Homogeneous gold nanoparticles were synthesized under atmospheric pressure using a nonthermal helium plasma jet in a single-step process.A current power supply was used to generate the plasma discharge rich in diverse...Homogeneous gold nanoparticles were synthesized under atmospheric pressure using a nonthermal helium plasma jet in a single-step process.A current power supply was used to generate the plasma discharge rich in diverse reactive species.These species induce rapid chemical reactions responsible for the reduction of the gold salts upon contact with the liquid solution.In this study,spherical and monodispersed gold nanoparticles were obtained within 5 min of plasma exposure using a solution containing gold(Ⅲ)chloride hydrate(HAuCl_(4))as a precursor and polyvinylpyrrolidone(PVP)as a capping agent to inhibit agglomerations.The formation of these metal nanoparticles was initially perceptible through a visible change in the sample's color,transitioning from light yellow to a red/pink color.This was subsequently corroborated by UVvis spectroscopy,which revealed an optical absorption in the 520-550 nm range for Au NPs,corresponding to the surface plasmon resonance(SPR)band.An investigation into the impact of various parameters,including plasma discharge duration,precursor and capping agent concentrations,was carried out to optimize conditions for the formation of well-separated,spherical gold nanoparticles.Dynamic light scattering(DLS)was used to measure the size of these nanoparticles,transmission electron microscopy(TEM)was used to observe their morphology and X-ray diffraction(XRD)was also employed to determine their crystallographic structure.The results confirm that homogeneous spherical gold nanoparticles with an average diameter of 13 nm can be easily synthesized through a rapid,straightforward,and environmentally friendly approach utilizing a helium atmospheric pressure plasma.展开更多
Ultrasmall gold nanoparticles(AuNPs)typically includes atomically precise gold nanoclusters(AuNCs)and AuNPs with a core size below 3 nm.Serving as a bridge between small molecules and traditional inorganic nanoparticl...Ultrasmall gold nanoparticles(AuNPs)typically includes atomically precise gold nanoclusters(AuNCs)and AuNPs with a core size below 3 nm.Serving as a bridge between small molecules and traditional inorganic nanoparticles,the ultrasmall AuNPs show the unique advantages of both small molecules(e.g.,rapid distribution,renal clearance,low non-specific organ accumulation)and nanoparticles(e.g.,long blood circulation and enhanced permeability and retention effect).The emergence of ultrasmall AuNPs creates significant opportunities to address many challenges in the health field including disease diagnosis,monitoring and treatment.Since the nano–bio interaction dictates the overall biological applications of the ultrasmall AuNPs,this review elucidates the recent advances in the biological interactions and imaging of ultrasmall AuNPs.We begin with the introduction of the factors that influence the cellular interactions of ultrasmall AuNPs.We then discuss the organ interactions,especially focus on the interactions of the liver and kidneys.We further present the recent advances in the tumor interactions of ultrasmall AuNPs.In addition,the imaging performance of the ultrasmall AuNPs is summarized and discussed.Finally,we summarize this review and provide some perspective on the future research direction of the ultrasmall AuNPs,aiming to accelerate their clinical translation.展开更多
Use of gold nanoparticles(GNPs)in medicine is an emerging field of translational research with vast clinical implications and exciting therapeutic potential.However,the safety of using GNPs in human subjects is an imp...Use of gold nanoparticles(GNPs)in medicine is an emerging field of translational research with vast clinical implications and exciting therapeutic potential.However,the safety of using GNPs in human subjects is an important question that remains unanswered.This study reviews over 20 clinical trials focused on GNP safety and aims to summarize all the clinical studies,completed and ongoing,to identify whether GNPs are safe to use in humans as a therapeutic platform.In these studies,GNPs were implemented as drug delivery devices,for photothermal therapy,and utilized for their intrinsic therapeutic effects by various routes of delivery.These studies revealed no major safety concerns with the use of GNPs;however,the number of trials and total patient number remains limited.Multi-dose,multicenter blinded trials are required to deepen our understanding of the use of GNPs in clinical settings to facilitate translation of this novel,multifaceted therapeutic device.Expanding clinical trials will require collaboration between clinicians,scientists,and biotechnology companies.展开更多
Noble metal nanoparticles exhibit unique surface plasmon resonance dependent optical properties.On this basis,gold nanoparticles(AuNPs)encapsulated in metal–organic frameworks(MOFs)can form AuNPs@MOFs composites to m...Noble metal nanoparticles exhibit unique surface plasmon resonance dependent optical properties.On this basis,gold nanoparticles(AuNPs)encapsulated in metal–organic frameworks(MOFs)can form AuNPs@MOFs composites to modulate the optical properties of fluorescent molecules,which is less reported.In this paper,based on the fluorescence enhancement effect of AuNPs on 2-(2-hydroxyphenyl)-1H-benzimidazole(HPBI)molecules,zeolitic imidazolate framework-8(ZIF-8)crystals with structural stability were introduced.AuNPs@ZIF-8 exhibited a significantly pronounced fluorescence enhancement of the HPBI molecules.In addition,by comparing the fluorescence characteristics of the HPBI molecules adsorbed on AuNPs@ZIF-8 and those captured in AuNPs@ZIF-8,we found that the ZIF-8 can act as a spacer layer with highly effective near-field enhancement.All our preliminary results shed light on future research on the composite structures of noble metal particles and MOFs for fluorescent probes and sensing applications.展开更多
This paper presents an approach to synthesis of gold nanoparticles with different morphologies and investigation of the relationship between morphologies and their optical properties.Spherical gold nanoparticles with ...This paper presents an approach to synthesis of gold nanoparticles with different morphologies and investigation of the relationship between morphologies and their optical properties.Spherical gold nanoparticles with different sizes are synthesized via reduction method.Using seed-mediated solution growth method,gold nanoparticles with shuttle,star and stick shapes can be obtained.The sizes and morphologies of the gold nanoparticles are characterized by transmission electron microscopy (TEM).The characterization results illustrate the growth process of the gold nanoparticles with different morphologies.Absorption spectroscopy and Raman spectroscopy measurements are performed to demonstrate the relationship between the morphologies and optical properties.The results of Raman characterization show that the gold nanoparticles with different morphologies can be used to probe molecules with different concentrations.展开更多
The ability to manipulate microlaser is highly desirable towards high-performance optoelectronic devices.Here we demonstrate feasible mode manipulation of Fabry-Perot type microlasers of a perovskite nanowire via inco...The ability to manipulate microlaser is highly desirable towards high-performance optoelectronic devices.Here we demonstrate feasible mode manipulation of Fabry-Perot type microlasers of a perovskite nanowire via incorporation of single gold nanoparticles.The influences of resonant wavelength,quality factor and emission directions are successively investigated using a two-dimensional finite-difference time-domain method.It is found that blueshift of resonant wavelength could be achieved together with either promoted or degraded quality factor of the microlaser via single Au NPs with varied sizes.Unidirectional emission could also be realized which is favorable for on-chip integration.Our results provide useful reference for feasible manipulation of light-matter interactions and mode selection.展开更多
Despite the high amount of scientific work dedicated to the gold nanoparticles in catalysis, most of the research has been performed utilising supported nanoparticles obtained by traditional impreg‐nation of gold sal...Despite the high amount of scientific work dedicated to the gold nanoparticles in catalysis, most of the research has been performed utilising supported nanoparticles obtained by traditional impreg‐nation of gold salts onto a support, co‐precipitation or deposition‐precipitation methods which do not benefit from the recent advances in nanotechnologies. Only more recently, gold catalyst scien‐tists have been exploiting the potential of preforming the metal nanoparticles in a colloidal suspen‐sion before immobilisation with great results in terms of catalytic activity and the morphology con‐trol of mono‐and bimetallic catalysts. On the other hand, the last decade has seen the emergence of more advanced control in gold metal nanoparticle synthesis, resulting in a variety of anisotropic gold nanoparticles with easily accessible new morphologies that offer control over the coordination of surface atoms and the optical properties of the nanoparticles (tunable plasmon band) with im‐mense relevance for catalysis. Such morphologies include nanorods, nanostars, nanoflowers, den‐dritic nanostructures or polyhedral nanoparticles to mention a few. In addition to highlighting newly developed methods and properties of anisotropic gold nanoparticles, in this review we ex‐amine the emerging literature that clearly indicates the often superior catalytic performance and amazing potential of these nanoparticles to transform the field of heterogeneous catalysis by gold by offering potentially higher catalytic performance, control over exposed active sites, robustness and tunability for thermal‐, electro‐and photocatalysis.展开更多
An efficient visible light driven photocatalyst, gold nanoparticles(NPs) modified Bi VO_4(Au/Bi VO_4), has been synthesized by deposition-precipitation with urea method. Au/Bi VO_4 exhibits enhanced photocatalytic act...An efficient visible light driven photocatalyst, gold nanoparticles(NPs) modified Bi VO_4(Au/Bi VO_4), has been synthesized by deposition-precipitation with urea method. Au/Bi VO_4 exhibits enhanced photocatalytic activity for phenol degradation underλ>400 nm irradiation but negligible activity underλ>535 nm,indicating that the surface plasmon resonance(SPR) effect is too weak for organic photodegradation. According to the photoelectrochemical results of the porous powder electrodes of Bi VO_4 and Au/Bi VO_4, the SPR effect of Au NPs has been assessed. The role of Au NPs as electron sinks or sources, which is controllable by incident photon energy and applied potentials, has been discussed.展开更多
The focus of drug delivery is shifting toward smart drug carriers that release the cargo in response to a change in the microenvironment due to an internal or external trigger. As the most clinically successful nanosy...The focus of drug delivery is shifting toward smart drug carriers that release the cargo in response to a change in the microenvironment due to an internal or external trigger. As the most clinically successful nanosystem, liposomes naturally come under the spotlight of this trend. This review summarizes the latest development about the design and construction of photo-responsive liposomes with gold nanoparticles for the controlled drug release. Alongside, we overview the mechanism involved in this process and the representative applications.展开更多
The determination method of catechol by fluorescence quenching was developed.The assay was based on the combination of the unique property of gold nanoparticles with tyrosinase enzymatic reaction.In the presence of ty...The determination method of catechol by fluorescence quenching was developed.The assay was based on the combination of the unique property of gold nanoparticles with tyrosinase enzymatic reaction.In the presence of tyrosinase,the fluorescence of gold nanoparticles was quenched by catechol which can be employed to detect catechol.Under the optimal conditions,a linear range 5.0×10^(-7)-1.0×10^(-3) mol L^(-1) and a detection limit 1.0×10^(-7) mol L^(-1) of catechol were obtained.o-Quinone intermediate produced...展开更多
To improve five-year survival rate of oral squamous cell carcinoma(OSCC),the development of a novel composite material of black phosphorus nanosheets(BPNSs)and gold nanoparticles(AuNPs)for tumor treatment was carried ...To improve five-year survival rate of oral squamous cell carcinoma(OSCC),the development of a novel composite material of black phosphorus nanosheets(BPNSs)and gold nanoparticles(AuNPs)for tumor treatment was carried out.The purpose of this study is to evaluate the cytostatic effects of BPNSs,AuNPs loaded with cisplatin(CDDP)on human tongue squamous cell carcinoma cells lines(SCC-9),and 7,12-dimethylbenz anthracene induced cheek squamous cell carcinoma was validated in golden hamsters animal models.The results showed that BPNSs could efficiently inhibit the metastasis and growth of OSCC compared with CDDP and AuNPs.And a combination composite of AuNPs−BPNSs loaded with CDDP could more effectively inhibit the metastasis and growth of OSCC,which might be due to the high drug-loading capacity,excellent photothermal properties and the combination of photodynamic and photothermal therapy of BPNSs and AuNPs,as well as the synergistic effects of AuNPs,BPNSs and CDDP.展开更多
Gold nanoparticles are gaining increasing attention due to their biological and medical applications.In this letter,we experimentally demonstrate the optical manipulation of 250-nm-diameter gold nanoparticles along an...Gold nanoparticles are gaining increasing attention due to their biological and medical applications.In this letter,we experimentally demonstrate the optical manipulation of 250-nm-diameter gold nanoparticles along an optical nanofiber(550 nm in diameter) injected by an 808-nm laser light.The nanoparticles situated in the evanescent optical field are trapped by optical gradient force and move along the direction of light propagation due to optical scattering force.The velocities reach as high as 132 μm/s at an optical power of 80 mW.展开更多
Objective In this study, the ameliorative effects of gold nanoparticles (gold NP) on the renal tissue damage in Schistosoma mansoni (S. mansoni)-infected mice was investigated. Methods High-resolution transmission...Objective In this study, the ameliorative effects of gold nanoparticles (gold NP) on the renal tissue damage in Schistosoma mansoni (S. mansoni)-infected mice was investigated. Methods High-resolution transmission electron microscopy was used for the characterization of NP. The gold NP at concentrations of 250, 500, and 1000 μg/kg body weight were inoculated into 5. mansoni-infected mice. Results The parasite caused alterations in the histological architecture. Furthermore, it induced a significant reduction in the renal glutathione levels; however, the levels of nitric oxide and malondialdehyde were significantly elevated. The parasite also managed to downregulate KIM-I, NGAL, MCP-1, and TGF-8 mRNA expression in infected animals. Notably, gold NP treatment in mice reduced the extent of histological impairment and renal oxidative damage. Gold NP were able to regulate gene expression impaired by 5. Mansoni infection. Conclusion The curative effect of gold NP against renal toxicity in 5. mansoni-infected mice is associated with their role as free radical scavengers.展开更多
Through the reduction of [AuCl4] by aqueous sodium borohydride in the presence of 9-(5-thiopentyl)-carbazole, the gold nanoparticles has been prepared and characterized.
It is crucial to understand the mechanism of low temperature CO oxidation reaction catalyzed by gold nanoparticles so as to find out the origin of the high catalytic reactivity and extend the indus‐trialization appli...It is crucial to understand the mechanism of low temperature CO oxidation reaction catalyzed by gold nanoparticles so as to find out the origin of the high catalytic reactivity and extend the indus‐trialization applications of nano gold catalysts. In this work, some theoretical works on CO adsorp‐tion, O2 adsorption, atomic oxygen adsorption, formation of surface gold oxide films, reaction mechanisms of CO oxidation involving O2 reaction with CO and O2 dissociation before reacting with CO on gold surfaces and Au/metal oxide were summarized, and the influences of coordination number, charge transfer and relativity of gold on CO oxidation reaction were briefly reviewed. It was found that CO reaction mechanism depended on the systems with or without oxide and the strong relativistic effects might play an important role in CO oxidation reaction on gold catalysts. In particular, the relativistic effects are related to the unique behaviors of CO adsorption, O adsorption, O2 activation on gold surfaces, effects of coordination number and the wide gap between the chem‐ical inertness of bulk gold and high catalytic activity of nano gold. The present work helps us to understand the CO oxidation reaction mechanism on gold catalysts and the influence of relativistic effects on gold catalysis.展开更多
AIM: To investigate the effect of gold nanoparticles on retinal angiogenesis in vitro and in vivo, and to reveal the possible mechanism.METHODS: Seed growth method was used to synthesize gold nanoparticles(GNPs). ...AIM: To investigate the effect of gold nanoparticles on retinal angiogenesis in vitro and in vivo, and to reveal the possible mechanism.METHODS: Seed growth method was used to synthesize gold nanoparticles(GNPs). The size, zeta potential, absorption spectrum and morphology of GNPs were identified using Malvern Nano-ZS, multimode reader(Bio Tek synergy2) and transmission electron microscope. Cell viability was analyzed using cell counting kit-8 method and cell growth was assessed with EdU kit. Transwell chamber was used to investigate cell migration. Tube formation method was used to assess the angiogenic property in vitro. Oxygen induced retinopathy(OIR) model was used to investigate the effect of GNPs on retinal angiogenesis. Confocal microscope and Western blot were used to study the possible mechanism of GNPs inhibited angiogenesis.RESULTS: The GNPs synthesized were uniform and well dispersed. GNPs of 10 μg/mL and 20 μg/mL were able to inhibit human umbilical vein endothelial cells proliferation(50% and 72% separately, P〈0.001), migration(54% and 83% separately, P〈0.001) and tube formation(52% and 90% separately, P〈0.001). Further data showed that GNPs were able to improve the retinopathy in an OIR model. The possible mechanism might be that GNPs were able to induce autophagy significantly(P〈0.05).CONCLUSION: The present study suggests that GNPs are able to inhibit retinal neovascularization in vitro and in vivo. GNPs might be a potential nanomedicine for the treatment of retinal angiogenesis.展开更多
A composite of graphene/PANI/GAunano is synthesized using the co-blend method. The morphologies and microstructures of samples are examined by transition electron microscopy(TEM) and Fourier transform infrared spectro...A composite of graphene/PANI/GAunano is synthesized using the co-blend method. The morphologies and microstructures of samples are examined by transition electron microscopy(TEM) and Fourier transform infrared spectroscopy(FTIR). Moreover, the microwave absorption properties of both graphene/PANI and GO/PANI/ GAunano composites are investigated in a microwave frequency band from 1 GHz to 18 GHz. The maximum reflection loss(RL) of GO/PANI/GAunano with a thickness of 2 mm is up to-24.61 d B at 15.45 GHz, and the bandwidth corresponding to RL at-10 d B can reach 4.08 GHz(from 13.92 GHz to 18.00 GHz) for a 2-mm-thick layer. The electromagnetic data demonstrate that GO/PANI/GAunano can be used as an attractive candidate for microwave absorbers.展开更多
Arrays of noble metal nanoparticles show potential applications in (bio-)sensing, optical storage, surface-enhanced spectroscopy, and waveguides. For all such potential devices, controlling the size, morphology, and...Arrays of noble metal nanoparticles show potential applications in (bio-)sensing, optical storage, surface-enhanced spectroscopy, and waveguides. For all such potential devices, controlling the size, morphology, and interparticle spacing of the nanoparticles is very important. Here, we combine seed-mediated growth with nanosphere lithography to study the controllable growth of gold nanoparticles (Au NPs), in which the self-assembly monolayer of polystyrene (PS) on a silicon surface is used to guide the modification of allaunesilanes and the subsequent adsorption of gold seeds; seed-mediated growth is applied to controlling the morphology and size of Au NPs. The size of adsorption region (determining the number of adsorbed gold seeds) is controlled by etching PS microspheres with oxygen plasma or annealing PS microspheres at the glass transition temperature. The size and morphology of the Au NPs are controlled by changing growth conditions. In such a way, we have achieved the dual control of the obtained Au NPs. Preliminary results show that this strategy holds a great promise. This approach can also be extended to a wide range of materials and substrates.展开更多
Dual argon plasmas ignited by one direct current power source are used to treat an aqueous solution of hydrogen tetrachloroaurate-(Ⅲ)trihydrate(HAuCl_(4)·3H_(2)O)which is contained in an H-type electrochemical c...Dual argon plasmas ignited by one direct current power source are used to treat an aqueous solution of hydrogen tetrachloroaurate-(Ⅲ)trihydrate(HAuCl_(4)·3H_(2)O)which is contained in an H-type electrochemical cell.The solution contained in one cell acts as a cathode,and in the other as an anode.Experiments are carried out to directly visualize the formation process of gold nanoparticles(Au NPs)in separated cells of the H-type electrochemical reactor.The results and analyzes suggest that hydrogen peroxide and hydrated electrons generated from the plasma-liquid interactions play the roles of reductants in the solutions,respectively.Hydrogen peroxide can be generated in the case of the liquid being a cathode or an anode,while most of hydrated electrons are formed in the case of the liquid being an anode.Therefore,the reduction of the AuCl_(4)−ions is mostly attributed to the hydrogen peroxide as the liquid acts as a cathode,while to the hydrogen peroxide and hydrated electrons as the liquid acts as an anode.Moreover,the p H value of the solution can be used to tune the formation processes and final form of the Au NPs due to its mediation of reductants.展开更多
While engineered nanoparticles are widely used and maybe eventually released into the environment,natural nanoparticles are also commonly found in the Earth system.Nanoparticles may critically affect the geochemical m...While engineered nanoparticles are widely used and maybe eventually released into the environment,natural nanoparticles are also commonly found in the Earth system.Nanoparticles may critically affect the geochemical migration of associated elements and pose potential threats to the ecological environment.It is necessary to establish an accurate and reliable method for measuring the concentration of nanoparticles.AAS is one of the most commonly used methods for the concentration determination of nanoparticles.However,till now,there has been no systematic report on how experimental variables affect AAS measurements.In this study,we used gold nanoparticles(AuNPs) as an example and studied the influences of a list of factors on the concentration determination of AuNPs by AAS,including digestion method,ionization interference,acidic medium,background correction method,and organic matter.We demonstrate that all these factors may have varying degrees of influence on the measured gold concentrations.When the gold colloid is digested at room temperature for more than 8 h or at 60℃ for more than 2 h,and the system contains a low concentration of organic matter,AAS can accurately measure the AuNP concentration at ppm-level.The deuterium lamp background deduction method is not recommended to use for samples with lower gold concentrations.展开更多
基金the Brazilian agencies FAPESP(Nos.2018/10172-7 and 2019/18828-1)CAPES(Finance Code 001),CNPq(No.303580/2021-6)+2 种基金the National Institute of Photonics—INFO(INCTs program)the Universidade de Sao Paulo(USP)Ministère de L’Enseignement Supérieur de la Recherche et de l’Innovation(France)for financial support。
文摘Homogeneous gold nanoparticles were synthesized under atmospheric pressure using a nonthermal helium plasma jet in a single-step process.A current power supply was used to generate the plasma discharge rich in diverse reactive species.These species induce rapid chemical reactions responsible for the reduction of the gold salts upon contact with the liquid solution.In this study,spherical and monodispersed gold nanoparticles were obtained within 5 min of plasma exposure using a solution containing gold(Ⅲ)chloride hydrate(HAuCl_(4))as a precursor and polyvinylpyrrolidone(PVP)as a capping agent to inhibit agglomerations.The formation of these metal nanoparticles was initially perceptible through a visible change in the sample's color,transitioning from light yellow to a red/pink color.This was subsequently corroborated by UVvis spectroscopy,which revealed an optical absorption in the 520-550 nm range for Au NPs,corresponding to the surface plasmon resonance(SPR)band.An investigation into the impact of various parameters,including plasma discharge duration,precursor and capping agent concentrations,was carried out to optimize conditions for the formation of well-separated,spherical gold nanoparticles.Dynamic light scattering(DLS)was used to measure the size of these nanoparticles,transmission electron microscopy(TEM)was used to observe their morphology and X-ray diffraction(XRD)was also employed to determine their crystallographic structure.The results confirm that homogeneous spherical gold nanoparticles with an average diameter of 13 nm can be easily synthesized through a rapid,straightforward,and environmentally friendly approach utilizing a helium atmospheric pressure plasma.
基金the National Natural Science Foundation of China(Grant 22022403 and 22274058)Fundamental Research Funds for the Central Universities.
文摘Ultrasmall gold nanoparticles(AuNPs)typically includes atomically precise gold nanoclusters(AuNCs)and AuNPs with a core size below 3 nm.Serving as a bridge between small molecules and traditional inorganic nanoparticles,the ultrasmall AuNPs show the unique advantages of both small molecules(e.g.,rapid distribution,renal clearance,low non-specific organ accumulation)and nanoparticles(e.g.,long blood circulation and enhanced permeability and retention effect).The emergence of ultrasmall AuNPs creates significant opportunities to address many challenges in the health field including disease diagnosis,monitoring and treatment.Since the nano–bio interaction dictates the overall biological applications of the ultrasmall AuNPs,this review elucidates the recent advances in the biological interactions and imaging of ultrasmall AuNPs.We begin with the introduction of the factors that influence the cellular interactions of ultrasmall AuNPs.We then discuss the organ interactions,especially focus on the interactions of the liver and kidneys.We further present the recent advances in the tumor interactions of ultrasmall AuNPs.In addition,the imaging performance of the ultrasmall AuNPs is summarized and discussed.Finally,we summarize this review and provide some perspective on the future research direction of the ultrasmall AuNPs,aiming to accelerate their clinical translation.
基金supported by grants from Canadian Institutes of Health Research(Grant Nos.:MOP-42546,MOP-119514,PJT148847).
文摘Use of gold nanoparticles(GNPs)in medicine is an emerging field of translational research with vast clinical implications and exciting therapeutic potential.However,the safety of using GNPs in human subjects is an important question that remains unanswered.This study reviews over 20 clinical trials focused on GNP safety and aims to summarize all the clinical studies,completed and ongoing,to identify whether GNPs are safe to use in humans as a therapeutic platform.In these studies,GNPs were implemented as drug delivery devices,for photothermal therapy,and utilized for their intrinsic therapeutic effects by various routes of delivery.These studies revealed no major safety concerns with the use of GNPs;however,the number of trials and total patient number remains limited.Multi-dose,multicenter blinded trials are required to deepen our understanding of the use of GNPs in clinical settings to facilitate translation of this novel,multifaceted therapeutic device.Expanding clinical trials will require collaboration between clinicians,scientists,and biotechnology companies.
文摘Noble metal nanoparticles exhibit unique surface plasmon resonance dependent optical properties.On this basis,gold nanoparticles(AuNPs)encapsulated in metal–organic frameworks(MOFs)can form AuNPs@MOFs composites to modulate the optical properties of fluorescent molecules,which is less reported.In this paper,based on the fluorescence enhancement effect of AuNPs on 2-(2-hydroxyphenyl)-1H-benzimidazole(HPBI)molecules,zeolitic imidazolate framework-8(ZIF-8)crystals with structural stability were introduced.AuNPs@ZIF-8 exhibited a significantly pronounced fluorescence enhancement of the HPBI molecules.In addition,by comparing the fluorescence characteristics of the HPBI molecules adsorbed on AuNPs@ZIF-8 and those captured in AuNPs@ZIF-8,we found that the ZIF-8 can act as a spacer layer with highly effective near-field enhancement.All our preliminary results shed light on future research on the composite structures of noble metal particles and MOFs for fluorescent probes and sensing applications.
基金Merit-funded Science and Technology Project for Returned Oversea Scholars from Ministry of Human and Social Security of Shanxi provinceNatural Science Foundation for Young Scientists of Shanxi province(No.2011011020-2)Shanxi Province Foundation for Returness(No.2008062)
文摘This paper presents an approach to synthesis of gold nanoparticles with different morphologies and investigation of the relationship between morphologies and their optical properties.Spherical gold nanoparticles with different sizes are synthesized via reduction method.Using seed-mediated solution growth method,gold nanoparticles with shuttle,star and stick shapes can be obtained.The sizes and morphologies of the gold nanoparticles are characterized by transmission electron microscopy (TEM).The characterization results illustrate the growth process of the gold nanoparticles with different morphologies.Absorption spectroscopy and Raman spectroscopy measurements are performed to demonstrate the relationship between the morphologies and optical properties.The results of Raman characterization show that the gold nanoparticles with different morphologies can be used to probe molecules with different concentrations.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12174116 and 91850107)the National Key Research and Development Program of China(Grant No.2018YFA0306200)+1 种基金Guangdong Innovative and Entrepreneurial Research Team Program(Grant No.2016ZT06C594)Science and Technology Project of Guangdong(Grant No.2020B010190001)。
文摘The ability to manipulate microlaser is highly desirable towards high-performance optoelectronic devices.Here we demonstrate feasible mode manipulation of Fabry-Perot type microlasers of a perovskite nanowire via incorporation of single gold nanoparticles.The influences of resonant wavelength,quality factor and emission directions are successively investigated using a two-dimensional finite-difference time-domain method.It is found that blueshift of resonant wavelength could be achieved together with either promoted or degraded quality factor of the microlaser via single Au NPs with varied sizes.Unidirectional emission could also be realized which is favorable for on-chip integration.Our results provide useful reference for feasible manipulation of light-matter interactions and mode selection.
基金supported by the Project from Institute of Chemical and Engineering Sciences (ICES), Singapore (ICES/15-1G4B01)~~
文摘Despite the high amount of scientific work dedicated to the gold nanoparticles in catalysis, most of the research has been performed utilising supported nanoparticles obtained by traditional impreg‐nation of gold salts onto a support, co‐precipitation or deposition‐precipitation methods which do not benefit from the recent advances in nanotechnologies. Only more recently, gold catalyst scien‐tists have been exploiting the potential of preforming the metal nanoparticles in a colloidal suspen‐sion before immobilisation with great results in terms of catalytic activity and the morphology con‐trol of mono‐and bimetallic catalysts. On the other hand, the last decade has seen the emergence of more advanced control in gold metal nanoparticle synthesis, resulting in a variety of anisotropic gold nanoparticles with easily accessible new morphologies that offer control over the coordination of surface atoms and the optical properties of the nanoparticles (tunable plasmon band) with im‐mense relevance for catalysis. Such morphologies include nanorods, nanostars, nanoflowers, den‐dritic nanostructures or polyhedral nanoparticles to mention a few. In addition to highlighting newly developed methods and properties of anisotropic gold nanoparticles, in this review we ex‐amine the emerging literature that clearly indicates the often superior catalytic performance and amazing potential of these nanoparticles to transform the field of heterogeneous catalysis by gold by offering potentially higher catalytic performance, control over exposed active sites, robustness and tunability for thermal‐, electro‐and photocatalysis.
基金financially supported by National Natural Science Foundation of China(No.20907031)the SSRF pro ject(No.10sr0175)Natural Science Foundation of Shanghai(No.09ZR1414800)
文摘An efficient visible light driven photocatalyst, gold nanoparticles(NPs) modified Bi VO_4(Au/Bi VO_4), has been synthesized by deposition-precipitation with urea method. Au/Bi VO_4 exhibits enhanced photocatalytic activity for phenol degradation underλ>400 nm irradiation but negligible activity underλ>535 nm,indicating that the surface plasmon resonance(SPR) effect is too weak for organic photodegradation. According to the photoelectrochemical results of the porous powder electrodes of Bi VO_4 and Au/Bi VO_4, the SPR effect of Au NPs has been assessed. The role of Au NPs as electron sinks or sources, which is controllable by incident photon energy and applied potentials, has been discussed.
文摘The focus of drug delivery is shifting toward smart drug carriers that release the cargo in response to a change in the microenvironment due to an internal or external trigger. As the most clinically successful nanosystem, liposomes naturally come under the spotlight of this trend. This review summarizes the latest development about the design and construction of photo-responsive liposomes with gold nanoparticles for the controlled drug release. Alongside, we overview the mechanism involved in this process and the representative applications.
基金supported by the National Natural Science Foundation of China(No.20875059)
文摘The determination method of catechol by fluorescence quenching was developed.The assay was based on the combination of the unique property of gold nanoparticles with tyrosinase enzymatic reaction.In the presence of tyrosinase,the fluorescence of gold nanoparticles was quenched by catechol which can be employed to detect catechol.Under the optimal conditions,a linear range 5.0×10^(-7)-1.0×10^(-3) mol L^(-1) and a detection limit 1.0×10^(-7) mol L^(-1) of catechol were obtained.o-Quinone intermediate produced...
基金The authors are grateful for financial supports from the National Natural Science Foundation of China(No.81671003)Hunan Graduate Education Innovation and Professional Ability Improvement Project,China(No.CX20200329)the Fundamental Research Funds for the Central Universities of Central South University,China(No.2020zzts056).
文摘To improve five-year survival rate of oral squamous cell carcinoma(OSCC),the development of a novel composite material of black phosphorus nanosheets(BPNSs)and gold nanoparticles(AuNPs)for tumor treatment was carried out.The purpose of this study is to evaluate the cytostatic effects of BPNSs,AuNPs loaded with cisplatin(CDDP)on human tongue squamous cell carcinoma cells lines(SCC-9),and 7,12-dimethylbenz anthracene induced cheek squamous cell carcinoma was validated in golden hamsters animal models.The results showed that BPNSs could efficiently inhibit the metastasis and growth of OSCC compared with CDDP and AuNPs.And a combination composite of AuNPs−BPNSs loaded with CDDP could more effectively inhibit the metastasis and growth of OSCC,which might be due to the high drug-loading capacity,excellent photothermal properties and the combination of photodynamic and photothermal therapy of BPNSs and AuNPs,as well as the synergistic effects of AuNPs,BPNSs and CDDP.
文摘Gold nanoparticles are gaining increasing attention due to their biological and medical applications.In this letter,we experimentally demonstrate the optical manipulation of 250-nm-diameter gold nanoparticles along an optical nanofiber(550 nm in diameter) injected by an 808-nm laser light.The nanoparticles situated in the evanescent optical field are trapped by optical gradient force and move along the direction of light propagation due to optical scattering force.The velocities reach as high as 132 μm/s at an optical power of 80 mW.
基金the Deanship of Scientific Research at King Saud University for funding the study through the research group project No.RG-198
文摘Objective In this study, the ameliorative effects of gold nanoparticles (gold NP) on the renal tissue damage in Schistosoma mansoni (S. mansoni)-infected mice was investigated. Methods High-resolution transmission electron microscopy was used for the characterization of NP. The gold NP at concentrations of 250, 500, and 1000 μg/kg body weight were inoculated into 5. mansoni-infected mice. Results The parasite caused alterations in the histological architecture. Furthermore, it induced a significant reduction in the renal glutathione levels; however, the levels of nitric oxide and malondialdehyde were significantly elevated. The parasite also managed to downregulate KIM-I, NGAL, MCP-1, and TGF-8 mRNA expression in infected animals. Notably, gold NP treatment in mice reduced the extent of histological impairment and renal oxidative damage. Gold NP were able to regulate gene expression impaired by 5. Mansoni infection. Conclusion The curative effect of gold NP against renal toxicity in 5. mansoni-infected mice is associated with their role as free radical scavengers.
基金the Major State Basic Research Development Program the National Natural Science Foundation of China (29631030).
文摘Through the reduction of [AuCl4] by aqueous sodium borohydride in the presence of 9-(5-thiopentyl)-carbazole, the gold nanoparticles has been prepared and characterized.
基金supported by the National Natural Science Foundation of China (21103165)
文摘It is crucial to understand the mechanism of low temperature CO oxidation reaction catalyzed by gold nanoparticles so as to find out the origin of the high catalytic reactivity and extend the indus‐trialization applications of nano gold catalysts. In this work, some theoretical works on CO adsorp‐tion, O2 adsorption, atomic oxygen adsorption, formation of surface gold oxide films, reaction mechanisms of CO oxidation involving O2 reaction with CO and O2 dissociation before reacting with CO on gold surfaces and Au/metal oxide were summarized, and the influences of coordination number, charge transfer and relativity of gold on CO oxidation reaction were briefly reviewed. It was found that CO reaction mechanism depended on the systems with or without oxide and the strong relativistic effects might play an important role in CO oxidation reaction on gold catalysts. In particular, the relativistic effects are related to the unique behaviors of CO adsorption, O adsorption, O2 activation on gold surfaces, effects of coordination number and the wide gap between the chem‐ical inertness of bulk gold and high catalytic activity of nano gold. The present work helps us to understand the CO oxidation reaction mechanism on gold catalysts and the influence of relativistic effects on gold catalysis.
基金Supported by the National Natural Science Foundation of China (No.81401063)Shanghai Municipal Planning Commission of Science and Research Fund (No.201740054)+5 种基金Natural Science Foundation of Beijing (No.7153175)the Capital Health Research and Development of Special (No.2018-4-5111)Beijing Nova Program (No. Z16111000490000)Research Foundation for Youth of Second Military Medical University (No.2017QN13)Research Foundation for Youth of Changhai Hospital (No.CH201712 No.CH201820)
文摘AIM: To investigate the effect of gold nanoparticles on retinal angiogenesis in vitro and in vivo, and to reveal the possible mechanism.METHODS: Seed growth method was used to synthesize gold nanoparticles(GNPs). The size, zeta potential, absorption spectrum and morphology of GNPs were identified using Malvern Nano-ZS, multimode reader(Bio Tek synergy2) and transmission electron microscope. Cell viability was analyzed using cell counting kit-8 method and cell growth was assessed with EdU kit. Transwell chamber was used to investigate cell migration. Tube formation method was used to assess the angiogenic property in vitro. Oxygen induced retinopathy(OIR) model was used to investigate the effect of GNPs on retinal angiogenesis. Confocal microscope and Western blot were used to study the possible mechanism of GNPs inhibited angiogenesis.RESULTS: The GNPs synthesized were uniform and well dispersed. GNPs of 10 μg/mL and 20 μg/mL were able to inhibit human umbilical vein endothelial cells proliferation(50% and 72% separately, P〈0.001), migration(54% and 83% separately, P〈0.001) and tube formation(52% and 90% separately, P〈0.001). Further data showed that GNPs were able to improve the retinopathy in an OIR model. The possible mechanism might be that GNPs were able to induce autophagy significantly(P〈0.05).CONCLUSION: The present study suggests that GNPs are able to inhibit retinal neovascularization in vitro and in vivo. GNPs might be a potential nanomedicine for the treatment of retinal angiogenesis.
基金supported by the National Basic Research Program of China(Grant Nos.2011CB932700 and 2011CB932703)the National Natural Science Foundation of China(Grant Nos.61335006,61378073,and 61077044)the Beijing Natural Science Fund(Grant No.4132031)
文摘A composite of graphene/PANI/GAunano is synthesized using the co-blend method. The morphologies and microstructures of samples are examined by transition electron microscopy(TEM) and Fourier transform infrared spectroscopy(FTIR). Moreover, the microwave absorption properties of both graphene/PANI and GO/PANI/ GAunano composites are investigated in a microwave frequency band from 1 GHz to 18 GHz. The maximum reflection loss(RL) of GO/PANI/GAunano with a thickness of 2 mm is up to-24.61 d B at 15.45 GHz, and the bandwidth corresponding to RL at-10 d B can reach 4.08 GHz(from 13.92 GHz to 18.00 GHz) for a 2-mm-thick layer. The electromagnetic data demonstrate that GO/PANI/GAunano can be used as an attractive candidate for microwave absorbers.
基金Project supported by the National Natural Science Foundation of China (Grant No 10334060) and The State Key Development Program for Basic Research of China (Grant No 2005CB623602).
文摘Arrays of noble metal nanoparticles show potential applications in (bio-)sensing, optical storage, surface-enhanced spectroscopy, and waveguides. For all such potential devices, controlling the size, morphology, and interparticle spacing of the nanoparticles is very important. Here, we combine seed-mediated growth with nanosphere lithography to study the controllable growth of gold nanoparticles (Au NPs), in which the self-assembly monolayer of polystyrene (PS) on a silicon surface is used to guide the modification of allaunesilanes and the subsequent adsorption of gold seeds; seed-mediated growth is applied to controlling the morphology and size of Au NPs. The size of adsorption region (determining the number of adsorbed gold seeds) is controlled by etching PS microspheres with oxygen plasma or annealing PS microspheres at the glass transition temperature. The size and morphology of the Au NPs are controlled by changing growth conditions. In such a way, we have achieved the dual control of the obtained Au NPs. Preliminary results show that this strategy holds a great promise. This approach can also be extended to a wide range of materials and substrates.
基金the Basic Research Program of Science and Technology of Shenzhen, China (No. JCYJ20190809162617137)National Natural Science Foundation of China (No. 52077185) for partial financial support+1 种基金the Australian Research Council (ARC)QUT Center for Materials Science for partial support
文摘Dual argon plasmas ignited by one direct current power source are used to treat an aqueous solution of hydrogen tetrachloroaurate-(Ⅲ)trihydrate(HAuCl_(4)·3H_(2)O)which is contained in an H-type electrochemical cell.The solution contained in one cell acts as a cathode,and in the other as an anode.Experiments are carried out to directly visualize the formation process of gold nanoparticles(Au NPs)in separated cells of the H-type electrochemical reactor.The results and analyzes suggest that hydrogen peroxide and hydrated electrons generated from the plasma-liquid interactions play the roles of reductants in the solutions,respectively.Hydrogen peroxide can be generated in the case of the liquid being a cathode or an anode,while most of hydrated electrons are formed in the case of the liquid being an anode.Therefore,the reduction of the AuCl_(4)−ions is mostly attributed to the hydrogen peroxide as the liquid acts as a cathode,while to the hydrogen peroxide and hydrated electrons as the liquid acts as an anode.Moreover,the p H value of the solution can be used to tune the formation processes and final form of the Au NPs due to its mediation of reductants.
基金supported by Guizhou Provincial Science and Technology Foundation (Qian Sci.Co.ZK[2021] No.198)Doctoral Research Startup Project in 2017 of Guizhou Normal University in China+1 种基金the B-type Strategic Priority Program of the Chinese Academy of Sciences (Grant No.XDB41000000)the National Natural Science Foundation of China (41872046,41173074 and 42063008)。
文摘While engineered nanoparticles are widely used and maybe eventually released into the environment,natural nanoparticles are also commonly found in the Earth system.Nanoparticles may critically affect the geochemical migration of associated elements and pose potential threats to the ecological environment.It is necessary to establish an accurate and reliable method for measuring the concentration of nanoparticles.AAS is one of the most commonly used methods for the concentration determination of nanoparticles.However,till now,there has been no systematic report on how experimental variables affect AAS measurements.In this study,we used gold nanoparticles(AuNPs) as an example and studied the influences of a list of factors on the concentration determination of AuNPs by AAS,including digestion method,ionization interference,acidic medium,background correction method,and organic matter.We demonstrate that all these factors may have varying degrees of influence on the measured gold concentrations.When the gold colloid is digested at room temperature for more than 8 h or at 60℃ for more than 2 h,and the system contains a low concentration of organic matter,AAS can accurately measure the AuNP concentration at ppm-level.The deuterium lamp background deduction method is not recommended to use for samples with lower gold concentrations.