To maximize the size and structural advantages of nanomaterials in electrooxidation of ethanol, we herein report the synthesis of core–shell gold(Au)@Palladium(Pd) nanoparticles smaller than 3 nm in an ionic liquid, ...To maximize the size and structural advantages of nanomaterials in electrooxidation of ethanol, we herein report the synthesis of core–shell gold(Au)@Palladium(Pd) nanoparticles smaller than 3 nm in an ionic liquid, which combines the advantages of ionic liquids in preparing fine metal nanoparticles with the benefits of core–shell nanostructures. This synthetic strategy relies on the use of an ionic liquid(1-(2'-aminoethyl)-3-methyl-imidazolum tetrafluoroborate) as a stabilizer to produce Au particles with an average size of ca. 2.41 nm, which are then served as seeds for the formation of tiny core–shell Au@Pd nanoparticles with different Au/Pd molar ratios. The strong electronic coupling between Au core and Pd shell endows the Pd shell with an electronic structure favorable for the ethanol oxidation reaction. In specific, the ionic liquidderived core–shell Au@Pd nanoparticles at an Au/Pd molar ratio of 1/1 exhibit the highest mass-and area-based activities, approximately 11 times than those of commercial Pd/C catalyst for ethanol electrooxidation.展开更多
Bimetallic gold-silver core-shell nanoparticles were prepared by chemical reduction in aqueous solution, following a method that was friendly to the environment, allowing us to use this for medicinal purposes. Gold na...Bimetallic gold-silver core-shell nanoparticles were prepared by chemical reduction in aqueous solution, following a method that was friendly to the environment, allowing us to use this for medicinal purposes. Gold nanoparticles were synthesized, and silver cations were then reduced on the nanoparticles. Using the optical properties of metallic nanoparticles, surface plasmon resonance was determined by UV-Vis spectroscopy, and the values obtained for gold and silver were approximately 520 nm and 400 nm in wavelength, respectively. The absorption peaks of the surface plasmon band show a clear red-shift due to size effect in the case of the silver surface, and a plasmon coupling effect, in the case of gold. To obtain a better understanding of the coating conditions, high resolution transmission electron microscopy was used. The average hydrodynamic size and the size distribution of the synthesized nanoparticles were obtained by dynamic light scattering. The development of this process, which is benign for the environment, opens the possibility for many applications in the areas of renewable energy, medicine and biology.展开更多
Nanostructural gold/polyaniline core/shell composite particles on conducting electrode ITO were successfully prepared via electrochemical polymerization of aniline based on 4-aminothiophenol (4-ATP) capped Au nanopart...Nanostructural gold/polyaniline core/shell composite particles on conducting electrode ITO were successfully prepared via electrochemical polymerization of aniline based on 4-aminothiophenol (4-ATP) capped Au nanoparticles. The new approach to the fabrication included three steps: preparation of gold nanoparticles as core by pulse electrodeposition; formation of ATP monolayer on the gold particle surface, which served as a binder and an initiator; polymerization of aniline monomer initiated by ATP molecules under controlled voltage lower than the voltammetric threshold of aniline polymerization, which assured the formation of polyaniline shell film occurred on gold particles selectively. Topographic images were also studied by AFM, which indicated the diameter of gold nanoparticles were around 250 nm. Coulometry characterization confirmed the shell thickness of polyaniline film was about 30 nm. A possible formation mechanism of the Au/polyaniline core-shell nanocomposites was also proposed. The novel as-prepared core-shell nanoparticles have potential application in constructing biosensor when bioactive enzymes are absorbed or embedded in polyaniline shell film.展开更多
Carbon encapsulated magnetic nanoparticles (CEMNs) were synthesized by heating an aqueous glucose solution containing Fe-Au (Au coated Fe nanoparticles) nanoparticles at 160-180 ℃ for 2 h. This novel hydrothermal...Carbon encapsulated magnetic nanoparticles (CEMNs) were synthesized by heating an aqueous glucose solution containing Fe-Au (Au coated Fe nanoparticles) nanoparticles at 160-180 ℃ for 2 h. This novel hydrothermal approach is not only simple but also provides the surface of CEMNs with functional groups like--OH. The formation of carbon encapsulated magnetic nanoparticles was not favored when using pure Fe nanoparticles as cores because of the oxidation of Fe nanoparticles by 1-120 during the reaction and, therefore, the surfaces of the naked Fe nanoparticles had to be coated by Au shell in advance. TEM, XRD, XPS and VSM measurments characterized that they were uniform carbon spheres containing some embedded Fe-Au nanoparticles, with a saturation of 14.6 emu/g and the size of the typical product is -350 nm.展开更多
Two reduction-cleavable ABA triblock copolymers possessing two disulfide linkages,PMMA-ssPMEO3MA-ss-PMMA and PDEA-ss-PEO-ss-PDEA were synthesized via facile substitution reactions from homopolymer precursors,where PMM...Two reduction-cleavable ABA triblock copolymers possessing two disulfide linkages,PMMA-ssPMEO3MA-ss-PMMA and PDEA-ss-PEO-ss-PDEA were synthesized via facile substitution reactions from homopolymer precursors,where PMMA,PMEO3MA,PDEA,and PEO represent poly(methyl methacrylate),poly(tri(ethylene glycol) monomethyl ether methacrylate,poly(2-(diethylamino)ethyl methacrylate),and poly(ethylene oxide),respectively.Spherical micelles were obtained through supramolecular self-assembly of these two triblock copolymers in aqueous solutions.The resultant micelles with abundant disulfide bonds could serve as soft templates and precisely accommodate gold nanoparticles in the core/shell interface as a result of the formation of Au-S bonds.展开更多
Synthesis of gold nanoparticles(AuNPs) and Pluronic triblock copolymer composite in aqueous medium was studied.Gold-polymer nanocomposite with different structures was fabricated by tailoring the molar ratio of gold p...Synthesis of gold nanoparticles(AuNPs) and Pluronic triblock copolymer composite in aqueous medium was studied.Gold-polymer nanocomposite with different structures was fabricated by tailoring the molar ratio of gold precursors to Pluronic P123 molecules or pH value of the P123 solution.When a lower volume ratio of [AuCl4-]/[P123](0.05) was employed at pH 11.1,a nanostructure similar to plum pudding was obtained.AuNPs with an average diameter of 13.1 nm were embedded in Pluronic assemblies,and each one held about 21 single gold nanoparticles.When [AuCl4-]/[P123] was increased to 0.1,core-shell structure was obtained if the pH value was in the range of 10.6~11.6,while gold polyhedra were fabricated when pH value was 8.1.Typical core-shell AuNPs had an average diameter of 9.6 nm with a narrow size distribution,while gold polyhedras with a mean diameter of 12.8 nm was obtained.The specific morphologies of the resultant nanocomposite were presumably obtained due to the synergistic interaction among the reactants.展开更多
MXene is a new type of layered two-dimensional transition metal carbide materials differing from graphene, demonstrating intriguing chemical/physical properties. Here the chemical modification of MXene and next fabric...MXene is a new type of layered two-dimensional transition metal carbide materials differing from graphene, demonstrating intriguing chemical/physical properties. Here the chemical modification of MXene and next fabrication of core-shell MXene-COOH@(PEI/PAA)_n composites have been investigated. The obtained MXene-based composites were treated with gold nanoparticles to form MXene—COOH@(PEI/PAA)_n@AuNPs nanocomposites, and their catalytic properties for nitro-compounds were studied. The prepared nanocomposites demonstrated good catalytic activity and reproducibility, showing potential applications in composite catalysts and environmental fields.展开更多
We prepared Au/Ag core-shell nanoparticles by growing Ag shell onto 12 nm Au core, using silver nitrate and sodium citrate as the reactants. By changing the molar ratio of Ag to Au, the shell thickness and thus the si...We prepared Au/Ag core-shell nanoparticles by growing Ag shell onto 12 nm Au core, using silver nitrate and sodium citrate as the reactants. By changing the molar ratio of Ag to Au, the shell thickness and thus the size of bimetallic particles could be controlled in convenient way. The formation of core-shell structure was proved by UV-Vis spectra, transmission electron microscopy(TEM), etc.. The core-shell particles showed a more narrow size distribution than Ag colloid prepared without Au core. The SERS activity of the core-shell particles was investigated by using 2,4-dimethylpyridine as the probe, which strongly indicated their potential application in SERS substrate materials.展开更多
基金supported by the National Natural Science Foundation of China(21573240,21706265,21776292)National Natural Science Foundation of Beijing(2173062)+1 种基金the Center for Mesoscience,Institute of Process Engineering,Chinese Academy of Sciences(MPCS-2017-A-02)State Key Laboratory of Multiphase Complex Systems,Institute of Process Engineering,Chinese Academy of Sciences(MPCS2019-A-09)。
文摘To maximize the size and structural advantages of nanomaterials in electrooxidation of ethanol, we herein report the synthesis of core–shell gold(Au)@Palladium(Pd) nanoparticles smaller than 3 nm in an ionic liquid, which combines the advantages of ionic liquids in preparing fine metal nanoparticles with the benefits of core–shell nanostructures. This synthetic strategy relies on the use of an ionic liquid(1-(2'-aminoethyl)-3-methyl-imidazolum tetrafluoroborate) as a stabilizer to produce Au particles with an average size of ca. 2.41 nm, which are then served as seeds for the formation of tiny core–shell Au@Pd nanoparticles with different Au/Pd molar ratios. The strong electronic coupling between Au core and Pd shell endows the Pd shell with an electronic structure favorable for the ethanol oxidation reaction. In specific, the ionic liquidderived core–shell Au@Pd nanoparticles at an Au/Pd molar ratio of 1/1 exhibit the highest mass-and area-based activities, approximately 11 times than those of commercial Pd/C catalyst for ethanol electrooxidation.
文摘Bimetallic gold-silver core-shell nanoparticles were prepared by chemical reduction in aqueous solution, following a method that was friendly to the environment, allowing us to use this for medicinal purposes. Gold nanoparticles were synthesized, and silver cations were then reduced on the nanoparticles. Using the optical properties of metallic nanoparticles, surface plasmon resonance was determined by UV-Vis spectroscopy, and the values obtained for gold and silver were approximately 520 nm and 400 nm in wavelength, respectively. The absorption peaks of the surface plasmon band show a clear red-shift due to size effect in the case of the silver surface, and a plasmon coupling effect, in the case of gold. To obtain a better understanding of the coating conditions, high resolution transmission electron microscopy was used. The average hydrodynamic size and the size distribution of the synthesized nanoparticles were obtained by dynamic light scattering. The development of this process, which is benign for the environment, opens the possibility for many applications in the areas of renewable energy, medicine and biology.
基金Project supported by the Start up Fund for Returned Overseas Chinese Scholars at CSU, China
文摘Nanostructural gold/polyaniline core/shell composite particles on conducting electrode ITO were successfully prepared via electrochemical polymerization of aniline based on 4-aminothiophenol (4-ATP) capped Au nanoparticles. The new approach to the fabrication included three steps: preparation of gold nanoparticles as core by pulse electrodeposition; formation of ATP monolayer on the gold particle surface, which served as a binder and an initiator; polymerization of aniline monomer initiated by ATP molecules under controlled voltage lower than the voltammetric threshold of aniline polymerization, which assured the formation of polyaniline shell film occurred on gold particles selectively. Topographic images were also studied by AFM, which indicated the diameter of gold nanoparticles were around 250 nm. Coulometry characterization confirmed the shell thickness of polyaniline film was about 30 nm. A possible formation mechanism of the Au/polyaniline core-shell nanocomposites was also proposed. The novel as-prepared core-shell nanoparticles have potential application in constructing biosensor when bioactive enzymes are absorbed or embedded in polyaniline shell film.
文摘Carbon encapsulated magnetic nanoparticles (CEMNs) were synthesized by heating an aqueous glucose solution containing Fe-Au (Au coated Fe nanoparticles) nanoparticles at 160-180 ℃ for 2 h. This novel hydrothermal approach is not only simple but also provides the surface of CEMNs with functional groups like--OH. The formation of carbon encapsulated magnetic nanoparticles was not favored when using pure Fe nanoparticles as cores because of the oxidation of Fe nanoparticles by 1-120 during the reaction and, therefore, the surfaces of the naked Fe nanoparticles had to be coated by Au shell in advance. TEM, XRD, XPS and VSM measurments characterized that they were uniform carbon spheres containing some embedded Fe-Au nanoparticles, with a saturation of 14.6 emu/g and the size of the typical product is -350 nm.
基金financial support from the National Natural Scientific Foundation of China(NNSFC) Project(Nos.51690150,51690154,and 21674103)Anhui Provincial Natural Scientific Foundation project(No.1508085QB43)
文摘Two reduction-cleavable ABA triblock copolymers possessing two disulfide linkages,PMMA-ssPMEO3MA-ss-PMMA and PDEA-ss-PEO-ss-PDEA were synthesized via facile substitution reactions from homopolymer precursors,where PMMA,PMEO3MA,PDEA,and PEO represent poly(methyl methacrylate),poly(tri(ethylene glycol) monomethyl ether methacrylate,poly(2-(diethylamino)ethyl methacrylate),and poly(ethylene oxide),respectively.Spherical micelles were obtained through supramolecular self-assembly of these two triblock copolymers in aqueous solutions.The resultant micelles with abundant disulfide bonds could serve as soft templates and precisely accommodate gold nanoparticles in the core/shell interface as a result of the formation of Au-S bonds.
文摘Synthesis of gold nanoparticles(AuNPs) and Pluronic triblock copolymer composite in aqueous medium was studied.Gold-polymer nanocomposite with different structures was fabricated by tailoring the molar ratio of gold precursors to Pluronic P123 molecules or pH value of the P123 solution.When a lower volume ratio of [AuCl4-]/[P123](0.05) was employed at pH 11.1,a nanostructure similar to plum pudding was obtained.AuNPs with an average diameter of 13.1 nm were embedded in Pluronic assemblies,and each one held about 21 single gold nanoparticles.When [AuCl4-]/[P123] was increased to 0.1,core-shell structure was obtained if the pH value was in the range of 10.6~11.6,while gold polyhedra were fabricated when pH value was 8.1.Typical core-shell AuNPs had an average diameter of 9.6 nm with a narrow size distribution,while gold polyhedras with a mean diameter of 12.8 nm was obtained.The specific morphologies of the resultant nanocomposite were presumably obtained due to the synergistic interaction among the reactants.
基金financially supported by the National Natural Science Foundation of China (Nos.21473153 and 51771162)Support Program for the Top Young Talents of Hebei Province,China Postdoctoral Science Foundation (No.2015M580214)+1 种基金the Scientific and Technological Research and Development Program of Qinhuangdao City (No.201701B004)Undergraduate Training Programs for Innovation and Entrepreneurship of Yanshan University (No.CXXL2017227)
文摘MXene is a new type of layered two-dimensional transition metal carbide materials differing from graphene, demonstrating intriguing chemical/physical properties. Here the chemical modification of MXene and next fabrication of core-shell MXene-COOH@(PEI/PAA)_n composites have been investigated. The obtained MXene-based composites were treated with gold nanoparticles to form MXene—COOH@(PEI/PAA)_n@AuNPs nanocomposites, and their catalytic properties for nitro-compounds were studied. The prepared nanocomposites demonstrated good catalytic activity and reproducibility, showing potential applications in composite catalysts and environmental fields.
文摘We prepared Au/Ag core-shell nanoparticles by growing Ag shell onto 12 nm Au core, using silver nitrate and sodium citrate as the reactants. By changing the molar ratio of Ag to Au, the shell thickness and thus the size of bimetallic particles could be controlled in convenient way. The formation of core-shell structure was proved by UV-Vis spectra, transmission electron microscopy(TEM), etc.. The core-shell particles showed a more narrow size distribution than Ag colloid prepared without Au core. The SERS activity of the core-shell particles was investigated by using 2,4-dimethylpyridine as the probe, which strongly indicated their potential application in SERS substrate materials.