期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Arithmetical Proof and Open Sentences
1
作者 Neil Thompson 《Journal of Philosophy Study》 2012年第1期43-50,共8页
If the concept of proof (including arithmetic proof) is syntactically restricted to closed sentences (or their Godel numbers), then the standard accounts of Godel's Incompleteness Theorems (and Lob's Theorem) ... If the concept of proof (including arithmetic proof) is syntactically restricted to closed sentences (or their Godel numbers), then the standard accounts of Godel's Incompleteness Theorems (and Lob's Theorem) are blocked. In these standard accounts (Godel's own paper and the exposition in Boolos' Computability and Logic are treated as exemplars), it is assumed that certain formulas (notably so called "Godel sentences") containing the Godel number of an open sentence and an arithmetic proof predicate are closed sentences. Ordinary usage of the term "provable" (and indeed "unprovable") favors their restriction to closed sentences which unlike so-called open sentences can be true or false. In this paper the restricted form of provability is called strong provability or unprovability. If this concept of proof is adopted, then there is no obvious alternative path to establishing those theorems. 展开更多
关键词 godel numbers arithmetical proof godel's incompleteness theorems Lob's theorem
下载PDF
The Prime Sequence: Demonstrably Highly Organized While Also Opaque and Incomputable-With Remarks on Riemann’s Hypothesis, Partition, Goldbach’s Conjecture, Euclid on Primes, Euclid’s Fifth Postulate, Wilson’s Theorem along with Lagrange’s Proof of It and Pascal’s Triangle, and Rational Human Intelligence
2
作者 Leo Depuydt 《Advances in Pure Mathematics》 2014年第8期400-466,共67页
The main design of this paper is to determine once and for all the true nature and status of the sequence of the prime numbers, or primes—that is, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, and so on. The ma... The main design of this paper is to determine once and for all the true nature and status of the sequence of the prime numbers, or primes—that is, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, and so on. The main conclusion revolves entirely around two points. First, on the one hand, it is shown that the prime sequence exhibits an extremely high level of organization. But second, on the other hand, it is also shown that the clearly detectable organization of the primes is ultimately beyond human comprehension. This conclusion runs radically counter and opposite—in regard to both points—to what may well be the default view held widely, if not universally, in current theoretical mathematics about the prime sequence, namely the following. First, on the one hand, the prime sequence is deemed by all appearance to be entirely random, not organized at all. Second, on the other hand, all hope has not been abandoned that the sequence may perhaps at some point be grasped by human cognition, even if no progress at all has been made in this regard. Current mathematical research seems to be entirely predicated on keeping this hope alive. In the present paper, it is proposed that there is no reason to hope, as it were. According to this point of view, theoretical mathematics needs to take a drastic 180-degree turn. The manner of demonstration that will be used is direct and empirical. Two key observations are adduced showing, 1), how the prime sequence is highly organized and, 2), how this organization transcends human intelligence because it plays out in the dimension of infinity and in relation to π. The present paper is part of a larger project whose design it is to present a complete and final mathematical and physical theory of rational human intelligence. Nothing seems more self-evident than that rational human intelligence is subject to absolute limitations. The brain is a material and physically finite tool. Everyone will therefore readily agree that, as far as reasoning is concerned, there are things that the brain can do and things that it cannot do. The search is therefore for the line that separates the two, or the limits beyond which rational human intelligence cannot go. It is proposed that the structure of the prime sequence lies beyond those limits. The contemplation of the prime sequence teaches us something deeply fundamental about the human condition. It is part of the quest to Know Thyself. 展开更多
关键词 Absolute Limitations of Rational Human Intelligence Analytic Number Theory Aristotle’s Fundamental Axiom of Thought Euclid’s Fifth Postulate Euclid on Numbers Euclid on Primes Euclid’s Proof of the Primes’ Infinitude Euler’s Infinite Prime Product Euler’s Infinite Prime Product Equation Euler’s Product Formula godel’s incompleteness theorem Goldbach’s Conjecture Lagrange’s Proof of Wilson’s theorem Number Theory Partition Partition Numbers Prime Numbers (Primes) Prime Sequence (Sequence of the Prime Numbers) Rational Human Intelligence Rational Thought and Language Riemann’s Hypothesis Riemann’s Zeta Function Wilson’s theorem
下载PDF
A Set-Theoretical Lemma That Implies an Abstract Form of Gdel's Theorem
3
作者 爱德华.阿罗约 徐利治 《Journal of Mathematical Research and Exposition》 CSCD 北大核心 2005年第4期647-650,共4页
We propose a simple set-theoretical lemma that implies Godel's Incompleteness Theorem. Also mentioned are some related consequences.
关键词 Enumerably infinite set godel's incompleteness theorem turing machines.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部