With isopentane as working fluid, the heat transfer performances for corrugated, nodal and horizontal grain tubes are simulated. The structural parameters of the three kinds of tubes are compared with those of the pla...With isopentane as working fluid, the heat transfer performances for corrugated, nodal and horizontal grain tubes are simulated. The structural parameters of the three kinds of tubes are compared with those of the plain tube. The numerical results using computational fluid dynamics are validated with theoretical values. For the corrugated, nodal and horizontal grain tubes, the heat transfer enhancements(HTEs) are 2.31—2.53, 1.18—1.86 and 1.02—1.31 times of those of the plain tube, respectively. However, the improved HTEs are at the expense of pressure losses. The drag coefficients are 6.10—7.09, 2.06—11.03 and 0.53—1.83 higher, respectively. From the viewpoint of comprehensive heat transfer factor, the corrugated tube is recommended for engineering applications, followed by the horizontal grain tube.展开更多
The influence of quench transfer time on the microstructure and mechanical properties of 7055 aluminum alloy with and without zirconium was investigated by tensile properties test,optical microscopy,scanning electron ...The influence of quench transfer time on the microstructure and mechanical properties of 7055 aluminum alloy with and without zirconium was investigated by tensile properties test,optical microscopy,scanning electron microscopy and transmission electron microscopy.For the Zr-free alloy,the strength increases to the highest value at 20 s with transfer time,and then decreases slightly.The elongation decreases slowly with transfer time within 20 s,and more rapidly after 20 s.For the Zr-containing alloy,prolonging transfer time within 20 s results in slight decrease in the strength and elongation,and rapid drop of which is observed after 20 s.For the Zr-free alloy,prolonging transfer time can increase the percentage of intergranular fracture,which is mainly caused by wide grain boundary precipitate free zone.The failure mode of the Zr-containing alloy is modified from the predominant transgranular void growth and intergranular fracture to transgranular shear and intergranular fracture with increase in the transfer time,which is attributed to the wider grain boundary precipitate free zone and coarse equilibrium η phases in the matrix.展开更多
Based on a new idea for research on cycling of marine biogenic elements, this study showed that only the leachable form phosphorus in natural grain sizes marine sediments constitutes the transferable phosphorous in th...Based on a new idea for research on cycling of marine biogenic elements, this study showed that only the leachable form phosphorus in natural grain sizes marine sediments constitutes the transferable phosphorous in the sediments. The transferable phosphorus content in the natural grain sizes surface sediments in the Huanghe River estuary adjacent waters ranges from 58.5-69.8 μg/g, accounting for only 9.1%-11.0% of the total phosphorus content, whereas the leachable form (“transferable") phosphorus content in the sediment after it was totally ground into powder was found to be 454.8-529.2 μg/g, accounting for 73.4%-89.1% of the total phosphorus. Analysis of the correlation between the biomass of benthos and the leachable form (“transferable") phosphorus showed that most of the leachable form (“transferable") phosphorus in the totally ground sediment did not participate in the marine biogeochemical cycling. Furthermore, a synchronous survey on benthos showed that the biomass of meio and macro benthos exhibited good positive correlation with the leachable form of phosphorus in the natural grain sizes sediment, but poorer correlation with the leachable form (“transferable") phosphorus in the totally ground sediment, indicating that transferable phosphorus in marine sediment is the leachable form of phosphorus in the natural grain sizes sediments, and is not the previously known leachable form (“transferable") phosphorus obtained from the totally ground sediment.展开更多
The complex geometric features of subsurface fractures at different scales makes mesh generation challenging and/or expensive.In this paper,we make use of neural style transfer(NST),a machine learning technique,to gen...The complex geometric features of subsurface fractures at different scales makes mesh generation challenging and/or expensive.In this paper,we make use of neural style transfer(NST),a machine learning technique,to generate mesh from rock fracture images.In this new approach,we use digital rock fractures at multiple scales that represent’content’and define uniformly shaped and sized triangles to represent’style’.The 19-layer convolutional neural network(CNN)learns the content from the rock image,including lower-level features(such as edges and corners)and higher-level features(such as rock,fractures,or other mineral fillings),and learns the style from the triangular grids.By optimizing the cost function to achieve approximation to represent both the content and the style,numerical meshes can be generated and optimized.We utilize the NST to generate meshes for rough fractures with asperities formed in rock,a network of fractures embedded in rock,and a sand aggregate with multiple grains.Based on the examples,we show that this new NST technique can make mesh generation and optimization much more efficient by achieving a good balance between the density of the mesh and the presentation of the geometric features.Finally,we discuss future applications of this approach and perspectives of applying machine learning to bridge the gaps between numerical modeling and experiments.展开更多
基金Supported by the National High Technology Research and Development Program of China("863"Program,No.2012AA053001)
文摘With isopentane as working fluid, the heat transfer performances for corrugated, nodal and horizontal grain tubes are simulated. The structural parameters of the three kinds of tubes are compared with those of the plain tube. The numerical results using computational fluid dynamics are validated with theoretical values. For the corrugated, nodal and horizontal grain tubes, the heat transfer enhancements(HTEs) are 2.31—2.53, 1.18—1.86 and 1.02—1.31 times of those of the plain tube, respectively. However, the improved HTEs are at the expense of pressure losses. The drag coefficients are 6.10—7.09, 2.06—11.03 and 0.53—1.83 higher, respectively. From the viewpoint of comprehensive heat transfer factor, the corrugated tube is recommended for engineering applications, followed by the horizontal grain tube.
基金Project(2005CB623706) supported by the Major State Basic Research Development Program of ChinaProject(50230310) supported by the National Natural Science Foundation of China
文摘The influence of quench transfer time on the microstructure and mechanical properties of 7055 aluminum alloy with and without zirconium was investigated by tensile properties test,optical microscopy,scanning electron microscopy and transmission electron microscopy.For the Zr-free alloy,the strength increases to the highest value at 20 s with transfer time,and then decreases slightly.The elongation decreases slowly with transfer time within 20 s,and more rapidly after 20 s.For the Zr-containing alloy,prolonging transfer time within 20 s results in slight decrease in the strength and elongation,and rapid drop of which is observed after 20 s.For the Zr-free alloy,prolonging transfer time can increase the percentage of intergranular fracture,which is mainly caused by wide grain boundary precipitate free zone.The failure mode of the Zr-containing alloy is modified from the predominant transgranular void growth and intergranular fracture to transgranular shear and intergranular fracture with increase in the transfer time,which is attributed to the wider grain boundary precipitate free zone and coarse equilibrium η phases in the matrix.
基金Project 49776300 supported by NSFC49925614 by the NSFC for Outstanding Young Scientists.
文摘Based on a new idea for research on cycling of marine biogenic elements, this study showed that only the leachable form phosphorus in natural grain sizes marine sediments constitutes the transferable phosphorous in the sediments. The transferable phosphorus content in the natural grain sizes surface sediments in the Huanghe River estuary adjacent waters ranges from 58.5-69.8 μg/g, accounting for only 9.1%-11.0% of the total phosphorus content, whereas the leachable form (“transferable") phosphorus content in the sediment after it was totally ground into powder was found to be 454.8-529.2 μg/g, accounting for 73.4%-89.1% of the total phosphorus. Analysis of the correlation between the biomass of benthos and the leachable form (“transferable") phosphorus showed that most of the leachable form (“transferable") phosphorus in the totally ground sediment did not participate in the marine biogeochemical cycling. Furthermore, a synchronous survey on benthos showed that the biomass of meio and macro benthos exhibited good positive correlation with the leachable form of phosphorus in the natural grain sizes sediment, but poorer correlation with the leachable form (“transferable") phosphorus in the totally ground sediment, indicating that transferable phosphorus in marine sediment is the leachable form of phosphorus in the natural grain sizes sediments, and is not the previously known leachable form (“transferable") phosphorus obtained from the totally ground sediment.
基金supported by Laboratory Directed Research and Development(LDRD)funding from Berkeley Laboratoryby the US Department of Energy(DOE),including the Office of Basic Energy Sciences,Chemical Sciences,Geosciences,and Biosciences Division and the Office of Nuclear Energy,Spent Fuel and Waste Disposition Campaign,both under Contract No.DEAC02-05CH11231 with Berkeley Laboratory。
文摘The complex geometric features of subsurface fractures at different scales makes mesh generation challenging and/or expensive.In this paper,we make use of neural style transfer(NST),a machine learning technique,to generate mesh from rock fracture images.In this new approach,we use digital rock fractures at multiple scales that represent’content’and define uniformly shaped and sized triangles to represent’style’.The 19-layer convolutional neural network(CNN)learns the content from the rock image,including lower-level features(such as edges and corners)and higher-level features(such as rock,fractures,or other mineral fillings),and learns the style from the triangular grids.By optimizing the cost function to achieve approximation to represent both the content and the style,numerical meshes can be generated and optimized.We utilize the NST to generate meshes for rough fractures with asperities formed in rock,a network of fractures embedded in rock,and a sand aggregate with multiple grains.Based on the examples,we show that this new NST technique can make mesh generation and optimization much more efficient by achieving a good balance between the density of the mesh and the presentation of the geometric features.Finally,we discuss future applications of this approach and perspectives of applying machine learning to bridge the gaps between numerical modeling and experiments.