The utilization of arsenic-containing gold dressing tailings is an urgent issue faced by gold production companies worldwide.The thermodynamic analysis results indicate that ferrous arsenate(FeAsO_(4)),pyrite(FeS_(2))...The utilization of arsenic-containing gold dressing tailings is an urgent issue faced by gold production companies worldwide.The thermodynamic analysis results indicate that ferrous arsenate(FeAsO_(4)),pyrite(FeS_(2))and sodium cyanide(NaCN)in the arsenic-containing gold metallurgical tailings can be effectively removed using straight grate process,and the removal of pyrite and sodium cyanide is basically completed during the preheating stage,while the removal of ferrous arsenate requires the roasting stage.The pellets undergo a transformation from magnetite to hematite during the preheating process,and are solidified through micro-crystalline bonding and high-temperature recrystallization of hematite(Fe_(2)O_(3))during the roasting process.Ultimately,pellets with removal rates of 80.77% for arsenic,88.78% for sulfur,and 99.88% for cyanide are obtained,as well as the iron content is 61.1% and the compressive strength is 3071 N,meeting the requirements for blast furnace burden.This study provides an industrially feasible method for treating arsenic-containing gold smelting tailings,benefiting gold production enterprises.展开更多
The pressing environmental concerns and the depletion of fossil fuel reserves necessitate a transition toward sustainable energy sources.Ethanol,a renewable biomass-derived fuel,is a promising alternative due to its a...The pressing environmental concerns and the depletion of fossil fuel reserves necessitate a transition toward sustainable energy sources.Ethanol,a renewable biomass-derived fuel,is a promising alternative due to its availability and high energy density.This study investigates the synthesis of gold nanoparticles(Au NPs)via a square-wave pulse deposition technique,aiming to enhance catalytic activity for ethanol electrooxidation.By varying pulse durations,we were able to exert precise control over Au NP size and distribution without stabilizing agents.Characterization using field emission scanning electron microscopy and X-ray diffraction techniques confirmed the formation of clustered nanoparticles of metallic gold phase.Electrochemical characteristics analyses revealed that Au NPs synthesized with a 900 ms pulse duration exhibited the lowest charge transfer resistance and the highest electrochemically active surface area.The electrocatalytic performance test of these Au NPs demonstrated an anodic current density of 2.5 mA cm^-(2)and a Tafel slope of 78 mV dec^(-1),indicating superior catalytic performance and reaction kinetics.Additionally,the Au NPs showed high resistance to poisoning,as evidenced by a low j_(b)/j_(f)ratio of 0.28 and stable chronoamperometric response.These findings underscore the potential of this synthesis method for producing high-performance electrocatalysts utilized in exploiting ethanol's potential as an environmentally friendly energy carrier.展开更多
The study was conducted to determine the applicability of gravity separation method on the Ashashire gold ore deposit Benishangul gumuz region, western Ethiopia. The Ashashire composite was produced to provide suffici...The study was conducted to determine the applicability of gravity separation method on the Ashashire gold ore deposit Benishangul gumuz region, western Ethiopia. The Ashashire composite was produced to provide sufficient mass for this study and experiment, including sample preparation, mineralogical analysis of gold and associated elements, gravity concentration, and data interpretation and analysis. During the study, a grind optimization was conducted on the composites sample with varying grind size to evaluate the effect of grind size on gold recovery. The ore was moderately ground to the standard grind size of 80%, passing 106 µm, 75 µm, 53 µm and this nominal size was selected for the preliminary assessment for concentration optimization for this deposit. The gravity testing comprised three-stage concentration using Knelson concentrator. High recovery of gold from the gravity concentrates was achieved from the second gravity concentration. Based on the laboratory experimental result analysis, a grind size of P80 75 µm is selected as optimal size for the Ashashire gold deposit. Increasing the grind size from P80 of 75 µm to 106 µm decreases the recovery rate from 75% to 54%, or decreasing the grind size from P80 of 75 µm to 53 µm decreases the gold recovery rate to 37%. The native gold grain in the ores is mostly associated with quartz and fine gold is closely associated with pyrite. According to analysis of the fire assay, chemical, and mineralogical data, only gold and telluride is commercially valuable elements in the ores. Predominantly gold was occurred in the native form of Au-Te. The sample subjected to gravity separation assayed about 2.6 g/t Au.展开更多
Gold stabilized on reducible oxide (CeO2 and FeOx) and irreducible oxide (γ‐Al2O3, SiO2, and HZSM‐5) were prepared by deposition precipitation method and tested for catalytic oxidation of formaldehyde (HCHO) ...Gold stabilized on reducible oxide (CeO2 and FeOx) and irreducible oxide (γ‐Al2O3, SiO2, and HZSM‐5) were prepared by deposition precipitation method and tested for catalytic oxidation of formaldehyde (HCHO) at room temperature under high GHSV of 600000 ml/(g·s). Au/γ‐Al2O3 cata‐lyst showed distinctive catalytic performance, presenting the highest initial HCHO conversion and stability. Correlating the reaction rate with Au particle size, there is a linear relationship, suggesting that the smaller Au particle size with higher dispersion possesses high reactivity for HCHO oxida‐tion. All the catalysts deactivated at high GHSV (600000 ml/(g·s)), but in a quite different rate. Re‐ducible oxide (CeO2 and FeOx) could stabilize gold through O linkage and therefore exhibits a better stability for HCHO oxidation reaction. However, the aggregation of gold particles occurred over Au/SiO2 and Au/HZSM‐5 catalysts, which result in the fast deactivation. Therefore, our results sug‐gest that the reducibility of the supports for Au catalysis has no direct influence on the activity, but affects the catalytic stability.展开更多
Stabilizing gold nanoparticles(AuNPs) within a desired size range is critical to realize their promising catalytic performance in many important reactions.Herein,we investigate the anti-sintering properties of cubic...Stabilizing gold nanoparticles(AuNPs) within a desired size range is critical to realize their promising catalytic performance in many important reactions.Herein,we investigate the anti-sintering properties of cubic mesoporous silica(FDU-12) as a function of pore entrance size.Simple adjustments to the type of organic template and reaction temperature enable the successful synthesis of FDU-12 with controllable entrance sizes( 3,3-5 and 7 nm).Excellent anti-sintering properties are observed for FDU-12 with a sub-5-nm entrance size(3-5 nm) over a wide loading concentration(1.0-8.3 wt%) and the AuNPs can be stabilized within a 4.5-5.0-nm range after calcination at 550 ℃in air for 5 h.Smaller entrance size( 3 nm) prevents ingress of 3-nm AuNPs to the mesopores and results in low loading capacity and sintering.Conversely,FDU-12 possessing a larger entrance size(7 nm) shows promising anti-sintering properties at high loading concentrations,although catalytic performance is significantly lost at lower concentrations(e.g.2.1 wt%,14.2 ± 5.5 nm).Different anti-sintering mechanisms are proposed for each of the different FDU-12 entrance sizes.Additionally,catalytic data indicates that the obtained 4.5-nm AuNPs supported on FDU-12 with a sub-5-nm entrance size exhibit excellent mass-specific activity(1544 mmol g_(Au)^(-1) h^(-1)) and selectivity( 99%)at 230 ℃ for the gas-phase selective oxidation of cyclohexanol.展开更多
The chlorination-volatilization process has been adopted to make full use of gold-bearing and iron-rich pyrite cinder. However, problems of low recovery rate, pulverization of pellets, and ring formation have been enc...The chlorination-volatilization process has been adopted to make full use of gold-bearing and iron-rich pyrite cinder. However, problems of low recovery rate, pulverization of pellets, and ring formation have been encountered during the industrialization of this process. The effects of various parameters on the volatilization rates of valuable metals and on the compressive strength of roasted pellets were investigated in this paper. The parameters include the CaCl_2 dosage, heating temperature, and holding time. The results show that heating temperature is the most important parameter for the recovery of target metals. More CaCl_2 was needed for the recovery of zinc than for the recovery of gold, silver, and lead. CaCl_2 started to react with sulfides/SO_2/SiO_2 at temperatures below the melting point of CaCl_2 to generate Cl_2/HCl. Gaseous CaCl_2 was formed at higher temperatures and could react with any of the components. The compressive strength of roasted CaCl_2-bearing pellets first decreased slowly with increasing temperature at temperatures lower than 873 K, which could result in the pulverization of pellets during heating. Their compressive strength increased dramatically with increasing temperature at temperatures greater than 1273 K. Certain quantities of CaCl_2 and Fe(Ⅱ) could improve the compressive strength of the roasted pellets; however, the addition of excessive CaCl_2 decreased the compressive strength of pellets.展开更多
Various incorporation of Au in pyrite and its effects on the geometrical structure,electronic structure and flotability of pyrite were theoretically investigated and fully discussed by performing density functional th...Various incorporation of Au in pyrite and its effects on the geometrical structure,electronic structure and flotability of pyrite were theoretically investigated and fully discussed by performing density functional theory(DFT).The calculated incorporation energy shows that gold would most likely exist in pyrite via incorporating into interstitial lattice sites in the absence of As impurity.As a result of incorporated Au,the covalence levels of the S—Fe and S—S bonds are changed,and the tonicity of Au—S bonds and antibonding of Au—Fe bonds are found to form in the pyrite,which would change the natural flotability of pyrite.The Au impurity energy levels are introduced into the energy band and result in the transformation of pyrite semiconductivity type.The calculated band-gap value suggests that the incorporated Au significantly decreases pyrite semiconductivity level,which enhances the formation and the adsorption stability of dixanthogen during pyrite flotation.The DOS results reveal that the stability and depression difficulty level of pyrites increases in the following order:Fe_(32)S_(63)As<Fe_(32)S_(64)<Fe_(32)S_(63)As Au<Fe_(32)S_(64)Au.展开更多
The Jiapigou gold deposits are typical vein type deposits associated withArchaean greenstone belts in China. According to the crosscutting relationships between dykesand auriferous veins, single hydrothermal zircon U-...The Jiapigou gold deposits are typical vein type deposits associated withArchaean greenstone belts in China. According to the crosscutting relationships between dykesand auriferous veins, single hydrothermal zircon U-Pb dating and quartz K-Ar,^(40)Ar-^(39)Ar andRb-Sr datings, the main mineralization stage of the Jiapigou deposit has been determined to be2469-2475 Ma, while mineralization superimposition on the gold deposit occurred in1800-2000 Ma and 130-272 Ma. They form a mineralization framework of one oldermetallogenic epoch (Late Archaean-Early Proterozoic) and one younger metallogenic epoch(Mesozoic) of gold deposits in Archaean greenstone belts in China.展开更多
A series of nano-size gold catalysts were prepared by deposition-precipitation method using silica material promoted with different amounts of MgO as the carrier. The influences of MgO addition on the structure and pr...A series of nano-size gold catalysts were prepared by deposition-precipitation method using silica material promoted with different amounts of MgO as the carrier. The influences of MgO addition on the structure and property of the nano-size gold catalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), O2 temperature-programmed desorption (O2-TPD), and inductively coupled with plasma atomic emission spectroscopy (ICP-AES) techniques. The total oxidation of CO was chosen as the probe reaction. The results suggest that for the gold catalysts supported on the silica material after MgO modification, the size of the gold particles is pronouncedly reduced, the oxygen mobility is enhanced, and the catalytic activity for low-temperature CO oxidation is greatly improved. The gold catalyst modified by 6 wt% MgO (Mg/SiO2 weight ratio) shows higher CO oxidation activity, over which the temperature of CO total oxidation is lower about 150 K than that over the silica directly supported gold catalyst.展开更多
A composite of graphene/PANI/GAunano is synthesized using the co-blend method. The morphologies and microstructures of samples are examined by transition electron microscopy(TEM) and Fourier transform infrared spectro...A composite of graphene/PANI/GAunano is synthesized using the co-blend method. The morphologies and microstructures of samples are examined by transition electron microscopy(TEM) and Fourier transform infrared spectroscopy(FTIR). Moreover, the microwave absorption properties of both graphene/PANI and GO/PANI/ GAunano composites are investigated in a microwave frequency band from 1 GHz to 18 GHz. The maximum reflection loss(RL) of GO/PANI/GAunano with a thickness of 2 mm is up to-24.61 d B at 15.45 GHz, and the bandwidth corresponding to RL at-10 d B can reach 4.08 GHz(from 13.92 GHz to 18.00 GHz) for a 2-mm-thick layer. The electromagnetic data demonstrate that GO/PANI/GAunano can be used as an attractive candidate for microwave absorbers.展开更多
A novel complementary grating structure is proposed for plasmonic refractive index sensing due to its strong resonance at near-infrared wavelength.The reflection spectra and the electric field distributions are obtain...A novel complementary grating structure is proposed for plasmonic refractive index sensing due to its strong resonance at near-infrared wavelength.The reflection spectra and the electric field distributions are obtained via the finite-difference time-domain method.Numerical simulation results show that multiple surface plasmon resonance modes can be excited in this novel structure.Subsequently,one of the resonance modes shows appreciable potential in refractive index sensing due to its wide range of action with the environment of the analyte.After optimizing the grating geometric variables of the structure,the designed structure shows the stable sensing performance with a high refractive index sensitivity of 1642 nm per refractive index unit(nm/RIU)and the figure of merit of 409 RIU^(-1).The promising simulation results indicate that such a sensor has a broad application prospect in biochemistry.展开更多
This work is devoted to the synthesis and stabilization of nanosized Ag/SiO2 and Au/SiO2 disperse materials and investigation their morphology, optical and antimicrobial properties. First, Ag and Au nanoparticles (NPs...This work is devoted to the synthesis and stabilization of nanosized Ag/SiO2 and Au/SiO2 disperse materials and investigation their morphology, optical and antimicrobial properties. First, Ag and Au nanoparticles (NPs) were produced in colloids via chemical (Ag) or photochemical (Au) reduction of appropriate ions. To prevent the oxidation of Ag NPs in colloid solution, external binary stabilizing agents PVP and SDS were used. Then, Ag and Au NPs (0.01-0.05% wt) were adsorbed from their colloid solutions on high disperse silica surface (Ssp=260m2/g) and samples prepared were dried. Materials obtained were studied by UV-vis, XRD, and TEM methods. Ag and Au NPs adsorbed on silica demonstrated a fair crystallinity in XRD. The surface plasmon resonance (SPR) band positions inherent to Ag and Au NPs on silica surface as well as the intensities of optical spectra were stable during 7 month and more. Obtained Ag NPs in colloids and Ag/SiO2 composites demonstrated excellent antimicrobial activity against a series of the microorganisms (Escherichia coli, Staphylococcus aurous, and Candida albicans). Au/SiO2 samples did not reveal any bactericide properties relative to the test microorganisms grown. The mechanisms of Ag(Au) NPs interaction with silica surface were analyzed.展开更多
Discovering highly stable metal fullerenes such as the celebrated C 60 is interesting in cluster science as they have potential applications as building blocks in new nanostructures.We here investigated the structural...Discovering highly stable metal fullerenes such as the celebrated C 60 is interesting in cluster science as they have potential applications as building blocks in new nanostructures.We here investigated the structural and electronic properties of the fullerenes M 12 @Au 20(M=Na,Al,Ag,Sc,Y,La,Lu,and Au),using a first-principles investigation with the density functional theory.It is found that these compound clusters possess a similar cage structure to the icosahedral Au 32 fullerene.La 12 @Au 20 is found to be particularly stable among these clusters.The binding energy of La 12 @Au 20 is 3.43 eV per atom,1.05 eV larger than that in Au 32.The highest occupied molecular orbital-lowest unoccupied molecular orbital(HOMO-LUMO) gap of La 12 @Au 20 is only 0.31 eV,suggesting that it should be relatively chemically reactive.展开更多
Narrow disperse poly(ethyleneglycol dimethacrylate-co-4-vinylpyridine) (poly(EGDMA-co-4-VPy)) microspheres were prepared by distillation-precipitation copolymerization of ethyleneglycol dimethacrylate (EGDMA) ...Narrow disperse poly(ethyleneglycol dimethacrylate-co-4-vinylpyridine) (poly(EGDMA-co-4-VPy)) microspheres were prepared by distillation-precipitation copolymerization of ethyleneglycol dimethacrylate (EGDMA) and 4-vinylpyridine (4-VPy) with 2,2'-azobisisobutyronitrile (AIBN) as initiator in neat acetonitrile. The polymer microspheres containing pyridyl group were then utilized as stabilizer for gold metallic colloids with the diameter around 7 nm, which were prepared by the in situ reduction of gold chloride trihydrate with sodium borohydride through the coordination of the pyridyl group on the gel layer and surface of the microsphere with the gold metallic nano-particles. The catalytic properties of the pyridyl- functionalized microsphere-stabilized gold metallic colloids and the behavior of the stabilized-catalyst for the recycling were investigated with reduction of 4-nitrophenol to 4-aminophenol as a model reaction.展开更多
Based on the commodity property and finance property of gold in the international gold futures market,the influence factors of international gold futures price volatility are analyzed from the perspectives of supply a...Based on the commodity property and finance property of gold in the international gold futures market,the influence factors of international gold futures price volatility are analyzed from the perspectives of supply and demand factors,financial factors and speculation factors.The structural vector autoregression(SVAR)model is applied to investigating the direction and strength of the effects of influence factors on the international gold futures prices and the variance decomposition approach(VDA)is used to compare the contributions of these factors.The results show that the supply and demand factors still play a fundamental role in the international gold futures price volatility and the role of“China’s gold demand”is exaggerated.The financial factors and speculation factors have significant impacts on the international gold futures price volatility,which reflects that the financial property of gold becomes increasingly important.Governments and investors should pay close attention to the financial property of gold futures.展开更多
Filling high-aspect-ratio trenches with gold is a frequent requirement in the fabrication of X-ray optics as well as micro-electronic components and other fabrication processes. Conformal electrodeposition of gold in ...Filling high-aspect-ratio trenches with gold is a frequent requirement in the fabrication of X-ray optics as well as micro-electronic components and other fabrication processes. Conformal electrodeposition of gold in sub-micron-width silicon trenches with an aspect ratio greater than 35 over a grating area of several square centimeters is challenging and has not been described in the literature previously. A comparison of pulsed plating and constant current plating led to a gold electroplating protocol that reliably filled trenches for such structures.展开更多
Abstract This paper deals with characteristics of silicon isotope compositions and siliceous cathodoluminescence of host rocks, ores and hydrothermal silicified quartz of the Carlin-type ore deposits in the Yunnan-Gui...Abstract This paper deals with characteristics of silicon isotope compositions and siliceous cathodoluminescence of host rocks, ores and hydrothermal silicified quartz of the Carlin-type ore deposits in the Yunnan-Guizhou-Guangxi triangle area. The study shows that primary silicified quartz is nonluminescent but quartz in host rocks and secondary silicified quartz are luminescent by the action of cathode rays. Correspondingly, silicon isotope compositions of host rocks, ores and hydro6thermal quartz veins are clearly distinguished. In strata from the Middle Triassic to the “Dachang” host bed, δ30Si of the host rocks ranges from 0.0% ?0.3%, while that of primary ore-forming silicified fluids from ?0.1% to ?0.4%; in the Upper Permian and Lower Carboniferous strata and Indosinian diabase host beds, δ30Si of the host rocks is from ?0.1% to ?0.2% and that of the primary silicified quartz veins from 0.3 % ?0.5 %. This pattern demonstrates the following geochemical mineralization process, primary ore-forming siliceous fluids migrated upwards quickly along the main passages of deep-seated faults from mantle to crust and entered secondary faults where gold deposits were eventually formed as a result of permeation and replacement of the siliceous ore-forming fluids into different ore-bearing strata. This gives important evidence for the fact that ore-forming fluids of this type of gold deposits were mainly derived from upper mantle differentiation and shows good prospects for deep gold deposits and geochemical background for large and superlarge gold deposits.展开更多
A refractory gold concentrate with 19% arsenic was treated by a mixed moderately thermophiles in an airlift bioreactor through an adaptation protocol. The moderately thermophiles could respond well to 20%(w/v) pulp de...A refractory gold concentrate with 19% arsenic was treated by a mixed moderately thermophiles in an airlift bioreactor through an adaptation protocol. The moderately thermophiles could respond well to 20%(w/v) pulp density with less than 10% loss of productivity, and resist arsenic up to 15 g/L. There were a lot of jarosite, arsenolite and sulfur, but not scorodite and ferric arsenate in the bioleached residue. Jarosite passivation and lower sulfur-oxidizing activity of the cells due to the toxicity of the high concentrations of soluble arsenic and iron ions at low p H value should mainly response for the incomplete extraction at high pulp density. The initial bacterial community did not change in nature except for new found P aeruginosa ANSC, but sulfur-oxidizing microorganisms have been dominant microorganisms after a long time of adaptation. Pseudomonas aeruginosa originating from the gold concentrate should be closely relative to the metabolism of the organic matters contained in the refractory gold concentrate.展开更多
Haigou gold deposit is a typical orogenic gold deposit. There are a reasonable amount of fluid inclusions in the gold deposit,including three types: CO2-H2O-Na Cl inclusions,pure CO2 inclusions and Na Cl-H2 O inclusio...Haigou gold deposit is a typical orogenic gold deposit. There are a reasonable amount of fluid inclusions in the gold deposit,including three types: CO2-H2O-Na Cl inclusions,pure CO2 inclusions and Na Cl-H2 O inclusions,of which most of them are CO2-bearing inclusions. The fluid salinity is 1. 43%- 9. 08%,mainly concentrated in the range of 4. 69%- 5. 41%,the density of CO2 is 0. 69- 0. 80 g / cm3,indicating that the mineralization fluid is low-medium salinity and low density fluid. A series of studies on gold-bearing quartz vein and fluid inclusions show that there exists a positive correlation between the degree of the gold mi-neralization and the amount of CO2 in the inclusions,which means the more CO2-bearing inclusions there are,the higher the content of gold is. CO2 is mainly derived from mantle fluid,and the ore-forming fluid should be derived from mantle fluid and the crust shallow fluid. The conclusions have important denotative meaning on the metallogenic mechanism of orogenic gold deposit and the deep prospecting on metal deposit.展开更多
The extraction of gold from refractory gold ores(RGOs)without side reactions is an extremely promising endeavor.However,most RGOs contain large amounts of sulfide,such as pyrite.Thus,investigation of the influence of ...The extraction of gold from refractory gold ores(RGOs)without side reactions is an extremely promising endeavor.However,most RGOs contain large amounts of sulfide,such as pyrite.Thus,investigation of the influence of sulfide on the gold leaching process is important to maximize the utilization of RGOs.In this work,the effects of pyrite on the stability of the thiourea system were systematically investigated under different conditions.Results showed that the decomposition rate of thiourea was accelerated sharply in the presence of pyrite.The effect of pyrite on gold recovery in thiourea leaching systems was then confirmed via a series of experiments.The decomposition efficiency of thiourea decreased by 40%and the recovery efficiency of gold increased by 56%after the removal of sulfide by roasting.Under optimal conditions,the efficiency of the gold recovery system increased to 83.69%and only 57.92%of thiourea decomposition was observed.The high consumption of thiourea by the leaching system may be attributed to not only adsorption by mineral particles but also catalytic decomposition by some impurities in the ores,such as pyrite and soluble ferric oxide.展开更多
基金Project(52274343)supported by the National Natural Science Foundation of ChinaProjects(2023YFC3903900,2023YFC3903904)supported by the National Key R&D Program of China。
文摘The utilization of arsenic-containing gold dressing tailings is an urgent issue faced by gold production companies worldwide.The thermodynamic analysis results indicate that ferrous arsenate(FeAsO_(4)),pyrite(FeS_(2))and sodium cyanide(NaCN)in the arsenic-containing gold metallurgical tailings can be effectively removed using straight grate process,and the removal of pyrite and sodium cyanide is basically completed during the preheating stage,while the removal of ferrous arsenate requires the roasting stage.The pellets undergo a transformation from magnetite to hematite during the preheating process,and are solidified through micro-crystalline bonding and high-temperature recrystallization of hematite(Fe_(2)O_(3))during the roasting process.Ultimately,pellets with removal rates of 80.77% for arsenic,88.78% for sulfur,and 99.88% for cyanide are obtained,as well as the iron content is 61.1% and the compressive strength is 3071 N,meeting the requirements for blast furnace burden.This study provides an industrially feasible method for treating arsenic-containing gold smelting tailings,benefiting gold production enterprises.
基金supported by the National Research and Innovation Agency(BRIN)and Lembaga Pengelola Dana Pendidikan(LPDP)Ministry of Finance,Republic of Indonesia through Riset dan Inovasi Untuk Indonesia Maju(RIIM)scheme batch 2 with contract number 1/PG.02.00.PT/LPPM/IV/2024(110/IV/KS/11/2022).
文摘The pressing environmental concerns and the depletion of fossil fuel reserves necessitate a transition toward sustainable energy sources.Ethanol,a renewable biomass-derived fuel,is a promising alternative due to its availability and high energy density.This study investigates the synthesis of gold nanoparticles(Au NPs)via a square-wave pulse deposition technique,aiming to enhance catalytic activity for ethanol electrooxidation.By varying pulse durations,we were able to exert precise control over Au NP size and distribution without stabilizing agents.Characterization using field emission scanning electron microscopy and X-ray diffraction techniques confirmed the formation of clustered nanoparticles of metallic gold phase.Electrochemical characteristics analyses revealed that Au NPs synthesized with a 900 ms pulse duration exhibited the lowest charge transfer resistance and the highest electrochemically active surface area.The electrocatalytic performance test of these Au NPs demonstrated an anodic current density of 2.5 mA cm^-(2)and a Tafel slope of 78 mV dec^(-1),indicating superior catalytic performance and reaction kinetics.Additionally,the Au NPs showed high resistance to poisoning,as evidenced by a low j_(b)/j_(f)ratio of 0.28 and stable chronoamperometric response.These findings underscore the potential of this synthesis method for producing high-performance electrocatalysts utilized in exploiting ethanol's potential as an environmentally friendly energy carrier.
文摘The study was conducted to determine the applicability of gravity separation method on the Ashashire gold ore deposit Benishangul gumuz region, western Ethiopia. The Ashashire composite was produced to provide sufficient mass for this study and experiment, including sample preparation, mineralogical analysis of gold and associated elements, gravity concentration, and data interpretation and analysis. During the study, a grind optimization was conducted on the composites sample with varying grind size to evaluate the effect of grind size on gold recovery. The ore was moderately ground to the standard grind size of 80%, passing 106 µm, 75 µm, 53 µm and this nominal size was selected for the preliminary assessment for concentration optimization for this deposit. The gravity testing comprised three-stage concentration using Knelson concentrator. High recovery of gold from the gravity concentrates was achieved from the second gravity concentration. Based on the laboratory experimental result analysis, a grind size of P80 75 µm is selected as optimal size for the Ashashire gold deposit. Increasing the grind size from P80 of 75 µm to 106 µm decreases the recovery rate from 75% to 54%, or decreasing the grind size from P80 of 75 µm to 53 µm decreases the gold recovery rate to 37%. The native gold grain in the ores is mostly associated with quartz and fine gold is closely associated with pyrite. According to analysis of the fire assay, chemical, and mineralogical data, only gold and telluride is commercially valuable elements in the ores. Predominantly gold was occurred in the native form of Au-Te. The sample subjected to gravity separation assayed about 2.6 g/t Au.
基金supported by the National Natural Science Foundation of China(21373037,21577013)China Postdoctoral Science Foundation(2014M560201)the Fundamental Research Funds for the Central Universities(DUT15TD49,DUT16ZD224)~~
文摘Gold stabilized on reducible oxide (CeO2 and FeOx) and irreducible oxide (γ‐Al2O3, SiO2, and HZSM‐5) were prepared by deposition precipitation method and tested for catalytic oxidation of formaldehyde (HCHO) at room temperature under high GHSV of 600000 ml/(g&#183;s). Au/γ‐Al2O3 cata‐lyst showed distinctive catalytic performance, presenting the highest initial HCHO conversion and stability. Correlating the reaction rate with Au particle size, there is a linear relationship, suggesting that the smaller Au particle size with higher dispersion possesses high reactivity for HCHO oxida‐tion. All the catalysts deactivated at high GHSV (600000 ml/(g&#183;s)), but in a quite different rate. Re‐ducible oxide (CeO2 and FeOx) could stabilize gold through O linkage and therefore exhibits a better stability for HCHO oxidation reaction. However, the aggregation of gold particles occurred over Au/SiO2 and Au/HZSM‐5 catalysts, which result in the fast deactivation. Therefore, our results sug‐gest that the reducibility of the supports for Au catalysis has no direct influence on the activity, but affects the catalytic stability.
基金supported by the National Natural Science Foundation of China(21222307,21373181,21403197,91545113,21503189)the Fundamental Research Funds for the Central Universities(2014XZZX003-02)+1 种基金Zhejiang Provincial Natural Science Foundation(LY15B030009)China Postdoctoral Science Foundation(2014M550333,2015T80636)~~
文摘Stabilizing gold nanoparticles(AuNPs) within a desired size range is critical to realize their promising catalytic performance in many important reactions.Herein,we investigate the anti-sintering properties of cubic mesoporous silica(FDU-12) as a function of pore entrance size.Simple adjustments to the type of organic template and reaction temperature enable the successful synthesis of FDU-12 with controllable entrance sizes( 3,3-5 and 7 nm).Excellent anti-sintering properties are observed for FDU-12 with a sub-5-nm entrance size(3-5 nm) over a wide loading concentration(1.0-8.3 wt%) and the AuNPs can be stabilized within a 4.5-5.0-nm range after calcination at 550 ℃in air for 5 h.Smaller entrance size( 3 nm) prevents ingress of 3-nm AuNPs to the mesopores and results in low loading capacity and sintering.Conversely,FDU-12 possessing a larger entrance size(7 nm) shows promising anti-sintering properties at high loading concentrations,although catalytic performance is significantly lost at lower concentrations(e.g.2.1 wt%,14.2 ± 5.5 nm).Different anti-sintering mechanisms are proposed for each of the different FDU-12 entrance sizes.Additionally,catalytic data indicates that the obtained 4.5-nm AuNPs supported on FDU-12 with a sub-5-nm entrance size exhibit excellent mass-specific activity(1544 mmol g_(Au)^(-1) h^(-1)) and selectivity( 99%)at 230 ℃ for the gas-phase selective oxidation of cyclohexanol.
基金financially supported by the National NaturalScience Foundation of China (No. 51202249)the National High-Tech Research and Development Program of China (No. 2011AA06A104)the Projects in the National Science & Technology Pillar Program during the 12th Five-year Plan Period (No. 2012BAB08B04)
文摘The chlorination-volatilization process has been adopted to make full use of gold-bearing and iron-rich pyrite cinder. However, problems of low recovery rate, pulverization of pellets, and ring formation have been encountered during the industrialization of this process. The effects of various parameters on the volatilization rates of valuable metals and on the compressive strength of roasted pellets were investigated in this paper. The parameters include the CaCl_2 dosage, heating temperature, and holding time. The results show that heating temperature is the most important parameter for the recovery of target metals. More CaCl_2 was needed for the recovery of zinc than for the recovery of gold, silver, and lead. CaCl_2 started to react with sulfides/SO_2/SiO_2 at temperatures below the melting point of CaCl_2 to generate Cl_2/HCl. Gaseous CaCl_2 was formed at higher temperatures and could react with any of the components. The compressive strength of roasted CaCl_2-bearing pellets first decreased slowly with increasing temperature at temperatures lower than 873 K, which could result in the pulverization of pellets during heating. Their compressive strength increased dramatically with increasing temperature at temperatures greater than 1273 K. Certain quantities of CaCl_2 and Fe(Ⅱ) could improve the compressive strength of the roasted pellets; however, the addition of excessive CaCl_2 decreased the compressive strength of pellets.
基金Projects(51504109,51504107)supported by the National Natural Science Foundation of China
文摘Various incorporation of Au in pyrite and its effects on the geometrical structure,electronic structure and flotability of pyrite were theoretically investigated and fully discussed by performing density functional theory(DFT).The calculated incorporation energy shows that gold would most likely exist in pyrite via incorporating into interstitial lattice sites in the absence of As impurity.As a result of incorporated Au,the covalence levels of the S—Fe and S—S bonds are changed,and the tonicity of Au—S bonds and antibonding of Au—Fe bonds are found to form in the pyrite,which would change the natural flotability of pyrite.The Au impurity energy levels are introduced into the energy band and result in the transformation of pyrite semiconductivity type.The calculated band-gap value suggests that the incorporated Au significantly decreases pyrite semiconductivity level,which enhances the formation and the adsorption stability of dixanthogen during pyrite flotation.The DOS results reveal that the stability and depression difficulty level of pyrites increases in the following order:Fe_(32)S_(63)As<Fe_(32)S_(64)<Fe_(32)S_(63)As Au<Fe_(32)S_(64)Au.
基金This study is a contribution to Project 90051-01,a state key gold scientific and technological project during the 8th Five-Year Plan period,and Project 92-94-40 carried out by the State Gold Administration.
文摘The Jiapigou gold deposits are typical vein type deposits associated withArchaean greenstone belts in China. According to the crosscutting relationships between dykesand auriferous veins, single hydrothermal zircon U-Pb dating and quartz K-Ar,^(40)Ar-^(39)Ar andRb-Sr datings, the main mineralization stage of the Jiapigou deposit has been determined to be2469-2475 Ma, while mineralization superimposition on the gold deposit occurred in1800-2000 Ma and 130-272 Ma. They form a mineralization framework of one oldermetallogenic epoch (Late Archaean-Early Proterozoic) and one younger metallogenic epoch(Mesozoic) of gold deposits in Archaean greenstone belts in China.
基金supported by the Youth Fund Project(2002B25)of Sichuan Department of Educationthe Scientific Research Foundation for Doctor from Yibin College of China(2010B12)
文摘A series of nano-size gold catalysts were prepared by deposition-precipitation method using silica material promoted with different amounts of MgO as the carrier. The influences of MgO addition on the structure and property of the nano-size gold catalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), O2 temperature-programmed desorption (O2-TPD), and inductively coupled with plasma atomic emission spectroscopy (ICP-AES) techniques. The total oxidation of CO was chosen as the probe reaction. The results suggest that for the gold catalysts supported on the silica material after MgO modification, the size of the gold particles is pronouncedly reduced, the oxygen mobility is enhanced, and the catalytic activity for low-temperature CO oxidation is greatly improved. The gold catalyst modified by 6 wt% MgO (Mg/SiO2 weight ratio) shows higher CO oxidation activity, over which the temperature of CO total oxidation is lower about 150 K than that over the silica directly supported gold catalyst.
基金supported by the National Basic Research Program of China(Grant Nos.2011CB932700 and 2011CB932703)the National Natural Science Foundation of China(Grant Nos.61335006,61378073,and 61077044)the Beijing Natural Science Fund(Grant No.4132031)
文摘A composite of graphene/PANI/GAunano is synthesized using the co-blend method. The morphologies and microstructures of samples are examined by transition electron microscopy(TEM) and Fourier transform infrared spectroscopy(FTIR). Moreover, the microwave absorption properties of both graphene/PANI and GO/PANI/ GAunano composites are investigated in a microwave frequency band from 1 GHz to 18 GHz. The maximum reflection loss(RL) of GO/PANI/GAunano with a thickness of 2 mm is up to-24.61 d B at 15.45 GHz, and the bandwidth corresponding to RL at-10 d B can reach 4.08 GHz(from 13.92 GHz to 18.00 GHz) for a 2-mm-thick layer. The electromagnetic data demonstrate that GO/PANI/GAunano can be used as an attractive candidate for microwave absorbers.
基金Project supported by the National Natural Science Foundation of China(Grant No.61865008)the Scientific Research Fund of Sichuan Provincial Science and Technology Department,China(Grant No.2020YJ0137)。
文摘A novel complementary grating structure is proposed for plasmonic refractive index sensing due to its strong resonance at near-infrared wavelength.The reflection spectra and the electric field distributions are obtained via the finite-difference time-domain method.Numerical simulation results show that multiple surface plasmon resonance modes can be excited in this novel structure.Subsequently,one of the resonance modes shows appreciable potential in refractive index sensing due to its wide range of action with the environment of the analyte.After optimizing the grating geometric variables of the structure,the designed structure shows the stable sensing performance with a high refractive index sensitivity of 1642 nm per refractive index unit(nm/RIU)and the figure of merit of 409 RIU^(-1).The promising simulation results indicate that such a sensor has a broad application prospect in biochemistry.
文摘This work is devoted to the synthesis and stabilization of nanosized Ag/SiO2 and Au/SiO2 disperse materials and investigation their morphology, optical and antimicrobial properties. First, Ag and Au nanoparticles (NPs) were produced in colloids via chemical (Ag) or photochemical (Au) reduction of appropriate ions. To prevent the oxidation of Ag NPs in colloid solution, external binary stabilizing agents PVP and SDS were used. Then, Ag and Au NPs (0.01-0.05% wt) were adsorbed from their colloid solutions on high disperse silica surface (Ssp=260m2/g) and samples prepared were dried. Materials obtained were studied by UV-vis, XRD, and TEM methods. Ag and Au NPs adsorbed on silica demonstrated a fair crystallinity in XRD. The surface plasmon resonance (SPR) band positions inherent to Ag and Au NPs on silica surface as well as the intensities of optical spectra were stable during 7 month and more. Obtained Ag NPs in colloids and Ag/SiO2 composites demonstrated excellent antimicrobial activity against a series of the microorganisms (Escherichia coli, Staphylococcus aurous, and Candida albicans). Au/SiO2 samples did not reveal any bactericide properties relative to the test microorganisms grown. The mechanisms of Ag(Au) NPs interaction with silica surface were analyzed.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11104075)the Fundamental Research Funds for the Central Universities of China (Grant No. WM0911005)
文摘Discovering highly stable metal fullerenes such as the celebrated C 60 is interesting in cluster science as they have potential applications as building blocks in new nanostructures.We here investigated the structural and electronic properties of the fullerenes M 12 @Au 20(M=Na,Al,Ag,Sc,Y,La,Lu,and Au),using a first-principles investigation with the density functional theory.It is found that these compound clusters possess a similar cage structure to the icosahedral Au 32 fullerene.La 12 @Au 20 is found to be particularly stable among these clusters.The binding energy of La 12 @Au 20 is 3.43 eV per atom,1.05 eV larger than that in Au 32.The highest occupied molecular orbital-lowest unoccupied molecular orbital(HOMO-LUMO) gap of La 12 @Au 20 is only 0.31 eV,suggesting that it should be relatively chemically reactive.
基金This work was supported in part by the National Science Foundation of China(No.20504015)the Opening Research Fund from the State Key Laboratory of Polymer Chemistry and Physics,Chinese Academy of Sciences(No.200613).
文摘Narrow disperse poly(ethyleneglycol dimethacrylate-co-4-vinylpyridine) (poly(EGDMA-co-4-VPy)) microspheres were prepared by distillation-precipitation copolymerization of ethyleneglycol dimethacrylate (EGDMA) and 4-vinylpyridine (4-VPy) with 2,2'-azobisisobutyronitrile (AIBN) as initiator in neat acetonitrile. The polymer microspheres containing pyridyl group were then utilized as stabilizer for gold metallic colloids with the diameter around 7 nm, which were prepared by the in situ reduction of gold chloride trihydrate with sodium borohydride through the coordination of the pyridyl group on the gel layer and surface of the microsphere with the gold metallic nano-particles. The catalytic properties of the pyridyl- functionalized microsphere-stabilized gold metallic colloids and the behavior of the stabilized-catalyst for the recycling were investigated with reduction of 4-nitrophenol to 4-aminophenol as a model reaction.
基金Projects(71874210,71633006,71501193) supported by the National Natural Science Foundation of China
文摘Based on the commodity property and finance property of gold in the international gold futures market,the influence factors of international gold futures price volatility are analyzed from the perspectives of supply and demand factors,financial factors and speculation factors.The structural vector autoregression(SVAR)model is applied to investigating the direction and strength of the effects of influence factors on the international gold futures prices and the variance decomposition approach(VDA)is used to compare the contributions of these factors.The results show that the supply and demand factors still play a fundamental role in the international gold futures price volatility and the role of“China’s gold demand”is exaggerated.The financial factors and speculation factors have significant impacts on the international gold futures price volatility,which reflects that the financial property of gold becomes increasingly important.Governments and investors should pay close attention to the financial property of gold futures.
文摘Filling high-aspect-ratio trenches with gold is a frequent requirement in the fabrication of X-ray optics as well as micro-electronic components and other fabrication processes. Conformal electrodeposition of gold in sub-micron-width silicon trenches with an aspect ratio greater than 35 over a grating area of several square centimeters is challenging and has not been described in the literature previously. A comparison of pulsed plating and constant current plating led to a gold electroplating protocol that reliably filled trenches for such structures.
文摘Abstract This paper deals with characteristics of silicon isotope compositions and siliceous cathodoluminescence of host rocks, ores and hydrothermal silicified quartz of the Carlin-type ore deposits in the Yunnan-Guizhou-Guangxi triangle area. The study shows that primary silicified quartz is nonluminescent but quartz in host rocks and secondary silicified quartz are luminescent by the action of cathode rays. Correspondingly, silicon isotope compositions of host rocks, ores and hydro6thermal quartz veins are clearly distinguished. In strata from the Middle Triassic to the “Dachang” host bed, δ30Si of the host rocks ranges from 0.0% ?0.3%, while that of primary ore-forming silicified fluids from ?0.1% to ?0.4%; in the Upper Permian and Lower Carboniferous strata and Indosinian diabase host beds, δ30Si of the host rocks is from ?0.1% to ?0.2% and that of the primary silicified quartz veins from 0.3 % ?0.5 %. This pattern demonstrates the following geochemical mineralization process, primary ore-forming siliceous fluids migrated upwards quickly along the main passages of deep-seated faults from mantle to crust and entered secondary faults where gold deposits were eventually formed as a result of permeation and replacement of the siliceous ore-forming fluids into different ore-bearing strata. This gives important evidence for the fact that ore-forming fluids of this type of gold deposits were mainly derived from upper mantle differentiation and shows good prospects for deep gold deposits and geochemical background for large and superlarge gold deposits.
基金Project(2010CB630903)supported by the National Basic Research Program of ChinaProject(31200382)supported by the Chinese Science Foundation for Distinguished Group,China
文摘A refractory gold concentrate with 19% arsenic was treated by a mixed moderately thermophiles in an airlift bioreactor through an adaptation protocol. The moderately thermophiles could respond well to 20%(w/v) pulp density with less than 10% loss of productivity, and resist arsenic up to 15 g/L. There were a lot of jarosite, arsenolite and sulfur, but not scorodite and ferric arsenate in the bioleached residue. Jarosite passivation and lower sulfur-oxidizing activity of the cells due to the toxicity of the high concentrations of soluble arsenic and iron ions at low p H value should mainly response for the incomplete extraction at high pulp density. The initial bacterial community did not change in nature except for new found P aeruginosa ANSC, but sulfur-oxidizing microorganisms have been dominant microorganisms after a long time of adaptation. Pseudomonas aeruginosa originating from the gold concentrate should be closely relative to the metabolism of the organic matters contained in the refractory gold concentrate.
基金Supported by Project of National Natural Science Foundation of China(No.41172072)
文摘Haigou gold deposit is a typical orogenic gold deposit. There are a reasonable amount of fluid inclusions in the gold deposit,including three types: CO2-H2O-Na Cl inclusions,pure CO2 inclusions and Na Cl-H2 O inclusions,of which most of them are CO2-bearing inclusions. The fluid salinity is 1. 43%- 9. 08%,mainly concentrated in the range of 4. 69%- 5. 41%,the density of CO2 is 0. 69- 0. 80 g / cm3,indicating that the mineralization fluid is low-medium salinity and low density fluid. A series of studies on gold-bearing quartz vein and fluid inclusions show that there exists a positive correlation between the degree of the gold mi-neralization and the amount of CO2 in the inclusions,which means the more CO2-bearing inclusions there are,the higher the content of gold is. CO2 is mainly derived from mantle fluid,and the ore-forming fluid should be derived from mantle fluid and the crust shallow fluid. The conclusions have important denotative meaning on the metallogenic mechanism of orogenic gold deposit and the deep prospecting on metal deposit.
基金This work was financially supported by the National Natural Science Foundation of China(No.51922108)the Hunan Natural Science Foundation(No.2019JJ20031)the Hunan Key Research and Development Program(No.2019SK2061).
文摘The extraction of gold from refractory gold ores(RGOs)without side reactions is an extremely promising endeavor.However,most RGOs contain large amounts of sulfide,such as pyrite.Thus,investigation of the influence of sulfide on the gold leaching process is important to maximize the utilization of RGOs.In this work,the effects of pyrite on the stability of the thiourea system were systematically investigated under different conditions.Results showed that the decomposition rate of thiourea was accelerated sharply in the presence of pyrite.The effect of pyrite on gold recovery in thiourea leaching systems was then confirmed via a series of experiments.The decomposition efficiency of thiourea decreased by 40%and the recovery efficiency of gold increased by 56%after the removal of sulfide by roasting.Under optimal conditions,the efficiency of the gold recovery system increased to 83.69%and only 57.92%of thiourea decomposition was observed.The high consumption of thiourea by the leaching system may be attributed to not only adsorption by mineral particles but also catalytic decomposition by some impurities in the ores,such as pyrite and soluble ferric oxide.