Possessing the unique and highly valuable properties, graphene sheets(GSs) have attracted increasing attention including that from the building engineer due to the fact that Graphene can be utilized to reinforce concr...Possessing the unique and highly valuable properties, graphene sheets(GSs) have attracted increasing attention including that from the building engineer due to the fact that Graphene can be utilized to reinforce concrete and other building materials. In this work, the nonlocal elastic theory and classical plate theory(CLPT) are used to derive the governing equations. The element-free framework for analyzing the buckling behaviors of double layer circular graphene sheets(DLCGSs) relying on an elastic medium is proposed. Pasternak-type model is adopted to describe the elastic medium. Accordingly, the influences of boundary conditions, size of GSs and nonlocal parameters on the buckling behavior of DLCGSs are investigated. The results show that the OP buckling modes are only sensible to the van der Waals forces.展开更多
The velocity structures of flow through vertically double-layered vegetation(VDLV)as well as single-layered rigid vegetation(SLV)were investigated computationally with a three-dimensional(3D)Reynolds stress turbulence...The velocity structures of flow through vertically double-layered vegetation(VDLV)as well as single-layered rigid vegetation(SLV)were investigated computationally with a three-dimensional(3D)Reynolds stress turbulence model,using the computational fluid dynamics(CFD)code FLUENT.The detailed velocity distribution was explored with a varying initial Froude number(Fr),with consideration of the steady subcritical flow conditions of an inland tsunami.In VDLV flows,the numerical model successfully captured the inflection point in the profiles of mean streamwise velocities in the mixing-layer region around the top of short submerged vegetation.An upward and downward movement of flow occurred at the positions located just behind the tall and short vegetation,respectively.Overall,higher streamwise velocities were observed in the upper vegetation layer due to high porosity,with Pr=98%(sparse vegetation,where Pr is the porosity),as compared to those in the lower vegetation layer,which had comparatively low porosity,with Pr=91%(dense vegetation).A rising trend of velocities was found as the flow passed through the vegetation region,followed by a clear sawtooth distribution,as compared to the regions just upstream and downstream of vegetation where the flow was almost uniform.In VDLV flows,a rising trend in the flow resistance was observed with the increase in the initial Froude number,i.e.,Fr?0.67,0.70,and 0.73.However,the flow resistance in the case of SLV was relatively very low.The numerical results also show the flow structures within the vicinity of short and tall vegetation,which are difficult to attain through experimental measurements.展开更多
For the purpose of investigating the influence of metastable olivine(MO) phase transformations on both deep seismicity and stagnation of slabs,we constructed a 2-dimensional finite element thermal model for a 120 Ma...For the purpose of investigating the influence of metastable olivine(MO) phase transformations on both deep seismicity and stagnation of slabs,we constructed a 2-dimensional finite element thermal model for a 120 Ma-old 50°dipping oceanic lithosphere descending at 10 cm/yr with velocity boundary layers,which would mitigate the interference of constant velocity field for the slab. The resulting temperatures show that most of intermediate and deep earthquakes occurring within the Tonga slab are occurring inside the 800℃and 1200℃isotherm,respectively.The elevation of olivine transformation near~410 km and respective persistence of metastable olivine and spinel within the transition zone and beneath 660 km would thus result in bimodal positive,zonal,negative density anomalies,respectively.These results together with the resulting pressure anomalies may reflect the stress pattern of the Tonga slab:(i) slab pull force exerts above a depth of~230 km;(ii) MO existence changes the buoyancy force within the transition zone and facilitates slab stagnation at a depth of 660 km;(iii) as the subducting materials accumulated over 660 km,deepest earthquakes occur due to MO transformation;(iv) a flattened‘slab’ may penetrate into the lower mantle due to the density increment of Sp transformation.展开更多
A new compressibility correlation is introduced in the Langtry's local variable-based transition model to investigate the phe- nomenon on double wedge shock/boundary layer interactions. The cmnputational analysis com...A new compressibility correlation is introduced in the Langtry's local variable-based transition model to investigate the phe- nomenon on double wedge shock/boundary layer interactions. The cmnputational analysis compared with experimental data has been made to assess the influence of the wall temperature and the leading edge nose radius on a hypersonic double wedge boundary layer. It has been found that the laminar boundary layer separation occurs on the first ramp. Furthermore, the wall temperature and the leading edge nose radius have remarkable influence on the separation characteristics in the kink. Comparison of the calculated pressure coefficient distribution and the boundary layer profile with the experimental data shows that better results can be achieved when using the modified transition model.展开更多
In this paper, we present a magnetocardiogram (MCG) simulation study using the boundary element method (BEM) and based on the virtual heart model and the realistic human volume conductor model. The different contr...In this paper, we present a magnetocardiogram (MCG) simulation study using the boundary element method (BEM) and based on the virtual heart model and the realistic human volume conductor model. The different contributions of cardiac equivalent source models and volume conductor models to the MCG are deeply and comprehensively investigated. The single dipole source model, the multiple dipoles source model and the equivalent double layer (EDL) source model are analysed and compared with the cardiac equivalent source models. Meanwhile, the effect of the volume conductor model on the MCG combined with these cardiac equivalent sources is investigated. The simulation results demonstrate that the cardiac electrophysiological information will be partly missed when only the single dipole source is taken, while the EDL source is a good option for MCG simulation and the effect of the volume conductor is smallest for the EDL source. Therefore, the EDL source is suitable for the study of MCG forward and inverse problems, and more attention should be paid to it in future MCG studies.展开更多
In order to ensure stable traffic capacity and avoid incident congestion, a double-layer ramp metering model is proposed in this paper, based on coordination control theory, to predict and control the traffic flow at ...In order to ensure stable traffic capacity and avoid incident congestion, a double-layer ramp metering model is proposed in this paper, based on coordination control theory, to predict and control the traffic flow at each on-ramp, when there is incident congestion on the expressway. The function of the lower model is to recognize where the incident congestion exists, based on an adaptive neural net- work with inputs of traffic flow, velocity and density. The outputs of the lower model are the number of section where the congestion occurs, the number of ramp which should be controlled, and real-time traffic flow information. These outputs should be transmitted to the upper model. The function of the upper model is to design the ramp-metering strategy based on nonlinear theory. The outputs of the up- per model are a ramp-metering rate and traffic-flow state after ramp controlling on the expressway. The results of the simulation show that the double-layer ramp metering model could shorten the delay by about 25%, and the variance of the model results is 0. 002, which could certify the control strategy is equitable.展开更多
The microfiuidic system is a multi-physics interaction field that has at- tracted great attention. The electric double layers and electroosmosis are important flow-electricity interaction phenomena. This paper present...The microfiuidic system is a multi-physics interaction field that has at- tracted great attention. The electric double layers and electroosmosis are important flow-electricity interaction phenomena. This paper presents a thickness-averaged model to solve three-dimensional complex electroosmotic flows in a wide-shallow microchan- nel/chamber combined (MCC) chip based on the Navier-Stokes equations for the flow field and the Poisson equation to the electric field. Behaviors of the electroosmotic flow, the electric field, and the pressure are analyzed. The quantitative effects of the wall charge density (or the zeta potential) and the applied electric field on the electroosmotic flow rate are investigated. The two-dimensional thickness-averaged flow model greatly simplifies the three-dimensional computation of the complex electroosmotic flows, and correctly reflects the electrookinetic effects of the wall charge on the flow. The numerical results indicate that the electroosmotic flow rate of the thickness-averaged model agrees well with that of the three-dimensional slip-boundary flow model. The flow streamlines and pressure distribution of these two models are in qualitative agreement.展开更多
Analysed and summarized the dynamics and chemical factors in the co (co-agulation)-flocculation process. A completely new definition for co-flocculation was given. If a colloid particle didn抰 contact with drug to eme...Analysed and summarized the dynamics and chemical factors in the co (co-agulation)-flocculation process. A completely new definition for co-flocculation was given. If a colloid particle didn抰 contact with drug to emerge (physical) chemical effect, the possi-bility for the colloid particle to coagulate (flocculate) was rather small, only at the floccula-tion stage; it may be caught by net or settled by differential sedimentation. Base on sev-eral assumed important premises, the several steps and physical model of co-flocculation process were given, and the mixing, coagulation and flocculation were proposed accord-ing to their essentiality.展开更多
基金Project(30917011339)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(BK20170820)supported by the Natural Science Foundation of Jiangsu Province,China+2 种基金Projects(61472267,71471091,71271119)supported by the National Natural Science Foundation of ChinaProject(17KJD110008)supported by the Natural Science Fund for Colleges and Universities in Jiangsu Province,ChinaProject(BE2017663)supported by the Key Research & Developement Plan of Jiangsu Province,China
文摘Possessing the unique and highly valuable properties, graphene sheets(GSs) have attracted increasing attention including that from the building engineer due to the fact that Graphene can be utilized to reinforce concrete and other building materials. In this work, the nonlocal elastic theory and classical plate theory(CLPT) are used to derive the governing equations. The element-free framework for analyzing the buckling behaviors of double layer circular graphene sheets(DLCGSs) relying on an elastic medium is proposed. Pasternak-type model is adopted to describe the elastic medium. Accordingly, the influences of boundary conditions, size of GSs and nonlocal parameters on the buckling behavior of DLCGSs are investigated. The results show that the OP buckling modes are only sensible to the van der Waals forces.
文摘The velocity structures of flow through vertically double-layered vegetation(VDLV)as well as single-layered rigid vegetation(SLV)were investigated computationally with a three-dimensional(3D)Reynolds stress turbulence model,using the computational fluid dynamics(CFD)code FLUENT.The detailed velocity distribution was explored with a varying initial Froude number(Fr),with consideration of the steady subcritical flow conditions of an inland tsunami.In VDLV flows,the numerical model successfully captured the inflection point in the profiles of mean streamwise velocities in the mixing-layer region around the top of short submerged vegetation.An upward and downward movement of flow occurred at the positions located just behind the tall and short vegetation,respectively.Overall,higher streamwise velocities were observed in the upper vegetation layer due to high porosity,with Pr=98%(sparse vegetation,where Pr is the porosity),as compared to those in the lower vegetation layer,which had comparatively low porosity,with Pr=91%(dense vegetation).A rising trend of velocities was found as the flow passed through the vegetation region,followed by a clear sawtooth distribution,as compared to the regions just upstream and downstream of vegetation where the flow was almost uniform.In VDLV flows,a rising trend in the flow resistance was observed with the increase in the initial Froude number,i.e.,Fr?0.67,0.70,and 0.73.However,the flow resistance in the case of SLV was relatively very low.The numerical results also show the flow structures within the vicinity of short and tall vegetation,which are difficult to attain through experimental measurements.
基金supported by the National Natural Science Foundation of China(Nos.40574047 and 40628004)
文摘For the purpose of investigating the influence of metastable olivine(MO) phase transformations on both deep seismicity and stagnation of slabs,we constructed a 2-dimensional finite element thermal model for a 120 Ma-old 50°dipping oceanic lithosphere descending at 10 cm/yr with velocity boundary layers,which would mitigate the interference of constant velocity field for the slab. The resulting temperatures show that most of intermediate and deep earthquakes occurring within the Tonga slab are occurring inside the 800℃and 1200℃isotherm,respectively.The elevation of olivine transformation near~410 km and respective persistence of metastable olivine and spinel within the transition zone and beneath 660 km would thus result in bimodal positive,zonal,negative density anomalies,respectively.These results together with the resulting pressure anomalies may reflect the stress pattern of the Tonga slab:(i) slab pull force exerts above a depth of~230 km;(ii) MO existence changes the buoyancy force within the transition zone and facilitates slab stagnation at a depth of 660 km;(iii) as the subducting materials accumulated over 660 km,deepest earthquakes occur due to MO transformation;(iv) a flattened‘slab’ may penetrate into the lower mantle due to the density increment of Sp transformation.
文摘A new compressibility correlation is introduced in the Langtry's local variable-based transition model to investigate the phe- nomenon on double wedge shock/boundary layer interactions. The cmnputational analysis compared with experimental data has been made to assess the influence of the wall temperature and the leading edge nose radius on a hypersonic double wedge boundary layer. It has been found that the laminar boundary layer separation occurs on the first ramp. Furthermore, the wall temperature and the leading edge nose radius have remarkable influence on the separation characteristics in the kink. Comparison of the calculated pressure coefficient distribution and the boundary layer profile with the experimental data shows that better results can be achieved when using the modified transition model.
基金supported by the State Key Development Program for Basic Research of China (Grant Nos. 2007CB512100 and2006CB601007)the National Natural Science Foundation of China (Grant No. 10674006)+2 种基金the National High Technology Research and Development Program of China (Grant No. 2007AA03Z238)China Postdoctoral Science Foundation (Grant No. 20090461376)the Fundamental Research Funds for the Central Universities (Grant No. KYJD09001)
文摘In this paper, we present a magnetocardiogram (MCG) simulation study using the boundary element method (BEM) and based on the virtual heart model and the realistic human volume conductor model. The different contributions of cardiac equivalent source models and volume conductor models to the MCG are deeply and comprehensively investigated. The single dipole source model, the multiple dipoles source model and the equivalent double layer (EDL) source model are analysed and compared with the cardiac equivalent source models. Meanwhile, the effect of the volume conductor model on the MCG combined with these cardiac equivalent sources is investigated. The simulation results demonstrate that the cardiac electrophysiological information will be partly missed when only the single dipole source is taken, while the EDL source is a good option for MCG simulation and the effect of the volume conductor is smallest for the EDL source. Therefore, the EDL source is suitable for the study of MCG forward and inverse problems, and more attention should be paid to it in future MCG studies.
基金the National Natural Science Foundation of China(No.51278066,No.51308074,No.51208064)the Ministry of Transport of China(No.2011319825460)
文摘In order to ensure stable traffic capacity and avoid incident congestion, a double-layer ramp metering model is proposed in this paper, based on coordination control theory, to predict and control the traffic flow at each on-ramp, when there is incident congestion on the expressway. The function of the lower model is to recognize where the incident congestion exists, based on an adaptive neural net- work with inputs of traffic flow, velocity and density. The outputs of the lower model are the number of section where the congestion occurs, the number of ramp which should be controlled, and real-time traffic flow information. These outputs should be transmitted to the upper model. The function of the upper model is to design the ramp-metering strategy based on nonlinear theory. The outputs of the up- per model are a ramp-metering rate and traffic-flow state after ramp controlling on the expressway. The results of the simulation show that the double-layer ramp metering model could shorten the delay by about 25%, and the variance of the model results is 0. 002, which could certify the control strategy is equitable.
基金Project supported by the National Natural Science Foundation of China (No. 11172111) and the Ph.D. Programs Foundation of Ministry of Education of China (No. 20090142120007)
文摘The microfiuidic system is a multi-physics interaction field that has at- tracted great attention. The electric double layers and electroosmosis are important flow-electricity interaction phenomena. This paper presents a thickness-averaged model to solve three-dimensional complex electroosmotic flows in a wide-shallow microchan- nel/chamber combined (MCC) chip based on the Navier-Stokes equations for the flow field and the Poisson equation to the electric field. Behaviors of the electroosmotic flow, the electric field, and the pressure are analyzed. The quantitative effects of the wall charge density (or the zeta potential) and the applied electric field on the electroosmotic flow rate are investigated. The two-dimensional thickness-averaged flow model greatly simplifies the three-dimensional computation of the complex electroosmotic flows, and correctly reflects the electrookinetic effects of the wall charge on the flow. The numerical results indicate that the electroosmotic flow rate of the thickness-averaged model agrees well with that of the three-dimensional slip-boundary flow model. The flow streamlines and pressure distribution of these two models are in qualitative agreement.
基金Supported by National Science Foundation(50274080)
文摘Analysed and summarized the dynamics and chemical factors in the co (co-agulation)-flocculation process. A completely new definition for co-flocculation was given. If a colloid particle didn抰 contact with drug to emerge (physical) chemical effect, the possi-bility for the colloid particle to coagulate (flocculate) was rather small, only at the floccula-tion stage; it may be caught by net or settled by differential sedimentation. Base on sev-eral assumed important premises, the several steps and physical model of co-flocculation process were given, and the mixing, coagulation and flocculation were proposed accord-ing to their essentiality.