期刊文献+
共找到87,028篇文章
< 1 2 250 >
每页显示 20 50 100
Rapid and real-time analysis of multi-component dissolved gas in seawater by Raman spectroscopy combined with continuous gas-liquid separator
1
作者 Dewang Yang Wenhua Li +5 位作者 Lei Guo Yuhang Ji Yanzhe Gong Junwei Chu Libin Du Yongmei Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第9期146-153,共8页
Rapid and sensitive detection of dissolved gases in seawater is quite essential for the investigation of the global carbon cycle.Large quantities of in situ optical detection techniques showed restricted measurement e... Rapid and sensitive detection of dissolved gases in seawater is quite essential for the investigation of the global carbon cycle.Large quantities of in situ optical detection techniques showed restricted measurement efficiency,owing to the single gas sensor without the identification ability of multiple gases.In this work,a novel gas-liquid Raman detection method of monitoring the multi-component dissolved gases was proposed based on a continuous gas-liquid separator under a large difference of partial pressure.The limit of detection(LOD)of the gas Raman spectrometer could arrive at about 14 ml·L^(-1)for N_(2)gas.Moreover,based on the continuous gas-liquid separation process,the detection time of the dissolved gases could be largely decreased to about 200 s compared with that of the traditional detection method(30 min).Effect of equilibrium time on gas-liquid separation process indicated that the extracted efficiency and decay time of these dissolved gases was CO_(2)>O_(2)>N_(2).In addition,the analysis of the relationship between equilibrium time and flow speed indicated that the decay time decreased with the increase of the flow speed.The validation and application of the developed system presented its great potential for studying the components and spatiotemporal distribution of dissolved gases in seawater. 展开更多
关键词 Dissolved gas Rapid quantitative analysis Gas-liquid separator Gas-liquid Raman spectroscopy
下载PDF
Bilayer separator enabling dendrite-free zinc anode with ultralong lifespan >5000 h
2
作者 Lu Wang Feifei Wang +5 位作者 Zhe Ding Yingxin Liu Ziyi Zhang Chunpeng Yang Kian Ping Loh Quan-Hong Yang 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第4期771-776,共6页
Aqueous zinc(Zn)batteries with Zn metal anodes are promising clean energy storage devices with intrinsic safety and low cost.However,Zn dendrite growth severely restricts the use of Zn anodes.To effectively suppress Z... Aqueous zinc(Zn)batteries with Zn metal anodes are promising clean energy storage devices with intrinsic safety and low cost.However,Zn dendrite growth severely restricts the use of Zn anodes.To effectively suppress Zn dendrite growth,we propose a bilayer separator consisting of commercial butter paper and glassfiber membrane.The dense cellulose-based butter paper(BP)with low zincophilicity and high mechanical properties prevents the pore-filling behavior of deposited Zn and related separator piercing,effectively suppressing the Zn dendrite growth.As a result,the bilayer separators endow the ZnjjZn symmetrical batteries with a superlong cycling life of Zn anodes(over 5000 h)at 0.5 mA cm^(-2) and the full batteries enhanced capacity retention,demonstrating the advancement of the bilayer separator to afford excellent cyclability of aqueous metal batteries. 展开更多
关键词 Zn battery Bilayer separator Butter paper Zn metal anode Zn dendrite
下载PDF
Stabilizing High-Nickel Cathodes via Interfacial Hydrogen Bonding Effects Using a Hydrofluoric Acid-Scavenging Separator
3
作者 Shijie Zhong Liwei Dong +6 位作者 Botao Yuan Yueyao Dong Qun Li Yuanpeng Ji Yuanpeng Liu Jiecai Han Weidong He 《Engineering》 SCIE EI CAS CSCD 2024年第8期117-126,共10页
Nickel-rich layered Li transition metal oxides are the most promising cathode materials for high-energydensity Li-ion batteries.However,they exhibit rapid capacity degradation induced by transition metal dissolution a... Nickel-rich layered Li transition metal oxides are the most promising cathode materials for high-energydensity Li-ion batteries.However,they exhibit rapid capacity degradation induced by transition metal dissolution and structural reconstruction,which are associated with hydrofluoric acid(HF)generation from lithium hexafluorophosphate decomposition.The potential for thermal runaway during the working process poses another challenge.Separators are promising components to alleviate the aforementioned obstacles.Herein,an ultrathin double-layered separator with a 10 lm polyimide(PI)basement and a 2 lm polyvinylidene difluoride(PVDF)coating layer is designed and fabricated by combining a nonsolvent induced phase inversion process and coating method.The PI skeleton provides good stability against potential thermal shrinkage,and the strong PI-PVDF bonding endows the composite separator with robust structural integrity;these characteristics jointly contribute to the extraordinary mechanical tolerance of the separator at elevated temperatures.Additionally,unique HF-scavenging effects are achieved with the formation of-CO…H-F hydrogen bonds for the abundant HF coordination sites provided by the imide ring;hence,the layered Ni-rich cathodes are protected from HF attack,which ultimately reduces transition metal dissolution and facilitates long-term cyclability of the Ni-rich cathodes.Li||NCM811 batteries(where“NCM”indicates LiNi_(x)Co_(y)Mn_(1-x-y)O_(2))with the proposed composite separator exhibit a 90.6%capacity retention after 400 cycles at room temperature and remain sustainable at 60℃with a 91.4%capacity retention after 200 cycles.By adopting a new perspective on separators,this study presents a feasible and promising strategy for suppressing capacity degradation and enabling the safe operation of Ni-rich cathode materials. 展开更多
关键词 Nickel-rich cathodes Composite separator HF scavenging Transition metal dissolution Long-term cyclability
下载PDF
A Single-Layer Piezoelectric Composite Separator for Durable Operation of Li Metal Anode at High Rates
4
作者 Yuanpeng Ji Botao Yuan +9 位作者 Jiawei Zhang Zhezhi Liu Shijie Zhong Jipeng Liu Yuanpeng Liu Mengqiu Yang Changguo Wang Chunhui Yang Jiecai Han Weidong He 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第1期265-274,共10页
Piezoelectric ceramic and polymeric separators have been proposed to effectively regulate Li deposition and suppress dendrite growth,but such separators still fail to satisfactorily support durable operation of lithiu... Piezoelectric ceramic and polymeric separators have been proposed to effectively regulate Li deposition and suppress dendrite growth,but such separators still fail to satisfactorily support durable operation of lithium metal batteries owing to the fragile ceramic layer or low-piezoelectricity polymer as employed.Herein,by combining PVDF-HFP and ferroelectric BaTiO_(3),we develop a homogeneous,single-layer composite separator with strong piezoelectric effects to inhibit dendrite growth while maintaining high mechanical strength.As squeezed by local protrusion,the polarized PVDF-HFP/BaTiO_(3)composite separator generates a local voltage to suppress the local-intensified electric field and further deconcentrate regional lithium-ion flux to retard lithium deposition on the protrusion,hence enabling a smoother and more compact lithium deposition morphology than the unpoled composite separator and the pure PVDF-HFP separator,especially at high rates.Remarkably,the homogeneous incorporation of BaTiO_(3)highly improves the piezoelectric performances of the separator with residual polarization of 0.086 pC cm^(-2)after polarization treatment,four times that of the pure PVDF-HFP separator,and simultaneously increases the transference number of lithium-ion from 0.45 to 0.57.Beneficial from the prominent piezoelectric mechanism,the polarized PVDF-HFP/BaTiO_(3)composite separator enables stable cyclic performances of Li||LiFePO_(4)cells for 400 cycles at 2 C(1 C=170 mA g^(-1))with a capacity retention above 99%,and for 600 cycles at 5 C with a capacity retention over 85%. 展开更多
关键词 composite separator Li metal anodes piezoelectric materials PVDF-HFP uniform Li deposition
下载PDF
Hydrogen-bonded organic framework modified separator for simultaneously enhancing the safety and electrochemical performance of Ni-rich lithium-ion battery
5
作者 Chengyu Han Yu Cao +9 位作者 Ming Yang Yuhan Wang Di Tang Shaojie Zhang Yiran Jia Yiming Zhang Hern Kim Fusheng Pan Zhongyi Jiang Jie Sun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期72-78,共7页
Nickel-rich layered oxide cathode(LiNi_(x)Co_(y)Mn_(1−x−y)O_(2),x>0.5,NCM)shows substantial potential for applications in longer-range electrical vehicles.However,the rapid capacity decay and serious safety concern... Nickel-rich layered oxide cathode(LiNi_(x)Co_(y)Mn_(1−x−y)O_(2),x>0.5,NCM)shows substantial potential for applications in longer-range electrical vehicles.However,the rapid capacity decay and serious safety concerns impede its practical viability.This work provides a hydrogen-bonded organic framework(HOF)modification strategy to simultaneously improve the electrochemical performance,thermal stability and incombustibility of separator.Melamine cyanurate(MCA),as a low-cost and reliable flame-retardant HOF,was implemented in the separator modification layer,which can prevent the battery short circuit even at a high temperature.In addition,the supermolecule properties of MCA provide unique physical and chemical microenvironment for regulating ion-transport behavior in electrolyte.The MCA coating layer enabled the nickel-rich layered oxide cathode with a high-capacity retention of 90.3%after 300 cycles at 1.0 C.Collectively,the usage of MCA in lithium-ion batteries(LIBs)affords a simple,low-cost and efficient strategy to improve the security and service life of nickel-rich layered cathodes. 展开更多
关键词 Hydrogen-bonded organic framework Modified separator Ni-richlayered oxide cathode Thermal runaway Li^(+)transference number
下载PDF
Stabilizing zinc anode using zeolite imidazole framework functionalized separator for durable aqueous zinc-ion batteries 被引量:1
6
作者 Weisong Zhang Xinyan Zhu +8 位作者 Ling Kang Ziyu Peng Jing Zhu Liang Pan Lei Dai Shude Liu Ling Wang Yongguang Liu Zhangxing He 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期23-31,I0003,共10页
Aqueous zinc-ion batteries(AZIBs) hold great promise as a viable alternative to lithium-ion batteries owing to their high energy density and environmental friendliness.However,AZIBs are consistently plagued by the for... Aqueous zinc-ion batteries(AZIBs) hold great promise as a viable alternative to lithium-ion batteries owing to their high energy density and environmental friendliness.However,AZIBs are consistently plagued by the formation of zinc dendrites and concurrent side reactions,which significantly diminish their overall service life,In this study,the glass fiber separator(GF) is modified using zeolite imidazole salt framework-8(ZIF-8),enabling the development of efficient AZIBs.ZIF-8,which is abundant in nitrogen content,efficiently regulates the desolvation of [Zn(H_(2)O)_(6)]^(2+) to inhibit hydrogen production.Moreover,it possesses abundant nanochannels that facilitate the uniform deposition of Zn~(2+) via a localized action,thereby hindering the formation of dendrites.The insulating properties of ZIF-8 help prevent Zn^(2+) and water from trapping electron reduction at the layer surface,which reduces corrosion of the zinc anode.Consequently,ZIF-8-GF achieves the even transport of Zn^(2+) and regulates the homogeneous deposition along the Zn(002) crystal surface,thus significantly enhancing the electrochemical performance of the AZIBs,In particular,the Zn|Zn symmetric cell with the ZIF-8-GF separator delivers a stable cycle life at0.5 mA cm^(-2) of 2300 h.The Zn|ZIF-8-GF|MnO_(2) cell exhibits reduced voltage polarization while maintaining a capacity retention rate(93.4%) after 1200 cycles at 1.2 A g^(-1) The unique design of the modified diaphragm provides a new approach to realizing high-performance AZIBs. 展开更多
关键词 Aqueous zinc-ion batteries separators modifications ZIF-8 Zn deposition Dendrite-free
下载PDF
Effect of Aggregate Gradation on the Properties of 3D Printed Recycled Coarse Aggregate Concrete
7
作者 DING Yahong TONG Jiaqi +3 位作者 ZHANG Meixiang GUO Shuqi ZHANG Yaqi ZHAO Yu 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第6期1541-1554,共14页
A simplex centroid design method was employed to design the gradation of recycled coarse aggregate.The bulk density was measured while the specific surface area and average excess paste thickness were calculated with ... A simplex centroid design method was employed to design the gradation of recycled coarse aggregate.The bulk density was measured while the specific surface area and average excess paste thickness were calculated with different gradations.The fluidity,dynamic yield stress,static yield stress,printed width,printed inclination,compressive strength and ultrasonic wave velocity of 3D printed recycled aggregate concrete(3DPRAC)were further studied.The experimental results demonstrate that,with the increase of small-sized aggregate(4.75-7 mm)content,the bulk density initially increases and then decreases,and the specific surface area gradually increases.The average excess paste thickness fluctuates with both bulk density and specific surface area.The workability of 3DPRAC is closely related to the average excess paste thickness.With an increase in average paste thickness,there is a gradual decrease in dynamic yield stress,static yield stress and printed inclination,accompanied by an increase in fluidity and printed width.The mechanical performance of 3DPRAC closely correlates with the bulk density.With an increase in the bulk density,there is an increase in the ultrasonic wave velocity,accompanied by a slight increase in the compressive strength and a significant decrease in the anisotropic coefficient.Furthermore,an index for buildability failure of 3DPRAC based on the average excess paste thickness is proposed. 展开更多
关键词 3D printed recycled coarse aggregate concrete aggregate gradation excess paste WORKABILITY mechanical performance
下载PDF
A review of electrospun separators for lithium-based batteries: Progress and application prospects
8
作者 Xiangru Sun Ying Zhou +6 位作者 Dejun Li Kai Zhao Liqun Wang Peiran Tan Hongyang Dong Yueming Wang Ji Liang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第9期109-155,共47页
Due to the limitations of the raw materials and processes involved,polyolefin separators used in commercial lithium-ion batteries(LIBs)have gradually failed to meet the increasing requirements of high-end batteries in... Due to the limitations of the raw materials and processes involved,polyolefin separators used in commercial lithium-ion batteries(LIBs)have gradually failed to meet the increasing requirements of high-end batteries in terms of energy density,power density,and safety.Hence,it is very important to develop next-generation separators for advanced lithium(Li)-based recharge-able batteries including LIBs and Li-S batteries.Nonwoven nanofiber membranes fabricated via electrospinning technology are highly attractive candidates for high-end separators due to their simple processes,low-cost equipment,controllable microporous structure,wide material applicability,and availability of multiple functions.In this review,the electrospinning technologies for separators are reviewed in terms of devices,process and environment,and polymer solution systems.Furthermore,strategies toward the improvement of electrospun separators in advanced LIBs and Li-S batteries are presented in terms of the compositions and the structure of nanofibers and separators.Finally,the challenges and prospects of electrospun separators in both academia and industry are proposed.We anticipate that these systematic discussions can provide information in terms of commercial applications of electrospun separators and offer new perspectives for the design of functional electrospun separators for advanced Li-based batteries. 展开更多
关键词 ELECTROSPINNING Li-metal batteries Li-S batteries lithium-ion batteries separator
下载PDF
Converting an O-vacancy-rich oxide into a multifunctional separator modifier for long-lifespan lithium metal batteries
9
作者 Juntao Si Xiaoying Li +3 位作者 Yixuan Li Kuo Cao Yiran Zhu Chunhua Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期371-378,I0007,共9页
The lithium metal anode is hailed as the desired "holy grail" for the forthcoming generation of highenergy-density batteries,given its astounding theoretical capacity and low potential.Nonetheless,the format... The lithium metal anode is hailed as the desired "holy grail" for the forthcoming generation of highenergy-density batteries,given its astounding theoretical capacity and low potential.Nonetheless,the formation and growth of dendrites seriously compromise battery life and safety.Herein,an yttriastabilized bismuth oxide(YSB) layer is fabricated on the polypropylene(PP) separator,where YSB reacts with Li anode in-situ in the cell to form a multi-component composite interlayer consisting of Li_(3)Bi,Li_(2)O,and Y_(2)O_(3).The interlayer can function not only as a redistributor to regulate Li^(+) distribution but also as an anion adsorber to increase the Li^(+) transference number from 0.37 to 0.79 for suppressing dendrite nucleation and growth.Consequently,compared with the cell with a baseline separator,those with modified separators exhibit prolonged lifespan in both Li/Li symmetrical cells and Li/Cu half-cells.Notably,the full cells coupled with ultrahigh-loading LiFePO_(4) display an excellent cycling performance of 1700 cycles with a high capacity retention of ~80% at 1 C,exhibiting great potential for practical applications.This work provides a feasible and effective new strategy for separator modification towards building a much-anticipated dendrite-free Li anode and realizing long-lifespan lithium metal batteries. 展开更多
关键词 Lithium metal battery separator Dendrite-free Multifunctional interlayer Conversion-alloying reaction
下载PDF
2.5μm-Thick Ultrastrong Asymmetric Separator for Stable Lithium Metal Batteries
10
作者 Donghao Xie Zekun Wang +5 位作者 Xin Ma Yuchen Feng Xiaomin Tang Qiao Gu Yonghong Deng Ping Gao 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第6期106-117,共12页
Lithium metal batteries(LMBs)are considered the ideal choice for high volumetric energy density lithium-ion batteries,but uncontrolled lithium deposition poses a significant challenge to the stability of such devices.... Lithium metal batteries(LMBs)are considered the ideal choice for high volumetric energy density lithium-ion batteries,but uncontrolled lithium deposition poses a significant challenge to the stability of such devices.In this paper,we introduce a 2.5μm-thick asymmetric and ultrastrong separator,which can induce tissue-like lithium deposits.The asymmetric separator,denoted by utPE@Cu_(2)O,was prepared by selective synthesis of Cu_(2)O nanoparticles on one of the outer surfaces of a nanofibrous(diameter~10 nm)ultrastrong ultrahigh molecular weight polyethylene(UHMWPE)membrane.Microscopic analysis shows that the lithium deposits have tissue-like morphology,resulting in the symmetric lithium cells assembled using utPE@Cu_(2)O with symmetric Cu_(2)O coating exhibiting stable performance for over 2000 h of cycling.This work demonstrates the feasibility of a facile approach ultrathin separators for the deployment of lithium metal batteries,providing a pathway towards enhanced battery performance and safety. 展开更多
关键词 in situ SEI lithium deposition regulation separator ultrastrong ULTRATHIN
下载PDF
Regulating interfacial behavior of zinc metal anode via metal-organic framework functionalized separator
11
作者 Ruotong Li Liang Pan +6 位作者 Ziyu Peng Ningning Zhao Zekun Zhang Jing Zhu Lei Dai Ling Wang Zhangxing He 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期213-220,I0006,共9页
Aqueous zinc ion batteries(AZIBs)are one of the promising energy storage devices.However,uncontrolled dendrite and side reactions have seriously hindered its further application.In this study,the metal-organic framewo... Aqueous zinc ion batteries(AZIBs)are one of the promising energy storage devices.However,uncontrolled dendrite and side reactions have seriously hindered its further application.In this study,the metal-organic framework(MOF)functionalized glass fiber separator(GF-PFC-31)was used to regulate interfacial behavior of zinc metal anode,enabling the development of high-performance AZIBs.In PFC-31,there areπ-πinteractions between two adjacent benzene rings with a spacing of 3.199 A.This spacing can block the passage of[Zn(H_(2)O)_6]^(2+)(8.6 A in diameter)through the GF-PFC-31 separator to a certain extent,which promotes the deposition process of Zn ions.In addition,the sulfonic acid group(-S03H)contained in GF-PFC-31 can form a hydrogen bonding network with H_(2)O,which can provide a desolvation effect and reduce the side reaction.Consequently,GF-PFC-31 separator achieves uniform deposition of Zn ions.The Zn‖GF-PFC-31‖Zn symmetric cell exhibits stable cycle life(3000 h at 1.2 mA cm^(-2),2000 h at 0.3 mA cm^(-2),and 2000 h at 5.0 mA cm^(-2)),and Zn‖GF-PFC-31‖MnO_(2) full cell with GF-PFC-31 separator can cycle for 1000 cycles at 1.2 A g^(-1)with capacity retention rate of 82.5%.This work provides a promising method to achieve high-performance AZIBs. 展开更多
关键词 Aqueous zinc ion batteries Interfacial behavior Metal-organic framework Sulfonic acid group separator
下载PDF
S-doped mesoporous graphene modified separator for high performance lithium-sulfur batteries
12
作者 Xinlong Ma Chenggen Xu +8 位作者 Yin Yang Dong Sun Kai Zhao Changbo Lu Peng Jin Yiting Chong Sirawit Pruksawan Zhihua Xiao Fuke Wang 《Materials Reports(Energy)》 EI 2024年第3期60-68,共9页
Due to their low cost,environmental friendliness and high energy density,the lithium-sulfur batteries(LSB)have been regarded as a promising alternative for the next generation of rechargeable battery systems.However,t... Due to their low cost,environmental friendliness and high energy density,the lithium-sulfur batteries(LSB)have been regarded as a promising alternative for the next generation of rechargeable battery systems.However,the practical application of LSB is seriously hampered by its short cycle life and high self-charge owing to the apparent shuttle effect of soluble lithium polysulfides.Using MgSO_(4)@MgO composite as both template and dopant,template-guided S-doped mesoporous graphene(SMG)is prepared via the fluidized-bed chemical vapor deposition method.As the polypropylene(PP)modifier,SMG with high specific surface area,abundant mesoporous structures and moderate S doping content offers a wealth of physical and chemical adsorptive sites and reduced interfacial contact resistance,thereby restraining the serious shuttle effects of lithium polysulfides.Consequently,the LSB configured with mesoporous graphene(MG)as S host material and SMG as a separator modifier exhibits an enhanced electrochemical performance with a high average capacity of 955.64 mA h g^(-1) at 1C and a small capacity decay rate of 0.109%per cycle.Additionally,the density functional theory(DFT)calculation models have been rationally constructed and demonstrated that the doped S atoms in SMG possess higher binding energy to lithium polysulfides than that in MG,indicating that the SMG/PP separator can effectively capture soluble lithium polysulfides via chemical binding forces.This work would provide valuable insight into developing a versatile carbon-based separator modifier for LSB. 展开更多
关键词 Fluidized-bed chemical vapor deposition Mesoporous graphene S doping separator modification Lithium-sulfur battery
下载PDF
Fiber swelling to improve cycle performance of paper-based separator for lithium-ion batteries application 被引量:2
13
作者 Zhenghao Li Wei Wang +3 位作者 Xinmiao Liang Jianlin Wang Yonglin Xu Wei Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第4期92-100,共9页
It is well established that paper-based separators display short-circuit risk in lithium-ion batteries due to their intrinsic micron-sized pores.In this research,we have adjusted pore structure of paper by fiber swell... It is well established that paper-based separators display short-circuit risk in lithium-ion batteries due to their intrinsic micron-sized pores.In this research,we have adjusted pore structure of paper by fiber swelling in liquid electrolyte.Specifically,the paper-based separator is prepared by propionylated sisal fibers through a wet papermaking process.Scanning electron microscope(SEM)and multi-range X-ray nano-computed tomography(CT)images display strong swelling of modified fibers after electrolyte absorption,which can effectively decrease the pore size of separator.Due to the high electrolyte uptake(817 wt%),paper-based separator exhibits ionic conductivity of 2.93 mS cm^(-1).^(7)Li solid-state NMR spectroscopy and Gaussian simulation reveal that the formation of local high Li^(+)ion concentration in the separator and its low absorption energy with Li^(+) ion(62.2 kcal mol^(-1))is conducive to the ionic transportation.In particular,the assembled Li/separator/LiFePO_(4) cell displays wide electrochemical stability window(5.2 V)and excellent cycle performance(capacity retention of 96.6%after 100 cycles at 0.5C)due to the reduced side reactions as well as enhanced electrolyte absorption and retention capacity by propionylation.Our proposed strategy will provide a novel perspective to design high-performance biobased separators to boost the development of clean and sustainable energy economy. 展开更多
关键词 Paper-based separators Lithium-ion batteries Electrochemical properties Propionylation
下载PDF
Three-in-one LaNiO_(3) functionalized separator boosting electrochemical stability and redox kinetics for high-performance Li-S battery 被引量:2
14
作者 Weiyu Wang Mingxiu Hou +6 位作者 Fangqian Han Di Yu Jie Liu Qian Zhang Fengli Yu Lei Wang Maoshuai He 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第7期581-591,I0013,共12页
The lithium-sulfur(Li-S)battery,as one of the energy storage devices,has been in the limelight due to its high theoretical energy density.However,the poor redox kinetics and the"shuttle effect"of polysulfide... The lithium-sulfur(Li-S)battery,as one of the energy storage devices,has been in the limelight due to its high theoretical energy density.However,the poor redox kinetics and the"shuttle effect"of polysulfides severely restrict the use of Li-S batteries in practical applications.Herein,a novel bimetallic LaNiO_(3) functional material with high electrical conductivity and catalytic property is prepared to act as a high-efficiency polysulfide shuttling stopper.The three LaNiO_(3) samples with different physical/chemical characteristics are obtained by controlling the calcination temperature.In conjunction with the high electrical conductivity and excellent catalytic properties of the as-prepared materials,the appropriate chemisorption toward polysulfides offers great potential to enhance electrochemical stability for highperformance Li-S batteries.Particularly,the Li-S cell with the separator modified by such functional material gives a specific capacity of 658 mA h g^(-1) after 500 cycles at a high current density of 2 C.Even with high sulfur loading of 6.05 mg cm^(-2),the Li-S battery still exhibits an areal specific capacity of 2.81 m A h cm^(-2)after 150 cycles.This work paves a new avenue for the rational design of materials for separator modification in high-performance Li-S batteries. 展开更多
关键词 Li-S battery Functional separator Catalytic property Electrochemical stability Redox kinetics
下载PDF
“Three‐in‐one”strategy:Heat regulation and conversion enhancement of a multifunctional separator for safer lithium-sulfur batteries 被引量:2
15
作者 Kaiping Zhu Luhe Li +9 位作者 Pan Xue Jun Pu Liyun Wu Gengde Guo Ran Wang Ye Zhang Huisheng Peng Guo Hong Qiang Zhang Yagang Yao 《Carbon Energy》 SCIE EI CAS CSCD 2023年第11期54-67,共14页
The safety problems encountered with lithium–sulfur batteries(LSBs)hinder their development for practical applications.Herein,a highly thermally conductive separator was constructed by cross‐weaving super‐aligned c... The safety problems encountered with lithium–sulfur batteries(LSBs)hinder their development for practical applications.Herein,a highly thermally conductive separator was constructed by cross‐weaving super‐aligned carbon nanotubes(SA‐C)on super‐aligned boron nitride@carbon nanotubes(SA‐BC)to create a composite film(SA‐BC/SA‐C).This separator was used to fabricate safe LSBs with improved electrochemical performance.The highly aligned separator structure created a uniform thermal field that could rapidly dissipate heat accumulated during continuous operation due to internal resistance,which prevented the development of extremely high temperatures.The array of boron nitride nanosheets endowed the composite separator with a large number of adsorption sites,while the highly graphitized carbon nanotube skeleton accelerated the catalytic conversion of high‐valence polysulfides into low‐valence polysulfides.The arrayed molecular brush design enabled the regulation of local current density and ion flux,and considerably alleviated the growth of lithium dendrites,thus promoting the smooth deposition of Li metal.Consequently,a battery constructed with the SA‐BC/SA‐C separator showed a good discharge capacity of 685.2 mAh g−1 over 300 cycles(a capacity decay of 0.026%per cycle)at 2 C and 60°C.This“three‐in‐one”multifunctional separator design strategy constitutes a new path forward for overcoming the safety problems of LSBs. 展开更多
关键词 conversion enhancement heat regulation high safety lithium-sulfur batteries multifunctional separator
下载PDF
Particulate flow modelling in a spiral separator by using the Eulerian multi-fluid VOF approach 被引量:3
16
作者 Lingguo Meng Shuling Gao +4 位作者 Dezhou Wei Qiang Zhao Baoyu Cui Yanbai Shen Zhenguo Song 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第2期251-263,共13页
The Euler-Euler model is less effective in capturing the free surface of flow film in the spiral separator,and thus a Eulerian multi-fluid volume of fluid(VOF)model was first proposed to describe the particulate flow ... The Euler-Euler model is less effective in capturing the free surface of flow film in the spiral separator,and thus a Eulerian multi-fluid volume of fluid(VOF)model was first proposed to describe the particulate flow in spiral separators.In order to improve the applicability of the model in the high solid concentration system,the Bagnold effect was incorporated into the modelling framework.The capability of the proposed model in terms of predicting the flow film shape in a LD9 spiral separator was evaluated via comparison with measured flow film thicknesses reported in literature.Results showed that sharp air–water and air-pulp interfaces can be obtained using the proposed model,and the shapes of the predicted flow films before and after particle addition were reasonably consistent with the observations reported in literature.Furthermore,the experimental and numerical simulation of the separation of quartz and hematite were performed in a laboratory-scale spiral separator.When the Bagnold lift force model was considered,predictions of the grade of iron and solid concentration by mass for different trough lengths were more consistent with experimental data.In the initial development stage,the quartz particles at the bottom of the flow layer were more possible to be lifted due to the Bagnold force.Thus,a better predicted vertical stratification between quartz and hematite particles was obtained,which provided favorable conditions for subsequent radial segregation. 展开更多
关键词 Spiral separator Computational fluid dynamics(CFD) Eulerian multi-fluid VOF model Bagnold effect Particulate flow
下载PDF
Suppression of Self-Discharge in Aqueous Supercapacitor Devices Incorporating Highly Polar Nanofiber Separators 被引量:1
17
作者 Wesley G.Buxton Simon G.King Vlad Stolojan 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第3期74-86,共13页
One of the major problems limiting the applications of electric double-layer(EDLC)supercapacitor devices is their inability to maintain their cell voltage over a significant period.Self-discharge is a spontaneous deca... One of the major problems limiting the applications of electric double-layer(EDLC)supercapacitor devices is their inability to maintain their cell voltage over a significant period.Self-discharge is a spontaneous decay in charged energy,often resulting in fully depleted devices in a matter of hours.Here,a new method for suppressing this self-discharge phenomenon is proposed by using directionally polarized piezoelectric electrospun nanofiber films as separator materials.Tailored engineering of polyvinylidene fluoride(PVDF)nanofiber films containing a small concentration of sodium dodecyl sulfate(SDS)results in a high proportion of polarβphases,reaching 380.5%of the total material.Inducing polarity into the separator material provides a reverse-diode mechanism in the device,such that it drops from an initial voltage of 1.6 down to 1 V after 10 h,as opposed to 0.3 V with a nonpolarized,commercial separator material.Thus,the energy retained for the polarized separator is 37%and 4%for the nonpolarized separator,making supercapacitors a more attractive solution for long-term energy storage. 展开更多
关键词 piezoelectric polar nanofibers PVDF separators SELF-DISCHARGE SUPERCAPACITORS
下载PDF
In Situ Directional Polymerization of Poly(1,3-dioxolane)Solid Electrolyte Induced by Cellulose Paper-Based Composite Separator for Lithium Metal Batteries 被引量:2
18
作者 Jian Ma Yueyue Wu +5 位作者 Hao Jiang Xin Yao Fan Zhang Xianglong Hou Xuyong Feng Hongfa Xiang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第3期134-143,共10页
In traditional in situ polymerization preparation for solid-state electrolytes,initiators are directly added to the liquid precursor.In this article,a novel cellulose paper-based composite separator is fabricated,whic... In traditional in situ polymerization preparation for solid-state electrolytes,initiators are directly added to the liquid precursor.In this article,a novel cellulose paper-based composite separator is fabricated,which employs alumina as the inorganic reinforcing material and is loaded with polymerization initiator aluminum trifluoromethanesulfonate.Based upon this,a separator-induced in situ directional polymerization technique is demonstrated,and the extra addition of initiators into liquid precursors is no longer required.The polymerization starts from the surface and interior of the separator and extends outward with the gradually dissolving of initiators into the precursor.Compared with its traditional counterpart,the separator-induced poly(1,3-dioxolane)electrolyte shows improved interfacial contact as well as appropriately mitigated polymerization rate,which are conducive to practical applications.Electrochemical measurement results show that the prepared poly(1,3-dioxolane)solid electrolyte possesses an oxidation potential up to 4.4 V and a high Li+transference number of 0.72.After 1000 cycles at 2 C rate(340 mA g^(−1)),the assembled Li||LiFePO_(4)solid battery possesses a 106.8 mAh g^(−1)discharge capacity retention and 83.5%capacity retention ratio,with high average Coulombic efficiency of 99.5%achieved.Our work may provide new ideas for the design and application of in situ polymerization technique for solid electrolytes and solid batteries. 展开更多
关键词 cellulose paper-based composite separator in situ directional polymerization lithium metal battery poly-DOL electrolyte solid-state electrolyte
下载PDF
Rational design and low-cost fabrication of multifunctional separators enabling high sulfur utilization in long-life lithium-sulfur batteries 被引量:1
19
作者 Xiaoqing Zhang Wei Yuan +7 位作者 Honglin Huang Ming Xu Yu Chen Bote Zhao Xinrui Ding Shiwei Zhang Yong Tang Longsheng Lu 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第1期266-280,共15页
The lithium-sulfur(Li-S)battery with an ultrahigh theoretical energy density has emerged as a promising rechargeable battery system.However,the practical applications of Li-S batteries are severely plagued by the slug... The lithium-sulfur(Li-S)battery with an ultrahigh theoretical energy density has emerged as a promising rechargeable battery system.However,the practical applications of Li-S batteries are severely plagued by the sluggish reaction kinetics of sulfur species and notorious shuttling of soluble lithium polysulfides(LiPSs)intermediates that result in low sulfur utilization.The introduction of functional layers on separators has been considered as an effective strategy to improve the sulfur utilization in Li-S batteries by achieving effective regulation of LiPSs.Herein,a promising self-assembly strategy is proposed to achieve the low-cost fabrication of hollow and hierarchically porous Fe_(3)O_(4)nanospheres(p-Fe_(3)O_(4)-NSs)assembled by numerous extremely-small primary nanocrystals as building blocks.The rationally-designed p-Fe_(3)O_(4)-NSs are utilized as a multifunctional layer on the separator with highly efficient trapping and conversion features toward LiPSs.Results demonstrate that the nanostructured p-Fe_(3)O_(4)-NSs provide chemical adsorption toward LiPSs and kinetically promote the mutual transformation between LiPSs and Li_(2)S_(2)/Li_(2)S during cycling,thus inhibiting the LiPSs shuttling and boosting the redox reaction kinetics via a chemisorption-catalytic conversion mechanism.The enhanced wettability of the p-Fe_(3)O_(4)-NSs-based separator with the electrolyte enables fast transportation of lithium ions.Benefitting from these alluring properties,the functionalized separator with p-Fe_(3)O_(4)-NSs endows the battery with an admirable rate performance of 877 mAh g^(−1)at 2 C,an ultra-durable cycling performance of up to 2176 cycles at 1 C,and a promising areal capacity of 4.55 mAh cm^(−2)under high-sulfur-loading and lean-electrolyte conditions(4.29 mg cm^(−2),electrolyte/ratio:8μl mg^(−1)).This study will offer fresh insights on the rational design and low-cost fabrication of multifunctional separator to strengthen electrochemical reaction kinetics by regulating LiPSs conversion for developing efficient and long-life Li-S batteries. 展开更多
关键词 lithium-sulfur battery multifunctional separator low-cost fabrication chemisorption-catalytic conversion mechanism hierarchically porous Fe_(3)O_(4)nanospheres
下载PDF
A surfactant-modified composite separator for high safe lithium ion battery
20
作者 Botao Yuan Niandong He +5 位作者 Yifang Liang Liwei Dong Jipeng Liu Jiecai Han Weidong He Yuanpeng Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第1期398-403,I0010,共7页
Separators have been gaining increasing attention to improve the performance of lithium ion batteries(LIBs),especially for high safe and long cycle life.However,commercial polyolefin separators still face the problems... Separators have been gaining increasing attention to improve the performance of lithium ion batteries(LIBs),especially for high safe and long cycle life.However,commercial polyolefin separators still face the problems of rapid capacity decay and safety issues due to the poor wettability with electrolytes and low thermal stability.Herein,a novel composite separator is proposed by introducing a surfactant of sodium dodecyl thiosulfate(SDS)into the polytetrafluoroethylene(PTFE)substrate with the binder of polyacrylic acid(PAA)through the suction filtration method.The introduction of PAA/SDS enhances the adsorption energy between PTFE substrate and electrolyte through density functional theory calculations,which improves wettability and electrolyte uptake of the separator significantly.The asachieved composite separator enables the LIBs to own high Li^(+)conductivity(0.64×10^(-3)S cm^(-1))and Li^(+)transference number(0.63),further leading to a high capacity retention of 93.50%after 500 cycles at 1 C.In addition,the uniform and smooth surface morphology of Li metal employed the composite separator after cycling indicates that the lithium dendrites can be successfully inhibited.This work indicates a promising route for the preparation of a novel composite separator for high safe LIBs. 展开更多
关键词 Composite separator PTFE SURFACTANT High safe Lithium ion batteries
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部