期刊文献+
共找到1,498篇文章
< 1 2 75 >
每页显示 20 50 100
Stability Control of Gob-Side Entry Retaining in Fully Mechanized Caving Face Based on a Compatible Deformation Model 被引量:2
1
作者 Xinshuai Shi Hongwen Jing +2 位作者 Jianguo Ning Zhenlong Zhao Junfu Zhu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第7期315-343,共29页
The stability control of gob-side entry retaining in fully mechanized caving face is a typical challenge in many coal mines in China.The rotation and subsidence of the lateral cantilever play a critical role in a coal... The stability control of gob-side entry retaining in fully mechanized caving face is a typical challenge in many coal mines in China.The rotation and subsidence of the lateral cantilever play a critical role in a coal mine,possibly leading to instability in a coal seam wall or a gob-side wall due to its excessive rotation subsidence.Hence,the presplitting blasting measures in the roof was implemented to cut down the lower main roof and convert it to caved immediate roof strata,which can significantly reduce the rotation space for the lateral cantilever and effectively control its rotation.Firstly,the compatible deformation model was established to investigate the quantitative relationship between the deformation of the coal seam wall and the gob-side wall and the subsidence of the lateral cantilever.Then,the instability judgments for the coal seam wall and gob-side wall were revealed,and the determination method for the optimal roof cutting height were obtained.Furthermore,The Universal Distinct Element Code numerical simulation was adopted to investigate the effect of roof-cutting height on the stability of the retained entry.The numerical simulation results indicated that the deformation of the roadway could be effectively controlled when the roofcutting height reached to 18 m,which verified the theoretical deduction well.Finally,a field application was performed at the No.3307 haulage gateway in the Tangan coal mine,Ltd.,Shanxi Province,China.The field monitoring results showed that the blasting roof cutting method could effectively control the large deformation of surrounding rocks,which provided helpful references for coal mine safety production under similar conditions. 展开更多
关键词 gob-side entry retaining fully mechanized caving face lateral cantilever
下载PDF
Comparative Analysis of the Distribution Characteristics of Floor Stress Field between Gob-Side Entry Retaining with Roof Cutting and Conventional Mining
2
作者 Weifeng Xue Chaoyang Liu +3 位作者 Chao Li Yongguang Chen Xiaoping Xi Feng Wang 《Journal of Geoscience and Environment Protection》 2022年第12期17-28,共12页
All coal fields in North China are affected by floor confined water to varying degrees, floor failure and water inrush risk have always been a major problem to baffle coal mining activities. Roof cutting and pressure ... All coal fields in North China are affected by floor confined water to varying degrees, floor failure and water inrush risk have always been a major problem to baffle coal mining activities. Roof cutting and pressure relief and the lack of protective coal pillar can cause the change of floor stress field, leading to the change of the floor failure depth, stress field of floor is the key to determine the depth of floor failure. In order to deeply study the distribution characteristics of floor stress field in gob-side entry retaining mining with roof cutting, taking the 50107 and 50109 working faces of Dongdong Coal Mine in Chenghe as the research objects, the numerical simulation software is used to simulate the floor stress field distribution of gob-side entry retaining mining with roof cutting and conventional mining. The distribution characteristics of the floor stress field of the working face are compared and analyzed under the three modes of conventional mining of reserved coal pillar, the first mining face of gob-side entry retaining with roof cutting and gob-side entry retaining with roof cutting. The results show that the peak stress concentration in front of the working face all occurs at 10 m under the three mining modes. The stress concentration area in front of conventional working face of reserved coal pillar is mainly in the middle of the working face. The stress concentration area in front of the first working face of gob-side entry retaining with roof cutting (50107) is located in the middle of the working face and the side of the working face of the retaining roadway. The stress concentration area of the working face (50109) is mainly in the middle and the two ends of the working face. The order of the peak value of the maximum concentrated stress in front of the working face is conventional working face of reserved coal pillar > the first working face of gob-side entry retaining with roof cutting (50107) > working face of gob-side entry retaining with roof cutting (50109). There is a stress reduction zone behind the working face, but there is a stress concentration phenomenon extending to the outside of the roadway, and the stress distribution is obviously different. Conventional working face of reserved coal pillar and the first working face of gob-side retaining with roof cutting (50107) show a double peak form of stress concentration on the outside of the two ends of the roadway, and the peak value of the concentrated stress at the rear of the working face is in the following order: On the side close to the transportation roadway, conventional working face of reserved coal pillar = the first working face of gob-side entry retaining with roof cutting (50107) > working face of gob-side entry retaining with roof cutting (50109);on the side close to the return airway, conventional working face of reserved coal pillar > the first working face of gob-side entry retaining with roof cutting (50107) > working face of gob-side entry retaining with roof cutting (50109). 展开更多
关键词 Roof Cutting and Pressure Relief gob-side entry retaining Floor Stress Field Stress Concentration
下载PDF
Coupling mechanism of roof and supporting wall in gob-side entry retaining in fully-mechanized mining with gangue backfilling 被引量:15
3
作者 Ma Zhanguo Gong Peng Fan Jinquan Geng Minmin Zhang Guowei 《Mining Science and Technology》 EI CAS 2011年第6期829-833,共5页
We analyzed the deformation characteristics of overlying stratum in backfilling with fully-mechanized and retaining roadways along the gob area coal mining technology, and established a mechanical model for the roof k... We analyzed the deformation characteristics of overlying stratum in backfilling with fully-mechanized and retaining roadways along the gob area coal mining technology, and established a mechanical model for the roof key stratum of retaining roadways along gob under the conditions of backfilling and fully- mechanized coal mining technology. Using Winkler elastic foundation theory, we analyzed a part of the key stratum under the action of elastic foundation coupling problem, and derived deflection analyt- ical expressions. Combined with specific conditions, we obtained the deflection curves for the roof key stratum of retaining roadways along gob under the conditions of backfilling and fully-mechanized coal mining technology. On this basis, we adopted the Coulomb's earth pressure theory to solve the problem of lateral pressure of the gangue filling area on the supporting wall beside the roadway and to provide the theoretical basis for reasonable selection of the distance between gangue concrete wall and roof and fur- ther discussion on the supporting stability of roadway. 展开更多
关键词 机械化采煤 矸石回填 全机械化 采空区侧 屋顶 耦合机制 挡土墙 墙壁
下载PDF
Soft–strong supporting mechanism of gob-side entry retaining in deep coal seams threatened by rockburst 被引量:9
4
作者 Ning Jianguo Wang Jun +2 位作者 Liu Xuesheng Qian Kun Sun Bi 《International Journal of Mining Science and Technology》 SCIE EI 2014年第6期805-810,共6页
When gob-side entry retaining is implemented in deep coal seams threatened by rockburst, the cementbased supporting body beside roadway will bear greater roof pressure and strong impact load. Then the supporting body ... When gob-side entry retaining is implemented in deep coal seams threatened by rockburst, the cementbased supporting body beside roadway will bear greater roof pressure and strong impact load. Then the supporting body may easily deform and fail because of its low strength in the early stage. This paper established the roadside support mechanical model of gob-side entry retaining. Based on this model,we proposed and used the soft–strong supporting body as roadside support in the gob-side entry retaining. In the early stage of roof movement, the soft–strong supporting body has a better compressibility, which can not only relieve roof pressure and strong impact load, but also reduce the supporting resistance and prevent the supporting body from being crushed. In the later stage, with the increase of the strength of the supporting body, it can better support the overlying roof. The numerical simulation results and industrial test show that the soft–strong supporting body as roadside support can be better applied into the gob-side entry retaining in deep coal seams threatened by rockburst. 展开更多
关键词 采空区侧 冲击地压 深部煤层 配套性 威胁 机制 冲击负荷 支撑体
下载PDF
Research on the width of filling body in gob-side entry retaining with high-water materials 被引量:9
5
作者 Chang Qingliang Tang Weijun +1 位作者 Xu Ying Zhou Huaqiang 《International Journal of Mining Science and Technology》 EI CSCD 2018年第3期519-524,共6页
To determine the filling body's width along the gob-side remained roadway which is underneath the gob,the authors analyzed the interaction mechanism between the roof and the supporting body along the remained road... To determine the filling body's width along the gob-side remained roadway which is underneath the gob,the authors analyzed the interaction mechanism between the roof and the supporting body along the remained roadway, based on the elastic thin plate theory of the stope roof. The stress state and mechanical response of the filling body along the remained roadway were studied. Specifically, firstly, the supporting pressure of the coal pillar which is on one side of the gob-side remained roadway was deduced.Also, an equation that is used to calculate the width of the balance area in the stress limit state was acquired. Then, an equation that is used to calculate the roof cutting force on one side of the supporting body was obtained. By using FLAC3D, the authors investigated the displacement field and stress field response laws of rock masses around the roadway with different filling body's widths. The results show that with the filling body's width increasing, the supporting ability of the filling body increases.Meanwhile, the rock mass displacement around the roadway and the filling body deformation decrease.The better the filling body's supporting effect is, the higher the roof cutting force will be. When the filling body's width is larger than 3.0 m, its internal bearing ability becomes stable and the filling body's deformation became non-apparent. Finally, analysis shows that the filling body's width should be 2.5 m.Furthermore, the authors conducted field tests in the supply roadway 1204, using high-water materials and acquired expected outcomes. 展开更多
关键词 水位线 身体 宽度 材料 入口 相互作用机制 FLAC3D 薄板理论
下载PDF
Position-optimization on retained entry and backfilling wall in gob-side entry retaining techniques 被引量:6
6
作者 Xiaowei Feng Nong Zhang 《International Journal of Coal Science & Technology》 EI 2015年第3期186-195,共10页
关键词 沿空留巷技术 位置优化 稳定性问题 充填 回填方法 地质条件 淮南矿区
下载PDF
Feasibility analysis of gob-side entry retaining on a working face in a steep coal seam 被引量:9
7
作者 Deng Yuehua Wang Shouquan 《International Journal of Mining Science and Technology》 SCIE EI 2014年第4期499-503,共5页
Based on the decline in exploitation of coal resources, steep coal seam mining and mining face tensions continue to explore the feasibility analysis of steeply inclined faces in the gob. One of the key factors in util... Based on the decline in exploitation of coal resources, steep coal seam mining and mining face tensions continue to explore the feasibility analysis of steeply inclined faces in the gob. One of the key factors in utilizing the technology of gob-side entry retaining in steep coal seams is to safely and effectively prevent caving rock blocks from rushing into the gob-side entry by sliding downwards along levels. Using theoretical analysis and field methods, we numerically simulated the mining process on a fully-mechanized face in a steep coal seam. The stress and deformation process of roof strata has been analyzed, and the difficulty of utilizing the technology is considered and combined with practice in a steep working face in Lvshuidong mine. The feasibility of utilizing the technology of gob-side entry retaining in a steep coal seam has been recognised. We propose that roadways along the left lane offshoot body use a speciallymade reinforced steel dense net to build a dense rock face at the lower head. The results show that the lane offshoot branch creates effective roof control, safe conditions for roadway construction workers, and practical application of steeply inclined gob. 展开更多
关键词 急倾斜煤层开采 综采工作面 采空区侧 煤炭资源 开采过程 数值模拟 顶板岩层 施工人员
下载PDF
Spontaneous caving and gob-side entry retaining of thin seam with large inclined angle 被引量:3
8
作者 Zhang Yongqin Tang Jianxin +2 位作者 Xiao Daqiang Sun Lele Zhang Weizhong 《International Journal of Mining Science and Technology》 SCIE EI 2014年第4期441-445,共5页
Based on the research method of combining simulation analysis with field testing by distinct element process UDEC, we have analyzed the roof deformation and failure laws and roadway support technology of gob-side entr... Based on the research method of combining simulation analysis with field testing by distinct element process UDEC, we have analyzed the roof deformation and failure laws and roadway support technology of gob-side entry retaining in a thin seam with a large inclined angle. The results show that during exploitation in seams with large inclined angle, rotational subsidence of the main roof under the gob area is small and can maintain balance, so there is no need to provide artificial permanent support resistance for the main roof near the upper side to control rotational subsidence. Obstructed by the dense scrap rail,waste rock from the immediate roof caving slides from the upper gob area to the lower area and fills it,which strikes a balance between the immediate roof under the goaf after it fractures into large pieces and filling waste rocks. 展开更多
关键词 采空区侧 大倾角 薄煤层 崩落 自燃 巷道支护技术 现场测试 模拟分析
下载PDF
Study on gob-side entry retaining in fully-mechanized longwall with top-coal caving and its application 被引量:12
9
作者 Su Hai Bai Jianbiao +2 位作者 Yan Shuai Chen Yong Zhang Zizheng 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2015年第3期503-510,共8页
Based on the engineering background of gob-side entry retaining in fully-mechanized longwall with top coal caving(GER-FLTC) on N2105 working face of Yuwu coal mine, by adopting the methods of theoretical analysis and ... Based on the engineering background of gob-side entry retaining in fully-mechanized longwall with top coal caving(GER-FLTC) on N2105 working face of Yuwu coal mine, by adopting the methods of theoretical analysis and numerical calculation, the control techniques of surrounding rocks in GER-FLTC working face are studied in this paper. The two main difficulties of stability of surrounding rocks at gob-side retained entry in fully-mechanized longwall working face are the stability control of top coal and control of large deformation of GER-FLTC working face. Interaction mechanical model between roofing and roadside backfilling in GER-FLTC is established and the equations for the calculation of roof-cutting resistance of roadside backfilling are derived. Results of numerical calculation show that the damage zones of top coal can be categorized into the delaminating zone of top coal above the backfilling, tensile damage zone of top coal above the retained roadway and shear damage zone of the upper rib of the solid coal. Stability control of top coal is the critical part to success of GER-FLTC. With consideration of large deformation of surrounding rocks of gob-side retained entry in fully-mechanized longwall, the support technique of‘‘roofing control and wall strengthening'' is proposed where high strength and highly prestressed anchor rods and diagonal tensile anchor cables support are used for top coal, high strength and highly prestressed yielding anchor rod support is used for solid coal and roadside prestressed load-carrying backfilling is constructed by high-water material, in order to maintain the integrity of the top coal, transfer load, high resistance yielding load-carrying of solid coal, roof-cutting of roadside backfilling and support,and to achieve GER-FLTC. Results from this study are successfully applied in engineering practice. 展开更多
关键词 采空区侧 综采 入境 应用 长壁工作面 预应力锚杆 稳定性控制 综放
下载PDF
Control of floor heaves with steel pile in gob-side entry retaining 被引量:2
10
作者 Xu Ying Chen Jin Bai Jianbiao 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第3期527-534,共8页
A new approach named as steel pile method is innovatively proposed in this study to control severe floor heaves in gob-side entry retaining. It is required that the steel piles be installed in the floor corners with a... A new approach named as steel pile method is innovatively proposed in this study to control severe floor heaves in gob-side entry retaining. It is required that the steel piles be installed in the floor corners with a certain interval before the influence of the dynamic pressure induced by current panel extraction. Using numerical simulation and theoretical analysis, this study investigated the interaction between the steel piles and the floor rocks during the service life of the steel piles, and revealed the mechanism of the steel piles in controlling floor heaves. The effect of the steel pile parameters on the control of floor heaves was presented and elaborated. It is found that the effectiveness of the steel piles in controlling floor heaves can be enhanced with greater installed dip angle, longer length and smaller interval of the steel piles.Compared with traditional methods, e.g., using floor anchor bolts and floor restoration, the advantages using steel pile were successfully defined in terms of controlling effect and economic benefits. It is hoped that the proposed method can contribute to the development of gob-side entry retaining technique. 展开更多
关键词 沿空留巷技术 控制效果 钢桩 底臌 安装倾角 动态压力 数值模拟 相互作用
下载PDF
Study on gob-side entry retaining technique with roadside packing in longwall top-coal caving technology 被引量:3
11
作者 华心祝 《Journal of Coal Science & Engineering(China)》 2004年第1期9-12,共4页
Pointed out some technical difficulties of gob-side entry retaining with roadside packing in longwall top-coal caving technology (LTCT), and analyzed the function mecha-nism of roadside filling body. Theory analysis s... Pointed out some technical difficulties of gob-side entry retaining with roadside packing in longwall top-coal caving technology (LTCT), and analyzed the function mecha-nism of roadside filling body. Theory analysis shows the mechanical properties of high water material fit for the feature of deformation of gob-side entry retaining in LTCT, and gob-side entry retaining in LTCT face is one of effective ways to increase the recovery ra-tio of mining district. 展开更多
关键词 采空区 充填采矿法 崩落开采法 煤矿开采 LTCT 工作面 矿山压力
下载PDF
Mechanical analysis on deformation of surrounding rock with road-in packing of gob-side entry retaining in fully-mechanized sub-level caving face 被引量:1
12
作者 朱川曲 缪协兴 刘泽 《Journal of Coal Science & Engineering(China)》 2008年第1期24-28,共5页
Based on the movement regularity of surrounding rock with road-in packing of gob-side entry retaining in fully-mechanized sub-level caving face(RPGERFCF),the me- chanical model of its surrounding rock was established ... Based on the movement regularity of surrounding rock with road-in packing of gob-side entry retaining in fully-mechanized sub-level caving face(RPGERFCF),the me- chanical model of its surrounding rock was established and the calculating formulas of the deformation of the roof,coal wall and filling body were attained.By the mechanical analy- sis to the deformation of the surrounding rock of RPGERFCF,the major factors influencing the deformation of the surrounding rock were found out and the technologic approaches reduced the deformation and enhanced the stability of the surrounding rock were put for- ward.Consequently,the scientific bases were provided for the stability control of the sur- rounding rock of RPGERFCF. 展开更多
关键词 机械分析 岩石 崩落采矿法 采矿技术
下载PDF
Analysis on distribution law of the abutment pressure of the integrated coal beside the road-in packing for gob-side entry retaining in fully-mechanized caving face
13
作者 Zhu Chuanqu Liu Ze +1 位作者 Wang Weijun Zhang Daobing 《Engineering Sciences》 EI 2009年第3期23-27,共5页
The three-dimensional damage constitutive relationship of coal is established and distribution law of the abutment pressure of the integrated coal beside the road-in packing for gob-side entry retaining in fully-mecha... The three-dimensional damage constitutive relationship of coal is established and distribution law of the abutment pressure of the integrated coal beside the road-in packing for gob-side entry retaining in fully-mechanized caving face under the effect of given deformation of the main roof is analyzed by the damage mechanics theory. And the relationship between distribution of the abutment pressure and thickness of coal seam is explored. The presented result is of great theoretical significance and practical value to the study on stability control of the surrounding rock of road-in packing for gob-side entry retaining in fully-mechanized caving face. 展开更多
关键词 沿空留巷 支承压力 综放面 压力法 包装 煤炭 公路 三维损伤
下载PDF
Control mechanism and technique of floor heave with reinforcing solid coal side and floor corner in gob-side coal entry retaining 被引量:6
14
作者 Chen Yong Bai Jianbiao +3 位作者 Yan Shuai Xu Ying Wang Xiangyu Ma Shuqi 《International Journal of Mining Science and Technology》 SCIE EI 2012年第6期832-836,共5页
Floor heave is the most common convergence in gob-side entry retaining.The paper analyzes the form,process and characteristics of gob-side entry retaining with the comprehensive methods of theoretical analysis,numeric... Floor heave is the most common convergence in gob-side entry retaining.The paper analyzes the form,process and characteristics of gob-side entry retaining with the comprehensive methods of theoretical analysis,numerical simulation and the field trial.Research results present that bending and folding floor heave is the main factor in the stage of the first panel mining;squeezing and fluidity floor heave plays a great role in the stable stage of gob-side entry retaining;the combination of the former two factors affects mainly the stage of the second mining ahead;abutment pressure is a fundamental contribution to the serious floor heave of gob-side entry retaining,and sides corners of solid coal body are key part in the case of floor heave controlling of gob-side entry retaining.Floor heave of gob-side entry retaining can be significantly controlled by reinforcing sides and corners of solid coal body,and influence rules on the floor heave of gob side entry retaining of sides supporting strength and the bottom bolt orientation in solid coal side are obtained.Research results have been successfully applied in gob-side entry retaining of G20-F23070 face haulage roadway in #2 coal mine of Pingmei Group,and the field observation shows that the proposed technique is an effective way in controlling the floor heave of gob-side entry retaining. 展开更多
关键词 gob-side entry retaining ABUTMENT pressure Forms of FLOOR heave Reinforcing sides of solid COAL SIDE Bolt in a FLOOR CORNER
下载PDF
Stability control of gob-side entry retained under the gob with close distance coal seams 被引量:8
15
作者 Zizheng Zhang Min Deng +2 位作者 Jianbiao Bai Shuai Yan Xianyang Yu 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2021年第2期321-332,共12页
In multi-seam mining,the interlayer rock strata between the upper coal seam(UCS)and the lower coal seam(LCS)appear damage and strength weakening after mining the UCS.Ground stability control of the gob-side entry reta... In multi-seam mining,the interlayer rock strata between the upper coal seam(UCS)and the lower coal seam(LCS)appear damage and strength weakening after mining the UCS.Ground stability control of the gob-side entry retaining(GER)under the gob with close distance coal seams(CDCS)is faced with difficulties due to little attention to GER under this condition.This paper focuses on surrounding rock stability control and technical parameters design for GER under the gob with CDCS.The floor rock strata damage characteristics after mining the UCS is first evaluated and the damage factor of the interlayer rock strata below the UCS is also determined.Then,a structural mechanics model of GER surrounding rock is set up to obtain the main design parameters of the side-roadway backfill body(SBB)including the maximum and minimum SBB width calculation formula.The optimal SBB width and the water-to-cement ratio of high water quick-setting material(HWQM)to construct the SBB are determined as 1.2 m and 1.5:1.0,respectively.Finally,engineering trial tests of GER are successfully carried out at#5210 track transportation roadway of Xingwu Colliery.Research results can guide GER design under similar mining and geological conditions. 展开更多
关键词 gob-side entry retaining Close distance coal seams Damage factor Interlayer rock strata Side-roadway backfill body
下载PDF
Stability analysis and control technology of gob‑side entry retaining with double roadways by flling with high‑water material in gently inclined coal seam
16
作者 Shengrong Xie En Wang +3 位作者 Dongdong Chen Hui Li Zaisheng Jiang Hongzeng Yang 《International Journal of Coal Science & Technology》 EI CAS CSCD 2022年第4期147-164,共18页
To ameliorate the defects of insufcient support resistance of traditional roadside flling bodies for gob-side entry retaining(GER),overcome the inability to adapt to the deformation of surrounding rock,and isolate the... To ameliorate the defects of insufcient support resistance of traditional roadside flling bodies for gob-side entry retaining(GER),overcome the inability to adapt to the deformation of surrounding rock,and isolate the goaf efectively,a new type of high-water material as a roadside flling body for GER technology with double roadways was proposed.The instability analysis and control technology of GER with double roadways by flling high-water material into a gently inclined coal seam were studied.The basic mechanical properties of the new high-water material were investigated through laboratory experiments,and their main advantages were identifed.The reasonable width of the roadside flling wall of a high-water material was obtained by combining ground pressure observation and theoretical calculations.The distribution characteristics of the stress and plastic zone of surrounding rock of GER after being stabilized by the disturbance of the working face were studied using numerical simulations,and the failure range of GER by flling with high-water material was revealed.Based on this,a coupling control technology of anchor cables and bolts+single props+metal mesh+anchor bolts is proposed.Through the coupling methods of arranging borehole peeping and observing the convergences of surrounding rock,the results demonstrate that GER with double roadways by flling with a 1.8-m-wide high-water material has a good control efect.The above research will play an active role in promoting the application of high-water materials in GER roadside flling. 展开更多
关键词 High-water material gob-side entry retaining with double roadways Stability analysis Gently inclined coal seam Control technology
下载PDF
Rock burst mechanism analysis in an advanced segment of gob-side entry under different dip angles of the seam and prevention technology 被引量:26
17
作者 Yang Zengqiang Liu Chang +2 位作者 Tang Shichuan Dou Linming Cao Jinglong 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2018年第6期891-899,共9页
In order to investigate the frequent occurrences of rock burst in gob-side entry during the mining process of the mining zone No. 7, the mechanical model of main roof of fully-mechanized caving mining before breaking ... In order to investigate the frequent occurrences of rock burst in gob-side entry during the mining process of the mining zone No. 7, the mechanical model of main roof of fully-mechanized caving mining before breaking was established by the Winkler foundation beam theory, and the stress evolution law of surrounding rock with different dip angles of the seam during the mining process was analyzed by using FLAC3 D. The results show that: with the dip angle changing from 45° to 0°, the solid-coal side of gobside entry begins to form an L-shaped stress concentration zone at a dip angle of 30°, and the stress concentration degree goes to higher and higher levels. However, the stress concentration degree of the coalpillar side goes to lower and lower levels; the influence range and peak stress of the abutment at the lateral strata of adjacent gob increase with dip angle decreasing and reach a maximum value at a dip angle of 0°, but the tailgate is not affected; the abutment pressure superposition of two adjacent gobs leads to stress concentration further enhancing in both sides of gob-side entry. With the influence of strong mining disturbance, rock burst is easily induced by dynamic and static combined load in the advanced segment of gob-side entry. To achieve stability control similar to that in the roadway, the key control strategy is to reinforce surrounding rock and unload both sides. Accordingly, the large-diameter drilling and high-pressure water injection combined unloading and reinforced support cooperative control technology was proposed and applied in field test. The results of Electromagnetic Emission(EME) and field observation showed that unloading and surrounding rock control effect was obvious. 展开更多
关键词 ROCK BURST Change of DIP angle gob-side entry Dynamic and static combined load Cooperative control Electromagnetic emission
下载PDF
Surrounding rock control of gob-side entry driving with narrow coal pillar and roadway side sealing technology in Yangliu Coal Mine 被引量:7
18
作者 Zha Wenhua Shi Hao +1 位作者 Liu San Kang Changhao 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2017年第5期819-823,共5页
Gob-side entry driving can increase coal recovery ratio, and it is implied in many coal mines. Based on geological condition of 10416 working face tailentry in Yangliu Coal Mine, the surrounding rock deformation chara... Gob-side entry driving can increase coal recovery ratio, and it is implied in many coal mines. Based on geological condition of 10416 working face tailentry in Yangliu Coal Mine, the surrounding rock deformation characteristics of gob-side entry driving with narrow coal pillar is analysed, reasonable size of coal pillar and reasonable roadway excavation time after mining are achieved. Surrounding rock control technology and effective roadway side sealing technology are proposed and are taken into field practice. The results showed that a safer and more efficient mining of working face can be achieved. In addition, results of this paper also have important theoretical significance and valuable reference for surrounding rock control technology of gob-side entry driving with narrow coal pillar under special geological condition. 展开更多
关键词 Narrow coal PILLAR gob-side entry driving SURROUNDING rock control ROADWAY SIDE sealing technology
下载PDF
Cable-truss supporting system for gob-side entry driving in deep mine and its application 被引量:3
19
作者 Yin Qian Jing Hongwen +3 位作者 Dai Dapeng Zhu Tantan Zhao Honghui Meng Bo 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第5期885-893,共9页
In order to solve the large deformation controlling problem for surrounding rock of gob-side entry driving under common cable anchor support in deep mine, site survey, physical modeling experiment, numerical simulatio... In order to solve the large deformation controlling problem for surrounding rock of gob-side entry driving under common cable anchor support in deep mine, site survey, physical modeling experiment, numerical simulation and field measurement were synthetically used to analyze the deformation and failure characteristics of surrounding rock. Besides, applicability analysis, prestress field distribution characteristics of surrounding rock and the control effect on large deformation of surrounding rock were also further studied for the gob-side entry driving in deep mine using the cable-truss supporting system. The results show that, first, compared with no support and traditional bolt anchor support, roof cable-truss system can effectively restrain the initiation and propagation of tensile cracks in the roof surrounding rock and arc shear cracks in the two sides, moreover, the broken development of surrounding rock, roof separation and extrusion deformation between the two sides of the roadway are all controlled; second, a prestressed belt of trapezoidal shape is generated in the surrounding rock by the cable-truss supporting system, and the prestress field range is wide. Especially, the prestress concentration belt in the shallow surrounding rock can greatly improve the anchoring strength and deformation resisting capability of the rock stratum;third, an optimized support system of ‘‘roof and side anchor net beam, roof cable-truss supporting system and anchor cable of the narrow coal pillar" was put forward, and the support optimization design and field industrial test were conducted for the gob-side entry driving of the working face 5302 in Tangkou Mine, from which a good supporting effect was obtained. 展开更多
关键词 Deep mine gob-side entry driving Cable-truss supporting system Deformation and failure STABILITY
下载PDF
Failure laws of narrow pillar and asymmetric control technique of gob-side entry driving in island coal face 被引量:16
20
作者 Yang Jiping Cao Shenggen Li Xuehua 《International Journal of Mining Science and Technology》 SCIE EI 2013年第2期271-276,共6页
In allusion to the problems of complex stress distribution in the surrounding rock and deformation failure laws, as well as the difficulty in roadway supporting of the gob-side entry driving in the island coal face, 2... In allusion to the problems of complex stress distribution in the surrounding rock and deformation failure laws, as well as the difficulty in roadway supporting of the gob-side entry driving in the island coal face, 2107 face in Chengjiao Colliery is researched as an engineering case. Through physical mechanical test of rock, theoretical and numerical simulation analyses of rock, the analysis model of the roadway overlying strata structure was established, and its parameters quantified. To reveal the deformation law of the surrounding rock, the stability of the overlying strata structure was studied before, during and after the roadway driving. According to the field conditions, the stress distribution in coal pillar was quantified, and the surrounding rock deformation feature studied with different widths of the pillars in gob-side entry driving. Finally, the pillar width of 4 m was considered as the most reasonable. The research results show that there is great difference in support conditions among roadway roof, entity coal side and narrow pillar side. Besides, the asymmetric control technique for support of the surrounding rock was proposed. The asymmetric control technique was proved to be reasonable by field monitoring, support by bolt-net, steel ladder and steel wire truss used in narrow pillar side. 展开更多
关键词 Island coal face gob-side entry driving Narrow pillar Asymmetric control
下载PDF
上一页 1 2 75 下一页 到第
使用帮助 返回顶部