该文得到了关于一般可分距离空间上独立随机元序列的几乎处处中心极限定理(almost sure central limit theory,简记为ASCLT).作为应用,该文给出了取值于可分Banach空间上随机元序列以及一类随机场序列满足ASCLT的充分条件,最后给出了关...该文得到了关于一般可分距离空间上独立随机元序列的几乎处处中心极限定理(almost sure central limit theory,简记为ASCLT).作为应用,该文给出了取值于可分Banach空间上随机元序列以及一类随机场序列满足ASCLT的充分条件,最后给出了关于多维随机变量序列极值的ASCLT.展开更多
Let f∈L<sub>p</sub><sup>r</sup>(R),1【p【∞,r∈N),the bound for aliasing of function fin L<sub>p</sub>—metricesis given in[1].From embedding Theorem and Stein inequality,it foll...Let f∈L<sub>p</sub><sup>r</sup>(R),1【p【∞,r∈N),the bound for aliasing of function fin L<sub>p</sub>—metricesis given in[1].From embedding Theorem and Stein inequality,it follows,that if f∈L<sub>p</sub><sup>r</sup>(R),1【p【∞,then f∈L<sub>q</sub><sup>r</sup>(R),1【p【q≤∞ and f<sup>(k)</sup>∈L<sub>p</sub>(R)∩L<sub>q</sub>(R),k=0,1,…,r-1.In this paper,we con-tinued Fang’s work in[1],and obtain the bound for aliasing error of function f∈L<sub>p</sub><sup>r</sup>(R),1【p【∞,inL<sub>q</sub>-metrices(p≤q≤∞).And the order is exact when 1【p≤q≤2.展开更多
Sharkovskii proved that, for continuous maps on intervals, the existence of 3-cycle implies the existence of all others. Li and Yorke proved that 3-cycle implies chaos. To establish a domain of uncountable cycles in t...Sharkovskii proved that, for continuous maps on intervals, the existence of 3-cycle implies the existence of all others. Li and Yorke proved that 3-cycle implies chaos. To establish a domain of uncountable cycles in the logistic map and to understand chaos in it, the fixed points of 3-cycle are obtained analytically by solving a sextic equation. At one parametric value, a fixed-point spectrum, resulted from the Sharkovskii limit, helps to realize chaos in the sense of Li and Yorke.展开更多
In this paper,we investigate the existence and uniqueness of positive solutions to a class of singular fractional boundary value problem.The existence of positive solutions to the problem is based on a fixed point the...In this paper,we investigate the existence and uniqueness of positive solutions to a class of singular fractional boundary value problem.The existence of positive solutions to the problem is based on a fixed point theorem in partially ordered sets.展开更多
文摘该文得到了关于一般可分距离空间上独立随机元序列的几乎处处中心极限定理(almost sure central limit theory,简记为ASCLT).作为应用,该文给出了取值于可分Banach空间上随机元序列以及一类随机场序列满足ASCLT的充分条件,最后给出了关于多维随机变量序列极值的ASCLT.
文摘Let f∈L<sub>p</sub><sup>r</sup>(R),1【p【∞,r∈N),the bound for aliasing of function fin L<sub>p</sub>—metricesis given in[1].From embedding Theorem and Stein inequality,it follows,that if f∈L<sub>p</sub><sup>r</sup>(R),1【p【∞,then f∈L<sub>q</sub><sup>r</sup>(R),1【p【q≤∞ and f<sup>(k)</sup>∈L<sub>p</sub>(R)∩L<sub>q</sub>(R),k=0,1,…,r-1.In this paper,we con-tinued Fang’s work in[1],and obtain the bound for aliasing error of function f∈L<sub>p</sub><sup>r</sup>(R),1【p【∞,inL<sub>q</sub>-metrices(p≤q≤∞).And the order is exact when 1【p≤q≤2.
文摘Sharkovskii proved that, for continuous maps on intervals, the existence of 3-cycle implies the existence of all others. Li and Yorke proved that 3-cycle implies chaos. To establish a domain of uncountable cycles in the logistic map and to understand chaos in it, the fixed points of 3-cycle are obtained analytically by solving a sextic equation. At one parametric value, a fixed-point spectrum, resulted from the Sharkovskii limit, helps to realize chaos in the sense of Li and Yorke.
基金the NSF of Shanxi Province (No.2008011002-1)the Foundation of Datong University (2010-B-01+2 种基金2009-Y-15)the Development Foundation of Higher (2011102020111117)
文摘In this paper,we investigate the existence and uniqueness of positive solutions to a class of singular fractional boundary value problem.The existence of positive solutions to the problem is based on a fixed point theorem in partially ordered sets.