more than 95% were aliphatic glucosinolates. The content of glucosinolates in succulent roots was 4. 56,2. 71,and 4. 55 times of that in leaves of three kinds of fruity radish. Main aliphatic glucosinolates in succulent roots and leaves of three kinds of fruity radish were 4-methyl sulfinyl-3-butenyl glucosinolates,accounting for 90. 11%-93. 92% and63. 03%-73. 72% of total content of glucosinolates.
文摘Glucosinolates (GSs) are a group of plant secondary metabolites containing abundant nitrogen (N) and sulfur (S) mainly in Brassica and have the beneficial effects on human health including anti-carcinogenic, cholesterol-reducing and other pharmacological effects. The objective of this study was to investigate the effect of different concentrations of N (5, 10, and 20 mmol L-a, denoted by N5, N10 and N20) and S (0,5, 1, and 2 mmol L^-1, denoted by S0.5, S1 and S2) on the yield and GSs in pakchoi (Brassica campestris L. ssp. chinensis var. communis) in hydroponics. Results showed that N10 and N20 significantly enhanced the yield compared with N5, however, N20 had a negative effect relative to N10. Only with N10 and N20 low S supply (S0.5) reduced the yield. The concentrations of aliphatic GSs, aromatic GS and total GSs were enhanced by N5 and indolyl GSs were enhanced by N20. S2 enhanced the concentration of individual GS and total GSs. The concentrations of indolyl GSs were maximized in N20S2 treatment, whereas the highest concentrations of aliphatic GSs, aromatic GS and total GSs were found in N5S2 treatment. Effects of N and S on aliphatic GSs were higher than on indolyl GSs. The results suggest that the accumulation of aliphatic GSs and aromatic GS could be enhanced by low N and high S and restricted by high N while that of indolyl GSs could be enhanced by high N and high S.
文摘The chemical ionization mass spectra of ten different glucosinolates isolated from rape seed have been studied. More intense diagnostic ions were identified than in the electron impact mass spectra. The method is suitable for the structure analysis of mixture of glucosinolates.
基金funded by the National Natural Science Foundation of China (Grant Nos.31972394 and 31501748)。
文摘Glucosinolates(GSLs) are a group of nitrogen-and sulfur-containing secondary metabolites, synthesized primarily in members of the Brassicaceae family, that play an important role in food flavor, plant antimicrobial activity, resistance to insect attack, stress tolerance, and human anti-cancer effects. As a sulfur-containing compound, glutathione has a strong connection with GSLs biosynthesis as a sulfur donor or redox system, and exists in reduced(glutathione;GSH) and oxidized(glutathione disulfide;GSSG) forms. However, the mechanism of GSH regulating GSLs biosynthesis remainds unclear. Hence, the exogenous therapy to pakchoi under normal growth condition and sulfur deficiency condition were conducted in this work to explore the relevant mechanism. The results showed that exogenous application of buthionine sulfoximine, an inhibitor of GSH synthesis, decreased the transcript levels of GSLs synthesis-related genes and transcription factors, as well as sulfur assimilation-related genes under the normal growth condition. Application of exogenous GSH inhibited the expression of GSLs synthesis-and sulfur assimilation-related genes under the normal condition, while the GSLs biosynthesis and the sulfur assimilation pathway were activated by exogenous application of GSH when the content of GSH in vivo of plants decreased owing to sulfur deficiency. Moreover,exogenous application of GSSG increased the transcript levels of GSLs synthesis-and sulfur assimilation-related genes under the normal growth condition and under sulfur deficiency. The present work provides new insights into the molecular mechanisms of GSLs biosynthesis underlying glutathione regulation.
基金supported by the National Natural Science Foundation of China(31972091)。
文摘Glucosinolates are important phytochemicals in Brassicaceae.We investigated the effect of CaCl_(2)-HCl electrolyzed water(CHEW)on glucosinolates biosynthesis in broccoli sprouts.The results showed that CHEW treatment significantly decreased reactive oxygen species(ROS)and malondialdeh yde(MDA)contents in broccoli sprouts.On the the 8^(th)day,compared to tap water treatment,the the total glucosinolate content of broccoli sprouts with CHEW treatment increased by 10.6%and calcium content was dramatically enhanced from 14.4 mg/g DW to 22.7 mg/g DW.Comparative transcriptome and metabolome analyses revealed that CHEW treatment activated ROS and calcium signaling transduction pathways in broccoli sprouts and they interacted through MAPK cascades.Besides,CHEW treatment not only promoted the biosynthesis of amino acids,but also enhanced the expression of structural genes in glucosinolate synthesis through transcription factors(MYBs,bHLHs,WRKYs,etc.).The results of this study provided new insights into the regulatory network of glucosinolates biosynthesis in broccoli sprouts under CHEW treatment.
基金This study was supported by National Natural Science Foundation of China(grant no.31772626).
文摘Two consecutive trials were conducted to investigate the effects of glucosinolates(GLS)in rapeseed cake(RSC)on nitrogen(N)metabolism and urine nitrous oxide(N_(2)O)emissions in steers.In trial 1,8 steers and 4 levels of RSC,i.e.0,2.7%,5.4%and 8.0%dry matter(DM)(0,6.0,12.1,18.1 mmol GLS/g DM)were allocated in a replicated 4×4 Latin square.In trial 2,the static incubation technique was used for measuring the N_(2)O emissions of the urine samples collected from trial 1.The results of trial 1 indicated that dietary inclusion of RSC decreased the digested N and increased the fecal N excretion(P<0.01),whereas it did not affect the urinary N excretion,total N excretion and N retention(P>0.10).Dietary inclusion of RSC decreased the urinary excretion of urea while it increased allantoin,total purine derivatives,the predicted rumen microbial N flow and thiocyanate(SCN)(P<0.05).Dietary inclusion of RSC did not affect the plasma triiodothyronine and thyroxine while it down-regulated the plasma relative concentrations of 4-aminohippuric acid,3a,7a-dihydroxycoprostanic acid,phosphatidylserine(14:0/16:0),6b-hydroxyprogesterone,pyrrhoxanthinol,tatridin B,mandelonitrile rutinoside,taraxacoside(P<0.05),and up-regulated hypoglycin B,neuromedin N(1-4),dhurrin,5-deoxykievitone(P<0.01).The results of trial 2 indicated that dietary RSC increased the steer urine N_(2)OeN fluxes,the ratio of N_(2)OeN to N application and the estimated steer urine N_(2)OeN emissions(P<0.01).A close correlation was found between the estimated steer urine N_(2)OeN emissions and the output of urinary SCN(P<0.001).In conclusion,dietary RSC increased the fecal N excretion,whereas it did not affect the urinary N excretion and the N retention rate in steers.Dietary RSC increased rather than decreased the urine N_(2)OeN emissions even though it decreased the urinary excretion of urea.The SCN excreted in urine could be the major factor in increasing the urine N_(2)OeN emissions.Whether other metabolites excreted into urine from RSC have an impact on the urine N_(2)OeN emissions in steers needs to be investigated in the future.
基金supported by the National Key Research and Development Program of China(2022YFF1003003)the National Natural Science Foundation of China(32070333)the Startup Funding(Z111021922)from Northwest A&F University,China。
文摘Chinese cabbage is an important leafy vegetable crop with high water demand and susceptibility to drought stress.To explore the molecular mechanisms underlying the response to drought,we performed a transcriptome analysis of drought-tolerant and-sensitive Chinese cabbage genotypes under drought stress,and uncovered core drought-responsive genes and key signaling pathways.A co-expression network was constructed by a weighted gene coexpression network analysis(WGCNA)and candidate hub genes involved in drought tolerance were identified.Furthermore,abscisic acid(ABA)biosynthesis and signaling pathways and their drought responses in Chinese cabbage leaves were systemically explored.We also found that drought treatment increased the antioxidant enzyme activities and glucosinolate contents significantly.These results substantially enhance our understanding of the molecular mechanisms underlying drought responses in Chinese cabbage.
基金supported by the A-base funds of Agriculture&Agri-food Canada(AAFC).Project#J-001328.001.04 and#J-002228.001.07.
文摘As of recent,microgreen vegetable production in controlled environments are being investigated for their bioactive properties.Phytochemicals like glucosinolates(GLS)are highly sensitive to varying spectral qualities of light,especially in leafy greens of Brassica where the responses are highly species-dependent.The accumulation of bioactive GLS were studied under 8 different treatments of combined amber(590 nm),blue(455 nm),and red(655 nm)light-emitting diodes(rbaLED).A semi-targeted metabolomics approach was carried out to profile common intact-GLS in microgreen extracts of Brassica by means of LC-HRMS/MS.Thirteen GLS were identified,among them were 8 aliphatic,4 indolic and 1 aromatic GLS.Mass spectrometry data showed sinigrin had the highest average concentration and was highest in B.juncea,progoitrin was highest in B.rapa and glucobrassicin in R.sativus.The individual and total GLS in the microgreens of the present study were largely different under rbaLED;B.rapa microgreens contained the highest profile of total GLS,followed by R.sativus and B.juncea.Sinigrin was increased and gluconasturtiin was decreased under rbaLED lighting in most microgreens,glucoalyssin uniquely increased in R.sativus and decreased in B.rapa and glucobrassicin uniquely decreased in both B.rapa and B.juncea.The present study showed that rbaLED contributed to the altered profiles of GLS resulting in their significant modulation.Optimizing the light spectrum for improved GLS biosynthesis could lead to production of microgreens with targeted health-promoting properties.