Brain tumors come in various types,each with distinct characteristics and treatment approaches,making manual detection a time-consuming and potentially ambiguous process.Brain tumor detection is a valuable tool for ga...Brain tumors come in various types,each with distinct characteristics and treatment approaches,making manual detection a time-consuming and potentially ambiguous process.Brain tumor detection is a valuable tool for gaining a deeper understanding of tumors and improving treatment outcomes.Machine learning models have become key players in automating brain tumor detection.Gradient descent methods are the mainstream algorithms for solving machine learning models.In this paper,we propose a novel distributed proximal stochastic gradient descent approach to solve the L_(1)-Smooth Support Vector Machine(SVM)classifier for brain tumor detection.Firstly,the smooth hinge loss is introduced to be used as the loss function of SVM.It avoids the issue of nondifferentiability at the zero point encountered by the traditional hinge loss function during gradient descent optimization.Secondly,the L_(1) regularization method is employed to sparsify features and enhance the robustness of the model.Finally,adaptive proximal stochastic gradient descent(PGD)with momentum,and distributed adaptive PGDwithmomentum(DPGD)are proposed and applied to the L_(1)-Smooth SVM.Distributed computing is crucial in large-scale data analysis,with its value manifested in extending algorithms to distributed clusters,thus enabling more efficient processing ofmassive amounts of data.The DPGD algorithm leverages Spark,enabling full utilization of the computer’s multi-core resources.Due to its sparsity induced by L_(1) regularization on parameters,it exhibits significantly accelerated convergence speed.From the perspective of loss reduction,DPGD converges faster than PGD.The experimental results show that adaptive PGD withmomentumand its variants have achieved cutting-edge accuracy and efficiency in brain tumor detection.Frompre-trained models,both the PGD andDPGD outperform other models,boasting an accuracy of 95.21%.展开更多
We prove,under mild conditions,the convergence of a Riemannian gradient descent method for a hyperbolic neural network regression model,both in batch gradient descent and stochastic gradient descent.We also discuss a ...We prove,under mild conditions,the convergence of a Riemannian gradient descent method for a hyperbolic neural network regression model,both in batch gradient descent and stochastic gradient descent.We also discuss a Riemannian version of the Adam algorithm.We show numerical simulations of these algorithms on various benchmarks.展开更多
With the increasing prevalence of high-order systems in engineering applications, these systems often exhibitsignificant disturbances and can be challenging to model accurately. As a result, the active disturbance rej...With the increasing prevalence of high-order systems in engineering applications, these systems often exhibitsignificant disturbances and can be challenging to model accurately. As a result, the active disturbance rejectioncontroller (ADRC) has been widely applied in various fields. However, in controlling plant protection unmannedaerial vehicles (UAVs), which are typically large and subject to significant disturbances, load disturbances andthe possibility of multiple actuator faults during pesticide spraying pose significant challenges. To address theseissues, this paper proposes a novel fault-tolerant control method that combines a radial basis function neuralnetwork (RBFNN) with a second-order ADRC and leverages a fractional gradient descent (FGD) algorithm.We integrate the plant protection UAV model’s uncertain parameters, load disturbance parameters, and actuatorfault parameters and utilize the RBFNN for system parameter identification. The resulting ADRC exhibits loaddisturbance suppression and fault tolerance capabilities, and our proposed active fault-tolerant control law hasLyapunov stability implications. Experimental results obtained using a multi-rotor fault-tolerant test platformdemonstrate that the proposed method outperforms other control strategies regarding load disturbance suppressionand fault-tolerant performance.展开更多
Rockburst is a phenomenon in which free surfaces are formed during excavation,which subsequently causes the sudden release of energy in the construction of mines and tunnels.Light rockburst only peels off rock slices ...Rockburst is a phenomenon in which free surfaces are formed during excavation,which subsequently causes the sudden release of energy in the construction of mines and tunnels.Light rockburst only peels off rock slices without ejection,while severe rockburst causes casualties and property loss.The frequency and degree of rockburst damage increases with the excavation depth.Moreover,rockburst is the leading engineering geological hazard in the excavation process,and thus the prediction of its intensity grade is of great significance to the development of geotechnical engineering.Therefore,the prediction of rockburst intensity grade is one problem that needs to be solved urgently.By comprehensively considering the occurrence mechanism of rockburst,this paper selects the stress index(σθ/σc),brittleness index(σ_(c)/σ_(t)),and rock elastic energy index(Wet)as the rockburst evaluation indexes through the Spearman coefficient method.This overcomes the low accuracy problem of a single evaluation index prediction method.Following this,the BGD-MSR-DNN rockburst intensity grade prediction model based on batch gradient descent and a multi-scale residual deep neural network is proposed.The batch gradient descent(BGD)module is used to replace the gradient descent algorithm,which effectively improves the efficiency of the network and reduces the model training time.Moreover,the multi-scale residual(MSR)module solves the problem of network degradation when there are too many hidden layers of the deep neural network(DNN),thus improving the model prediction accuracy.The experimental results reveal the BGDMSR-DNN model accuracy to reach 97.1%,outperforming other comparable models.Finally,actual projects such as Qinling Tunnel and Daxiangling Tunnel,reached an accuracy of 100%.The model can be applied in mines and tunnel engineering to realize the accurate and rapid prediction of rockburst intensity grade.展开更多
Anderson acceleration(AA)is an extrapolation technique designed to speed up fixed-point iterations.For optimization problems,we propose a novel algorithm by combining the AA with the energy adaptive gradient method(AE...Anderson acceleration(AA)is an extrapolation technique designed to speed up fixed-point iterations.For optimization problems,we propose a novel algorithm by combining the AA with the energy adaptive gradient method(AEGD)[arXiv:2010.05109].The feasibility of our algorithm is ensured in light of the convergence theory for AEGD,though it is not a fixed-point iteration.We provide rigorous convergence rates of AA for gradient descent(GD)by an acceleration factor of the gain at each implementation of AA-GD.Our experimental results show that the proposed AA-AEGD algorithm requires little tuning of hyperparameters and exhibits superior fast convergence.展开更多
As a mature distributed machine learning paradigm,federated learning enables wireless edge devices to collaboratively train a shared AI-model by stochastic gradient descent(SGD).However,devices need to upload high-dim...As a mature distributed machine learning paradigm,federated learning enables wireless edge devices to collaboratively train a shared AI-model by stochastic gradient descent(SGD).However,devices need to upload high-dimensional stochastic gradients to edge server in training,which cause severe communication bottleneck.To address this problem,we compress the communication by sparsifying and quantizing the stochastic gradients of edge devices.We first derive a closed form of the communication compression in terms of sparsification and quantization factors.Then,the convergence rate of this communicationcompressed system is analyzed and several insights are obtained.Finally,we formulate and deal with the quantization resource allocation problem for the goal of minimizing the convergence upper bound,under the constraint of multiple-access channel capacity.Simulations show that the proposed scheme outperforms the benchmarks.展开更多
Federated learning ensures data privacy and security by sharing models among multiple computing nodes instead of plaintext data.However,there is still a potential risk of privacy leakage,for example,attackers can obta...Federated learning ensures data privacy and security by sharing models among multiple computing nodes instead of plaintext data.However,there is still a potential risk of privacy leakage,for example,attackers can obtain the original data through model inference attacks.Therefore,safeguarding the privacy of model parameters becomes crucial.One proposed solution involves incorporating homomorphic encryption algorithms into the federated learning process.However,the existing federated learning privacy protection scheme based on homomorphic encryption will greatly reduce the efficiency and robustness when there are performance differences between parties or abnormal nodes.To solve the above problems,this paper proposes a privacy protection scheme named Federated Learning-Elastic Averaging Stochastic Gradient Descent(FL-EASGD)based on a fully homomorphic encryption algorithm.First,this paper introduces the homomorphic encryption algorithm into the FL-EASGD scheme to preventmodel plaintext leakage and realize privacy security in the process ofmodel aggregation.Second,this paper designs a robust model aggregation algorithm by adding time variables and constraint coefficients,which ensures the accuracy of model prediction while solving performance differences such as computation speed and node anomalies such as downtime of each participant.In addition,the scheme in this paper preserves the independent exploration of the local model by the nodes of each party,making the model more applicable to the local data distribution.Finally,experimental analysis shows that when there are abnormalities in the participants,the efficiency and accuracy of the whole protocol are not significantly affected.展开更多
In the realm of large-scale machine learning,it is crucial to explore methods for reducing computational complexity and memory demands while maintaining generalization performance.Additionally,since the collected data...In the realm of large-scale machine learning,it is crucial to explore methods for reducing computational complexity and memory demands while maintaining generalization performance.Additionally,since the collected data may contain some sensitive information,it is also of great significance to study privacy-preserving machine learning algorithms.This paper focuses on the performance of the differentially private stochastic gradient descent(SGD)algorithm based on random features.To begin,the algorithm maps the original data into a lowdimensional space,thereby avoiding the traditional kernel method for large-scale data storage requirement.Subsequently,the algorithm iteratively optimizes parameters using the stochastic gradient descent approach.Lastly,the output perturbation mechanism is employed to introduce random noise,ensuring algorithmic privacy.We prove that the proposed algorithm satisfies the differential privacy while achieving fast convergence rates under some mild conditions.展开更多
在大数据时代,数据访问速度是衡量大规模存储系统性能的一个重要指标,而索引是用于提升数据库系统中数据存取性能的主要技术之一。近几年,使用机器学习模型代替B+树等传统索引,拟合数据分布规律,将数据的间接查找优化为函数直接计算的...在大数据时代,数据访问速度是衡量大规模存储系统性能的一个重要指标,而索引是用于提升数据库系统中数据存取性能的主要技术之一。近几年,使用机器学习模型代替B+树等传统索引,拟合数据分布规律,将数据的间接查找优化为函数直接计算的学习索引(Learned Index,LI)被提出,LI提高了查询的速度,减少了索引空间开销。但是LI的拟合误差较大,不支持插入等修改性操作。文中提出了一种利用梯度下降算法拟合数据的学习索引模型GDLIN(A Learned Index By Gradient Descent)。GDLIN利用梯度下降算法更好地拟合数据,减少拟合误差,缩短本地查找的时间;同时递归调用数据拟合算法,充分利用键的分布规律,构建上层结构,避免索引结构随着数据量而增大。另外,GDLIN利用链表解决LI不支持数据插入的问题。实验结果表明,GDLIN在无新数据插入的情况下,吞吐量是B+树的2.1倍;在插入操作占比为50%的情况下,是LI的1.08倍。展开更多
A recommender system(RS)relying on latent factor analysis usually adopts stochastic gradient descent(SGD)as its learning algorithm.However,owing to its serial mechanism,an SGD algorithm suffers from low efficiency and...A recommender system(RS)relying on latent factor analysis usually adopts stochastic gradient descent(SGD)as its learning algorithm.However,owing to its serial mechanism,an SGD algorithm suffers from low efficiency and scalability when handling large-scale industrial problems.Aiming at addressing this issue,this study proposes a momentum-incorporated parallel stochastic gradient descent(MPSGD)algorithm,whose main idea is two-fold:a)implementing parallelization via a novel datasplitting strategy,and b)accelerating convergence rate by integrating momentum effects into its training process.With it,an MPSGD-based latent factor(MLF)model is achieved,which is capable of performing efficient and high-quality recommendations.Experimental results on four high-dimensional and sparse matrices generated by industrial RS indicate that owing to an MPSGD algorithm,an MLF model outperforms the existing state-of-the-art ones in both computational efficiency and scalability.展开更多
A hybridization of the three–term conjugate gradient method proposed by Zhang et al. and the nonlinear conjugate gradient method proposed by Polak and Ribi`ere, and Polyak is suggested. Based on an eigenvalue analysi...A hybridization of the three–term conjugate gradient method proposed by Zhang et al. and the nonlinear conjugate gradient method proposed by Polak and Ribi`ere, and Polyak is suggested. Based on an eigenvalue analysis, it is shown that search directions of the proposed method satisfy the sufficient descent condition, independent of the line search and the objective function convexity. Global convergence of the method is established under an Armijo–type line search condition. Numerical experiments show practical efficiency of the proposed method.展开更多
Matrix completion is the extension of compressed sensing.In compressed sensing,we solve the underdetermined equations using sparsity prior of the unknown signals.However,in matrix completion,we solve the underdetermin...Matrix completion is the extension of compressed sensing.In compressed sensing,we solve the underdetermined equations using sparsity prior of the unknown signals.However,in matrix completion,we solve the underdetermined equations based on sparsity prior in singular values set of the unknown matrix,which also calls low-rank prior of the unknown matrix.This paper firstly introduces basic concept of matrix completion,analyses the matrix suitably used in matrix completion,and shows that such matrix should satisfy two conditions:low rank and incoherence property.Then the paper provides three reconstruction algorithms commonly used in matrix completion:singular value thresholding algorithm,singular value projection,and atomic decomposition for minimum rank approximation,puts forward their shortcoming to know the rank of original matrix.The Projected Gradient Descent based on Soft Thresholding(STPGD),proposed in this paper predicts the rank of unknown matrix using soft thresholding,and iteratives based on projected gradient descent,thus it could estimate the rank of unknown matrix exactly with low computational complexity,this is verified by numerical experiments.We also analyze the convergence and computational complexity of the STPGD algorithm,point out this algorithm is guaranteed to converge,and analyse the number of iterations needed to reach reconstruction error.Compared the computational complexity of the STPGD algorithm to other algorithms,we draw the conclusion that the STPGD algorithm not only reduces the computational complexity,but also improves the precision of the reconstruction solution.展开更多
In a wireless sensor network[1],the operation of a node depends on the battery power it carries.Because of the environmental reasons,the node cannot replace the battery.In order to improve the life cycle of the networ...In a wireless sensor network[1],the operation of a node depends on the battery power it carries.Because of the environmental reasons,the node cannot replace the battery.In order to improve the life cycle of the network,energy becomes one of the key problems in the design of the wireless sensor network(WSN)routing protocol[2].This paper proposes a routing protocol ERGD based on the method of gradient descent that can minimizes the consumption of energy.Within the communication radius of the current node,the distance between the current node and the next hop node is assumed that can generate a projected energy at the distance from the current node to the base station(BS),this projected energy and the remaining energy of the next hop node is the key factor in finding the next hop node.The simulation results show that the proposed protocol effectively extends the life cycle of the network and improves the reliability and fault tolerance of the system.展开更多
The distribution of sampling data influences completeness of rule base so that extrapolating missing rules is very difficult. Based on data mining, a self-learning method is developed for identifying fuzzy model and e...The distribution of sampling data influences completeness of rule base so that extrapolating missing rules is very difficult. Based on data mining, a self-learning method is developed for identifying fuzzy model and extrapolating missing rules, by means of confidence measure and the improved gradient descent method. The proposed approach can not only identify fuzzy model, update its parameters and determine optimal output fuzzy sets simultaneously, but also resolve the uncontrollable problem led by the regions that data do not cover. The simulation results show the effectiveness and accuracy of the proposed approach with the classical truck backer-upper control problem verifying.展开更多
基金the Natural Science Foundation of Ningxia Province(No.2021AAC03230).
文摘Brain tumors come in various types,each with distinct characteristics and treatment approaches,making manual detection a time-consuming and potentially ambiguous process.Brain tumor detection is a valuable tool for gaining a deeper understanding of tumors and improving treatment outcomes.Machine learning models have become key players in automating brain tumor detection.Gradient descent methods are the mainstream algorithms for solving machine learning models.In this paper,we propose a novel distributed proximal stochastic gradient descent approach to solve the L_(1)-Smooth Support Vector Machine(SVM)classifier for brain tumor detection.Firstly,the smooth hinge loss is introduced to be used as the loss function of SVM.It avoids the issue of nondifferentiability at the zero point encountered by the traditional hinge loss function during gradient descent optimization.Secondly,the L_(1) regularization method is employed to sparsify features and enhance the robustness of the model.Finally,adaptive proximal stochastic gradient descent(PGD)with momentum,and distributed adaptive PGDwithmomentum(DPGD)are proposed and applied to the L_(1)-Smooth SVM.Distributed computing is crucial in large-scale data analysis,with its value manifested in extending algorithms to distributed clusters,thus enabling more efficient processing ofmassive amounts of data.The DPGD algorithm leverages Spark,enabling full utilization of the computer’s multi-core resources.Due to its sparsity induced by L_(1) regularization on parameters,it exhibits significantly accelerated convergence speed.From the perspective of loss reduction,DPGD converges faster than PGD.The experimental results show that adaptive PGD withmomentumand its variants have achieved cutting-edge accuracy and efficiency in brain tumor detection.Frompre-trained models,both the PGD andDPGD outperform other models,boasting an accuracy of 95.21%.
基金partially supported by NSF Grants DMS-1854434,DMS-1952644,and DMS-2151235 at UC Irvinesupported by NSF Grants DMS-1924935,DMS-1952339,DMS-2110145,DMS-2152762,and DMS-2208361,and DOE Grants DE-SC0021142 and DE-SC0002722.
文摘We prove,under mild conditions,the convergence of a Riemannian gradient descent method for a hyperbolic neural network regression model,both in batch gradient descent and stochastic gradient descent.We also discuss a Riemannian version of the Adam algorithm.We show numerical simulations of these algorithms on various benchmarks.
基金the 2021 Key Project of Natural Science and Technology of Yangzhou Polytechnic Institute,Active Disturbance Rejection and Fault-Tolerant Control of Multi-Rotor Plant ProtectionUAV Based on QBall-X4(Grant Number 2021xjzk002).
文摘With the increasing prevalence of high-order systems in engineering applications, these systems often exhibitsignificant disturbances and can be challenging to model accurately. As a result, the active disturbance rejectioncontroller (ADRC) has been widely applied in various fields. However, in controlling plant protection unmannedaerial vehicles (UAVs), which are typically large and subject to significant disturbances, load disturbances andthe possibility of multiple actuator faults during pesticide spraying pose significant challenges. To address theseissues, this paper proposes a novel fault-tolerant control method that combines a radial basis function neuralnetwork (RBFNN) with a second-order ADRC and leverages a fractional gradient descent (FGD) algorithm.We integrate the plant protection UAV model’s uncertain parameters, load disturbance parameters, and actuatorfault parameters and utilize the RBFNN for system parameter identification. The resulting ADRC exhibits loaddisturbance suppression and fault tolerance capabilities, and our proposed active fault-tolerant control law hasLyapunov stability implications. Experimental results obtained using a multi-rotor fault-tolerant test platformdemonstrate that the proposed method outperforms other control strategies regarding load disturbance suppressionand fault-tolerant performance.
基金funded by State Key Laboratory for GeoMechanics and Deep Underground Engineering&Institute for Deep Underground Science and Engineering,Grant Number XD2021021BUCEA Post Graduate Innovation Project under Grant,Grant Number PG2023092.
文摘Rockburst is a phenomenon in which free surfaces are formed during excavation,which subsequently causes the sudden release of energy in the construction of mines and tunnels.Light rockburst only peels off rock slices without ejection,while severe rockburst causes casualties and property loss.The frequency and degree of rockburst damage increases with the excavation depth.Moreover,rockburst is the leading engineering geological hazard in the excavation process,and thus the prediction of its intensity grade is of great significance to the development of geotechnical engineering.Therefore,the prediction of rockburst intensity grade is one problem that needs to be solved urgently.By comprehensively considering the occurrence mechanism of rockburst,this paper selects the stress index(σθ/σc),brittleness index(σ_(c)/σ_(t)),and rock elastic energy index(Wet)as the rockburst evaluation indexes through the Spearman coefficient method.This overcomes the low accuracy problem of a single evaluation index prediction method.Following this,the BGD-MSR-DNN rockburst intensity grade prediction model based on batch gradient descent and a multi-scale residual deep neural network is proposed.The batch gradient descent(BGD)module is used to replace the gradient descent algorithm,which effectively improves the efficiency of the network and reduces the model training time.Moreover,the multi-scale residual(MSR)module solves the problem of network degradation when there are too many hidden layers of the deep neural network(DNN),thus improving the model prediction accuracy.The experimental results reveal the BGDMSR-DNN model accuracy to reach 97.1%,outperforming other comparable models.Finally,actual projects such as Qinling Tunnel and Daxiangling Tunnel,reached an accuracy of 100%.The model can be applied in mines and tunnel engineering to realize the accurate and rapid prediction of rockburst intensity grade.
基金partially supported by the National Science Foundation under(Grant DMS No.1812666)。
文摘Anderson acceleration(AA)is an extrapolation technique designed to speed up fixed-point iterations.For optimization problems,we propose a novel algorithm by combining the AA with the energy adaptive gradient method(AEGD)[arXiv:2010.05109].The feasibility of our algorithm is ensured in light of the convergence theory for AEGD,though it is not a fixed-point iteration.We provide rigorous convergence rates of AA for gradient descent(GD)by an acceleration factor of the gain at each implementation of AA-GD.Our experimental results show that the proposed AA-AEGD algorithm requires little tuning of hyperparameters and exhibits superior fast convergence.
基金supported in part by the National Key Research and Development Program of China under Grant 2020YFB1807700in part by the National Science Foundation of China under Grant U200120122
文摘As a mature distributed machine learning paradigm,federated learning enables wireless edge devices to collaboratively train a shared AI-model by stochastic gradient descent(SGD).However,devices need to upload high-dimensional stochastic gradients to edge server in training,which cause severe communication bottleneck.To address this problem,we compress the communication by sparsifying and quantizing the stochastic gradients of edge devices.We first derive a closed form of the communication compression in terms of sparsification and quantization factors.Then,the convergence rate of this communicationcompressed system is analyzed and several insights are obtained.Finally,we formulate and deal with the quantization resource allocation problem for the goal of minimizing the convergence upper bound,under the constraint of multiple-access channel capacity.Simulations show that the proposed scheme outperforms the benchmarks.
文摘Federated learning ensures data privacy and security by sharing models among multiple computing nodes instead of plaintext data.However,there is still a potential risk of privacy leakage,for example,attackers can obtain the original data through model inference attacks.Therefore,safeguarding the privacy of model parameters becomes crucial.One proposed solution involves incorporating homomorphic encryption algorithms into the federated learning process.However,the existing federated learning privacy protection scheme based on homomorphic encryption will greatly reduce the efficiency and robustness when there are performance differences between parties or abnormal nodes.To solve the above problems,this paper proposes a privacy protection scheme named Federated Learning-Elastic Averaging Stochastic Gradient Descent(FL-EASGD)based on a fully homomorphic encryption algorithm.First,this paper introduces the homomorphic encryption algorithm into the FL-EASGD scheme to preventmodel plaintext leakage and realize privacy security in the process ofmodel aggregation.Second,this paper designs a robust model aggregation algorithm by adding time variables and constraint coefficients,which ensures the accuracy of model prediction while solving performance differences such as computation speed and node anomalies such as downtime of each participant.In addition,the scheme in this paper preserves the independent exploration of the local model by the nodes of each party,making the model more applicable to the local data distribution.Finally,experimental analysis shows that when there are abnormalities in the participants,the efficiency and accuracy of the whole protocol are not significantly affected.
基金supported by Zhejiang Provincial Natural Science Foundation of China(LR20A010001)National Natural Science Foundation of China(12271473 and U21A20426)。
文摘In the realm of large-scale machine learning,it is crucial to explore methods for reducing computational complexity and memory demands while maintaining generalization performance.Additionally,since the collected data may contain some sensitive information,it is also of great significance to study privacy-preserving machine learning algorithms.This paper focuses on the performance of the differentially private stochastic gradient descent(SGD)algorithm based on random features.To begin,the algorithm maps the original data into a lowdimensional space,thereby avoiding the traditional kernel method for large-scale data storage requirement.Subsequently,the algorithm iteratively optimizes parameters using the stochastic gradient descent approach.Lastly,the output perturbation mechanism is employed to introduce random noise,ensuring algorithmic privacy.We prove that the proposed algorithm satisfies the differential privacy while achieving fast convergence rates under some mild conditions.
文摘在大数据时代,数据访问速度是衡量大规模存储系统性能的一个重要指标,而索引是用于提升数据库系统中数据存取性能的主要技术之一。近几年,使用机器学习模型代替B+树等传统索引,拟合数据分布规律,将数据的间接查找优化为函数直接计算的学习索引(Learned Index,LI)被提出,LI提高了查询的速度,减少了索引空间开销。但是LI的拟合误差较大,不支持插入等修改性操作。文中提出了一种利用梯度下降算法拟合数据的学习索引模型GDLIN(A Learned Index By Gradient Descent)。GDLIN利用梯度下降算法更好地拟合数据,减少拟合误差,缩短本地查找的时间;同时递归调用数据拟合算法,充分利用键的分布规律,构建上层结构,避免索引结构随着数据量而增大。另外,GDLIN利用链表解决LI不支持数据插入的问题。实验结果表明,GDLIN在无新数据插入的情况下,吞吐量是B+树的2.1倍;在插入操作占比为50%的情况下,是LI的1.08倍。
基金supported in part by the National Natural Science Foundation of China(61772493)the Deanship of Scientific Research(DSR)at King Abdulaziz University(RG-48-135-40)+1 种基金Guangdong Province Universities and College Pearl River Scholar Funded Scheme(2019)the Natural Science Foundation of Chongqing(cstc2019jcyjjqX0013)。
文摘A recommender system(RS)relying on latent factor analysis usually adopts stochastic gradient descent(SGD)as its learning algorithm.However,owing to its serial mechanism,an SGD algorithm suffers from low efficiency and scalability when handling large-scale industrial problems.Aiming at addressing this issue,this study proposes a momentum-incorporated parallel stochastic gradient descent(MPSGD)algorithm,whose main idea is two-fold:a)implementing parallelization via a novel datasplitting strategy,and b)accelerating convergence rate by integrating momentum effects into its training process.With it,an MPSGD-based latent factor(MLF)model is achieved,which is capable of performing efficient and high-quality recommendations.Experimental results on four high-dimensional and sparse matrices generated by industrial RS indicate that owing to an MPSGD algorithm,an MLF model outperforms the existing state-of-the-art ones in both computational efficiency and scalability.
基金Supported by Research Council of Semnan University
文摘A hybridization of the three–term conjugate gradient method proposed by Zhang et al. and the nonlinear conjugate gradient method proposed by Polak and Ribi`ere, and Polyak is suggested. Based on an eigenvalue analysis, it is shown that search directions of the proposed method satisfy the sufficient descent condition, independent of the line search and the objective function convexity. Global convergence of the method is established under an Armijo–type line search condition. Numerical experiments show practical efficiency of the proposed method.
基金Supported by the National Natural Science Foundation ofChina(No.61271240)Jiangsu Province Natural Science Fund Project(No.BK2010077)Subject of Twelfth Five Years Plans in Jiangsu Second Normal University(No.417103)
文摘Matrix completion is the extension of compressed sensing.In compressed sensing,we solve the underdetermined equations using sparsity prior of the unknown signals.However,in matrix completion,we solve the underdetermined equations based on sparsity prior in singular values set of the unknown matrix,which also calls low-rank prior of the unknown matrix.This paper firstly introduces basic concept of matrix completion,analyses the matrix suitably used in matrix completion,and shows that such matrix should satisfy two conditions:low rank and incoherence property.Then the paper provides three reconstruction algorithms commonly used in matrix completion:singular value thresholding algorithm,singular value projection,and atomic decomposition for minimum rank approximation,puts forward their shortcoming to know the rank of original matrix.The Projected Gradient Descent based on Soft Thresholding(STPGD),proposed in this paper predicts the rank of unknown matrix using soft thresholding,and iteratives based on projected gradient descent,thus it could estimate the rank of unknown matrix exactly with low computational complexity,this is verified by numerical experiments.We also analyze the convergence and computational complexity of the STPGD algorithm,point out this algorithm is guaranteed to converge,and analyse the number of iterations needed to reach reconstruction error.Compared the computational complexity of the STPGD algorithm to other algorithms,we draw the conclusion that the STPGD algorithm not only reduces the computational complexity,but also improves the precision of the reconstruction solution.
文摘In a wireless sensor network[1],the operation of a node depends on the battery power it carries.Because of the environmental reasons,the node cannot replace the battery.In order to improve the life cycle of the network,energy becomes one of the key problems in the design of the wireless sensor network(WSN)routing protocol[2].This paper proposes a routing protocol ERGD based on the method of gradient descent that can minimizes the consumption of energy.Within the communication radius of the current node,the distance between the current node and the next hop node is assumed that can generate a projected energy at the distance from the current node to the base station(BS),this projected energy and the remaining energy of the next hop node is the key factor in finding the next hop node.The simulation results show that the proposed protocol effectively extends the life cycle of the network and improves the reliability and fault tolerance of the system.
基金This project was supported by State Science &Technology Pursuing Project (2001BA204B01) of China and Foundation forUniversity Key Teacher by the Ministry of Education of China.
文摘The distribution of sampling data influences completeness of rule base so that extrapolating missing rules is very difficult. Based on data mining, a self-learning method is developed for identifying fuzzy model and extrapolating missing rules, by means of confidence measure and the improved gradient descent method. The proposed approach can not only identify fuzzy model, update its parameters and determine optimal output fuzzy sets simultaneously, but also resolve the uncontrollable problem led by the regions that data do not cover. The simulation results show the effectiveness and accuracy of the proposed approach with the classical truck backer-upper control problem verifying.