Abst[Objective] This study was to understand the genetic dynamics of three-line hybrid rice, and explore the respective effect of sterile line and restoring line on grain characters of hybrid rica. [Method] Four three...Abst[Objective] This study was to understand the genetic dynamics of three-line hybrid rice, and explore the respective effect of sterile line and restoring line on grain characters of hybrid rica. [Method] Four three-line stedle lines and 27 restoring lines(cultivars) commonly culti- vated in Central China region were regarded as expadmental materials to conduct 4 x27NCII cross design, and the grain characters of three-line hybrid rico were analyzed at genetic and correlation levels. [ Result] Four characters of grain length, grain width, 1 000-grain weight and length- width ratio play the leading role in additive gene effect; these four characters were simultaneously influenced by male parent and female parent, but the effect from male parent was relatively larger. The grain length, grain width, 1 000-grain weight and length-width ratio all have high brood hedtabUities( respectively 99.65%, 98.31%, 95.27% and 98.81% ). Correlation analysis showed that grain length was positively correlated with 1 000-grain weight and length-width ratio at extremely significant level; 1 000-grain weight was positively correlated with grain length and length- width ratio at extremely significant level, and was insignificantly correlated with grain width; grain width was negatively correlated with grain length and length-width ratio at extremely significant level. Path analysis showed that the direct path coefficients of grain length, grain width and 1 0(30- grain weight to length-width ratio were 0.624 6, -0.555 9 and -0.015 8, respectively. [ Conclusion] This study systematically analyzed the effects of stedle line and restoring line on grain characters of hybrid rice, which provided theoretical basis for breeding high quality and yield hy- brid dce.展开更多
[Objective] The aim was to research effects of N quantity on grain-filling characters of two-line hybrid rice cultivars with large ears. [Method] Peiza 67 and 88, two-line hybridized rice with large ears, were made us...[Objective] The aim was to research effects of N quantity on grain-filling characters of two-line hybrid rice cultivars with large ears. [Method] Peiza 67 and 88, two-line hybridized rice with large ears, were made use of to study on effects of N fertilizer in different quantities (LN: 90 kg/hm2;MN: 180 kg/hm2;HN: 270 kg/hm2) on plumpness and grain-filling characters. [Result] When N fertilizers were excessive, for inferior grains, grain-filling rate decreased and grain-filling time extended, resulting in plumpness decline after degradation of leaves' function. When N fertilizers were inadequate, maximal and average grain-filling rates decreased and the differences between superior and inferior grains in grain-filling rate increased, leading to decline of grain's weight and plumpness degree. On the other hand, quantity of N fertilizers had little effect on superior grains in plumpness. [Conclusion] The research provided references for reasonable use of N fertilizer and improvement of rice yield and N use.展开更多
Ferritic/martensitic(F/M)steel is widely used as a structural material in thermal and nuclear power plants.However,it is susceptible to intergranular damage,which is a critical issue,under service conditions.In this s...Ferritic/martensitic(F/M)steel is widely used as a structural material in thermal and nuclear power plants.However,it is susceptible to intergranular damage,which is a critical issue,under service conditions.In this study,to improve the resistance to intergranular damage of F/M steel,a thermomechanical process(TMP)was employed to achieve a grain boundary engineering(GBE)microstructure in F/M steel P92.The TMP,including cold-rolling thickness reduction of 6%,9%,and 12%,followed by austenitization at 1323 K for 40 min and tempering at 1053 K for 45 min,was applied to the as-received(AR)P92 steel.The prior austenite grain(PAG)size,prior austenite grain boundary character distribution(GBCD),and connectivity of prior austenite grain boundaries(PAGBs)were investigated.Compared to the AR specimen,the PAG size did not change significantly.The fraction of coincident site lattice boundaries(CSLBs,3≤Σ≤29)and Σ3^(n) boundaries along PAGBs decreased with increasing reduction ratio because the recrystallization fraction increased with increasing reduction ratio.The PAGB connectivity of the 6%deformed specimen slightly deteriorated compared with that of the AR specimen.Moreover,potentiodynamic polarization studies revealed that the intergranular damage resistance of the studied steel could be improved by increasing the fraction of CSLBs along the PAGBs,indicating that the TMP,which involves low deformation,could enhance the intergranular damage resistance.展开更多
The study investigates the effects of cold-rolling reduction on the recrystallization-annealed Nb + Ti stabilized ultra-pure ferritic stainless steel with 21% Cr in regards to its microstructure evolution, grain size...The study investigates the effects of cold-rolling reduction on the recrystallization-annealed Nb + Ti stabilized ultra-pure ferritic stainless steel with 21% Cr in regards to its microstructure evolution, grain size,recrystallization texture, and grain boundary characteristic distribution and disorientation angle. The research employed the electron back scattered diffraction technique and its results have shown that the average grain size was reduced and the {111 / 〈 112 〉 component was strengthened,which rotated towards {5541 〈225 〉 and {4451 〈384 〉 ,with an increasing cold-rolling reduction. The number fraction of the low-angle grain boundary and the coincidence site lattice (CSL) boundary ,which was mainly made up of ∑3,∑7∑11 and ∑13b, also increased.展开更多
Grain boundary engineering(GBE) is a practice of improving resistance to grain boundary failure of the material through increasing the proportion of low Σ coincidence site lattice(CSL) grain boundaries(special g...Grain boundary engineering(GBE) is a practice of improving resistance to grain boundary failure of the material through increasing the proportion of low Σ coincidence site lattice(CSL) grain boundaries(special grain boundaries) in the grain boundary character distribution(GBCD). The GBCD in a cold rolled and annealed Fe-18Cr-18Mn-0.63N high-nitrogen austenitic stainless steel was analyzed by electron back scatter difraction(EBSD). The results show that the optimization process of GBE in the conventional austenitic stainless steel cannot be well applied to this high-nitrogen austenitic stainless steel. The percentage of low ΣCSL grain boundaries could increase from 47.3% for the solid solution treated high-nitrogen austenitic stainless steel specimen to 82.0% for the specimen after 5% cold rolling reduction and then annealing at 1423 K for 10 min.These special boundaries of high proportion efectively interrupt the connectivity of conventional high angle grain boundary network and thus achieve the GBCD optimization for the high-nitrogen austenitic stainless steel.展开更多
Bismuth(Bi),as an impurity element in copper and copper-based alloys,usually has a strong tendency of grain boundary(GB)segregation,which depends on the GB characters.However,the influence of such a segregation on the...Bismuth(Bi),as an impurity element in copper and copper-based alloys,usually has a strong tendency of grain boundary(GB)segregation,which depends on the GB characters.However,the influence of such a segregation on the properties of ultrahigh-purity copper has been rarely reported and the exact structural arrangements of Bi atoms at different GBs remain largely unclear.In this study,we investigated the influ-ence of trace amounts of Bi(50-300 wt ppm)on the ductility of an ultrahigh-purity copper(99.99999%)in the range of room temperature to 900°C.The tensile results show that the addition of Bi seriously damages the ductility of the ultrahigh-purity copper at temperatures of 450-900°C,which is due to the GB segregation of Bi.On this basis,such a segregation behavior at different types of GBs,including high and low angle GBs(HAGBs/LAGBs),and twin boundaries(TBs),via the scanning electron microscope-electron backscattered diffraction(SEM-EBSD)and aberration-corrected scanning transmission electron microscope(AC-STEM)investigations,combined with the first-principles calculations were systematically studied.The atomistic characterizations demonstrate an anisotropic Bi segregation,where severe enrich-ment of Bi atoms typically occurs at the HAGBs,while the absence of Bi adsorption prevails at LAGBs or TBs.In particular,the segregated Bi at random HAGBs exhibited the directional bilayer adsorption,while the special symmetrical7 HAGB presented a unique Bi-rich cluster superstructure.Our findings pro-vide a comprehensive experimental and computational understanding on the atomic-scale segregation of impurities in metallic materials.展开更多
High-strength interstitial-free steel sheets have very good deep drawability when processed to have { 111 } recrystallization texture. The microtexture evolution and grain boundary character distribution of interstiti...High-strength interstitial-free steel sheets have very good deep drawability when processed to have { 111 } recrystallization texture. The microtexture evolution and grain boundary character distribution of interstitial-free steels as a function of moderate levels of cold rolling reductions were investigated by the metallographic microscopy and electron backscatter diffraction technique. The results showed that there was a close relationship between micro- texture and grain boundary character distribution for interstitial-free steel, especially the distribution and features of some specific types of coincident-site lattice boundaries. In addition, a-fiber texture was weakened to vanish while 7- fiber texture strengthened gradually as cold rolling reduction was increased from 20% to 75 % for cold rolled and an- nealed samples. Accordingly, increasing the rolling reduction from 20 % to 750% would lead to a significant increase in the proportion of ∑3 boundaries. Also, it was found that the microtexture of 20% cold rolled sample would induce a high frequency of ∑11 grain boundaries, but the microtexture of 75% cold rolled sample would produce more ∑7 and ∑17 grain boundaries. It was suggested that texture played a significant role in the formation of grain boundary character distribution.展开更多
The grain boundary character distribution(GBCD) optimization and its effect on the intergranular stress corrosion cracking(IGSCC) resistance in a cold-rolled and subsequently annealed Fe-18 Cr-17 Mn-2 Mo-0.85 N high-n...The grain boundary character distribution(GBCD) optimization and its effect on the intergranular stress corrosion cracking(IGSCC) resistance in a cold-rolled and subsequently annealed Fe-18 Cr-17 Mn-2 Mo-0.85 N high-nitrogen nickel-free austenitic stainless steel were systematically explored.The results show that stacking faults and planar slip bands appearing at the right amount of deformation(lower than 10%) are beneficial cold-rolled microstructures to the GBCD optimization.The proportion of special boundaries gradually increases in the subsequent stages of recrystallization and grain growth,accompanying with the growth of twin-related domain in the experimental steel.In this way,the fraction of low ∑ coincidence site lattice(CSL) boundaries can reach as high as 82.85% for the specimen cold-rolled by 5% and then annealed at 1423 K for 72 h.After GBCD optimization,low ∑ CSL boundaries and the special triple junctions(J2,J3) of high proportion can greatly hinder the nitride precipitation along grain boundaries and enhance the capability for intergranular crack arrest,thus improving the IGSCC resistance of the experimental steel.展开更多
The effect of hot band annealing processes,namely simulating batch annealing and continuous annealing,on microstructure,texture,grain boundary character and r-value of ferritic stainless steel was investigated.The hot...The effect of hot band annealing processes,namely simulating batch annealing and continuous annealing,on microstructure,texture,grain boundary character and r-value of ferritic stainless steel was investigated.The hot band displayed a highly elongated ribbon-like structure and a pronounced deformation texture.The fully recrystallized grains were observed after continuous annealing while the "typical" hot rolled structure was remained after batch annealing.Also,the α-fibre texture formed during hot rolling almost disappeared after continuous annealing and a weak γ-fibre texture was obtained.By contract,the α-fibre texture remained very stable after batch annealing.After cold rolling and recrystallization annealing,the favorable γ-fibre texture was achieved in the continuous annealed steel.Instead of forming the γ-fibre texture,the recrystallization texture was notably shifted toward {223}〈582〉 in the batch annealed steel.Finally,the improvement in drawability with high r-value and low Δr-value were also displayed in sheet through the initial continuous annealing process.展开更多
The effect of hot rolling process on microstructure evolution,mechanical properties and stress corrosion cracking(SCC)resistance of high-strength low-alloy(HSLA)steels was investigated by varying the finish rolling te...The effect of hot rolling process on microstructure evolution,mechanical properties and stress corrosion cracking(SCC)resistance of high-strength low-alloy(HSLA)steels was investigated by varying the finish rolling temperature(FRT)and total rolling reduction.The results revealed granular bainite with large equiaxed grains was obtained by a total rolling reduction of60%with the FRT of 950℃(within recrystallization temperature T_(r)).The larger grain size and much less grain boundaries should account for the relatively lower strength and SCC resistance.A larger rolling reduction of 80% under the same FRT resulted in the formation of massive martensite-austenite(M/A)constituents and resultant low ductility and SCC resistance.In contrast,a good combination of strength,ductility and SCC resistance was obtained via 80% rolling reduction with the FRT of 860℃(within non-recrystallization temperature T_(nr)),probably because of the fine grain size and M/A constituents,as well as a high density of grain boundary network.展开更多
Texture is one of the important factors affecting sheet metal forming performance.The through-thickness texture gradient during the hot-rolling process of twinning induced plasticity(TWIP)steel sheet was investigate...Texture is one of the important factors affecting sheet metal forming performance.The through-thickness texture gradient during the hot-rolling process of twinning induced plasticity(TWIP)steel sheet was investigated using electron backscatter diffraction and X-ray diffraction.With increasing reduction of the TWIP steel,the fraction of∑1 decreased,whereas the fractions of∑3,∑9,and∑27increased.During 53%reduction,a similar trend could be found from its surface to the center.The gradients of intensities of the fibers decreased with increasing hot-rolling reduction.The intensities of face-centered cubic(fcc)shear textures E and Y were higher in the center than that at the surface for both reductions.During 20% reduction,the intensity of fcc plain strain texture S orientation increased from the center to the surface.展开更多
文摘Abst[Objective] This study was to understand the genetic dynamics of three-line hybrid rice, and explore the respective effect of sterile line and restoring line on grain characters of hybrid rica. [Method] Four three-line stedle lines and 27 restoring lines(cultivars) commonly culti- vated in Central China region were regarded as expadmental materials to conduct 4 x27NCII cross design, and the grain characters of three-line hybrid rico were analyzed at genetic and correlation levels. [ Result] Four characters of grain length, grain width, 1 000-grain weight and length- width ratio play the leading role in additive gene effect; these four characters were simultaneously influenced by male parent and female parent, but the effect from male parent was relatively larger. The grain length, grain width, 1 000-grain weight and length-width ratio all have high brood hedtabUities( respectively 99.65%, 98.31%, 95.27% and 98.81% ). Correlation analysis showed that grain length was positively correlated with 1 000-grain weight and length-width ratio at extremely significant level; 1 000-grain weight was positively correlated with grain length and length- width ratio at extremely significant level, and was insignificantly correlated with grain width; grain width was negatively correlated with grain length and length-width ratio at extremely significant level. Path analysis showed that the direct path coefficients of grain length, grain width and 1 0(30- grain weight to length-width ratio were 0.624 6, -0.555 9 and -0.015 8, respectively. [ Conclusion] This study systematically analyzed the effects of stedle line and restoring line on grain characters of hybrid rice, which provided theoretical basis for breeding high quality and yield hy- brid dce.
基金Supported by Special Scientific Research Fund of Agricultural Public Welfare Profession(200903008-09)~~
文摘[Objective] The aim was to research effects of N quantity on grain-filling characters of two-line hybrid rice cultivars with large ears. [Method] Peiza 67 and 88, two-line hybridized rice with large ears, were made use of to study on effects of N fertilizer in different quantities (LN: 90 kg/hm2;MN: 180 kg/hm2;HN: 270 kg/hm2) on plumpness and grain-filling characters. [Result] When N fertilizers were excessive, for inferior grains, grain-filling rate decreased and grain-filling time extended, resulting in plumpness decline after degradation of leaves' function. When N fertilizers were inadequate, maximal and average grain-filling rates decreased and the differences between superior and inferior grains in grain-filling rate increased, leading to decline of grain's weight and plumpness degree. On the other hand, quantity of N fertilizers had little effect on superior grains in plumpness. [Conclusion] The research provided references for reasonable use of N fertilizer and improvement of rice yield and N use.
基金supported by the National Natural Science Foundation of China(Nos.12175231 and 11805131),Anhui Natural Science Foundation of China(No.2108085J05)Projects of International Cooperation and Exchanges NSFC(No.51111140389)the Collaborative Innovation Program of the Hefei Science Center,CAS(Nos.2021HSC-CIP020 and 2022HSCCIP009).
文摘Ferritic/martensitic(F/M)steel is widely used as a structural material in thermal and nuclear power plants.However,it is susceptible to intergranular damage,which is a critical issue,under service conditions.In this study,to improve the resistance to intergranular damage of F/M steel,a thermomechanical process(TMP)was employed to achieve a grain boundary engineering(GBE)microstructure in F/M steel P92.The TMP,including cold-rolling thickness reduction of 6%,9%,and 12%,followed by austenitization at 1323 K for 40 min and tempering at 1053 K for 45 min,was applied to the as-received(AR)P92 steel.The prior austenite grain(PAG)size,prior austenite grain boundary character distribution(GBCD),and connectivity of prior austenite grain boundaries(PAGBs)were investigated.Compared to the AR specimen,the PAG size did not change significantly.The fraction of coincident site lattice boundaries(CSLBs,3≤Σ≤29)and Σ3^(n) boundaries along PAGBs decreased with increasing reduction ratio because the recrystallization fraction increased with increasing reduction ratio.The PAGB connectivity of the 6%deformed specimen slightly deteriorated compared with that of the AR specimen.Moreover,potentiodynamic polarization studies revealed that the intergranular damage resistance of the studied steel could be improved by increasing the fraction of CSLBs along the PAGBs,indicating that the TMP,which involves low deformation,could enhance the intergranular damage resistance.
文摘The study investigates the effects of cold-rolling reduction on the recrystallization-annealed Nb + Ti stabilized ultra-pure ferritic stainless steel with 21% Cr in regards to its microstructure evolution, grain size,recrystallization texture, and grain boundary characteristic distribution and disorientation angle. The research employed the electron back scattered diffraction technique and its results have shown that the average grain size was reduced and the {111 / 〈 112 〉 component was strengthened,which rotated towards {5541 〈225 〉 and {4451 〈384 〉 ,with an increasing cold-rolling reduction. The number fraction of the low-angle grain boundary and the coincidence site lattice (CSL) boundary ,which was mainly made up of ∑3,∑7∑11 and ∑13b, also increased.
基金supported by National Natural Science Foundation of China(Nos.51201027 and 51271054)Fundamental Research Funds for the Central Universities of China(Nos.N110105001,N120405001 and N120505001)
文摘Grain boundary engineering(GBE) is a practice of improving resistance to grain boundary failure of the material through increasing the proportion of low Σ coincidence site lattice(CSL) grain boundaries(special grain boundaries) in the grain boundary character distribution(GBCD). The GBCD in a cold rolled and annealed Fe-18Cr-18Mn-0.63N high-nitrogen austenitic stainless steel was analyzed by electron back scatter difraction(EBSD). The results show that the optimization process of GBE in the conventional austenitic stainless steel cannot be well applied to this high-nitrogen austenitic stainless steel. The percentage of low ΣCSL grain boundaries could increase from 47.3% for the solid solution treated high-nitrogen austenitic stainless steel specimen to 82.0% for the specimen after 5% cold rolling reduction and then annealing at 1423 K for 10 min.These special boundaries of high proportion efectively interrupt the connectivity of conventional high angle grain boundary network and thus achieve the GBCD optimization for the high-nitrogen austenitic stainless steel.
基金the National Natu-ral Science Foundation of China(Nos.52071133,51904090 and 52071284)the Henan Province Science and Technology Tackling Key Problems Project(No.222102230001)+2 种基金the Henan Province Young Talent Lifting Engineering Project(No.2021HYTP018)the Central Plain Scholar Workstation Project(No.224400510025)the Key R&D projects of Henan Province(No.221111230600).
文摘Bismuth(Bi),as an impurity element in copper and copper-based alloys,usually has a strong tendency of grain boundary(GB)segregation,which depends on the GB characters.However,the influence of such a segregation on the properties of ultrahigh-purity copper has been rarely reported and the exact structural arrangements of Bi atoms at different GBs remain largely unclear.In this study,we investigated the influ-ence of trace amounts of Bi(50-300 wt ppm)on the ductility of an ultrahigh-purity copper(99.99999%)in the range of room temperature to 900°C.The tensile results show that the addition of Bi seriously damages the ductility of the ultrahigh-purity copper at temperatures of 450-900°C,which is due to the GB segregation of Bi.On this basis,such a segregation behavior at different types of GBs,including high and low angle GBs(HAGBs/LAGBs),and twin boundaries(TBs),via the scanning electron microscope-electron backscattered diffraction(SEM-EBSD)and aberration-corrected scanning transmission electron microscope(AC-STEM)investigations,combined with the first-principles calculations were systematically studied.The atomistic characterizations demonstrate an anisotropic Bi segregation,where severe enrich-ment of Bi atoms typically occurs at the HAGBs,while the absence of Bi adsorption prevails at LAGBs or TBs.In particular,the segregated Bi at random HAGBs exhibited the directional bilayer adsorption,while the special symmetrical7 HAGB presented a unique Bi-rich cluster superstructure.Our findings pro-vide a comprehensive experimental and computational understanding on the atomic-scale segregation of impurities in metallic materials.
基金Item Sponsored by National Natural Science Foundation of China(50901054,51101114)
文摘High-strength interstitial-free steel sheets have very good deep drawability when processed to have { 111 } recrystallization texture. The microtexture evolution and grain boundary character distribution of interstitial-free steels as a function of moderate levels of cold rolling reductions were investigated by the metallographic microscopy and electron backscatter diffraction technique. The results showed that there was a close relationship between micro- texture and grain boundary character distribution for interstitial-free steel, especially the distribution and features of some specific types of coincident-site lattice boundaries. In addition, a-fiber texture was weakened to vanish while 7- fiber texture strengthened gradually as cold rolling reduction was increased from 20% to 75 % for cold rolled and an- nealed samples. Accordingly, increasing the rolling reduction from 20 % to 750% would lead to a significant increase in the proportion of ∑3 boundaries. Also, it was found that the microtexture of 20% cold rolled sample would induce a high frequency of ∑11 grain boundaries, but the microtexture of 75% cold rolled sample would produce more ∑7 and ∑17 grain boundaries. It was suggested that texture played a significant role in the formation of grain boundary character distribution.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51871048 and 52171108)the Fundamental Research Funds for the Central Universities(Grant Nos.N2002014 and N2202011)。
文摘The grain boundary character distribution(GBCD) optimization and its effect on the intergranular stress corrosion cracking(IGSCC) resistance in a cold-rolled and subsequently annealed Fe-18 Cr-17 Mn-2 Mo-0.85 N high-nitrogen nickel-free austenitic stainless steel were systematically explored.The results show that stacking faults and planar slip bands appearing at the right amount of deformation(lower than 10%) are beneficial cold-rolled microstructures to the GBCD optimization.The proportion of special boundaries gradually increases in the subsequent stages of recrystallization and grain growth,accompanying with the growth of twin-related domain in the experimental steel.In this way,the fraction of low ∑ coincidence site lattice(CSL) boundaries can reach as high as 82.85% for the specimen cold-rolled by 5% and then annealed at 1423 K for 72 h.After GBCD optimization,low ∑ CSL boundaries and the special triple junctions(J2,J3) of high proportion can greatly hinder the nitride precipitation along grain boundaries and enhance the capability for intergranular crack arrest,thus improving the IGSCC resistance of the experimental steel.
基金Item Sponsored by National Natural Science Foundation of China(50734002)
文摘The effect of hot band annealing processes,namely simulating batch annealing and continuous annealing,on microstructure,texture,grain boundary character and r-value of ferritic stainless steel was investigated.The hot band displayed a highly elongated ribbon-like structure and a pronounced deformation texture.The fully recrystallized grains were observed after continuous annealing while the "typical" hot rolled structure was remained after batch annealing.Also,the α-fibre texture formed during hot rolling almost disappeared after continuous annealing and a weak γ-fibre texture was obtained.By contract,the α-fibre texture remained very stable after batch annealing.After cold rolling and recrystallization annealing,the favorable γ-fibre texture was achieved in the continuous annealed steel.Instead of forming the γ-fibre texture,the recrystallization texture was notably shifted toward {223}〈582〉 in the batch annealed steel.Finally,the improvement in drawability with high r-value and low Δr-value were also displayed in sheet through the initial continuous annealing process.
基金financially supported by the National Key Research and Development Program of China(No.2016YFB0300604)the National Nature Science Foundation of China(51801011)+1 种基金the National Materials Corrosion and Protection Data Center,the State Key Laboratory of Metal Material for Marine Equipment and Application(SKLMEA-K201908)the Fundamental Research Funds for the Central Universities(FRF-TP-18-026A1)。
文摘The effect of hot rolling process on microstructure evolution,mechanical properties and stress corrosion cracking(SCC)resistance of high-strength low-alloy(HSLA)steels was investigated by varying the finish rolling temperature(FRT)and total rolling reduction.The results revealed granular bainite with large equiaxed grains was obtained by a total rolling reduction of60%with the FRT of 950℃(within recrystallization temperature T_(r)).The larger grain size and much less grain boundaries should account for the relatively lower strength and SCC resistance.A larger rolling reduction of 80% under the same FRT resulted in the formation of massive martensite-austenite(M/A)constituents and resultant low ductility and SCC resistance.In contrast,a good combination of strength,ductility and SCC resistance was obtained via 80% rolling reduction with the FRT of 860℃(within non-recrystallization temperature T_(nr)),probably because of the fine grain size and M/A constituents,as well as a high density of grain boundary network.
基金Sponsored by National Natural Science Foundation of China(50934011)Shanghai Leading Academic Discipline Projectof China(J51402)
文摘Texture is one of the important factors affecting sheet metal forming performance.The through-thickness texture gradient during the hot-rolling process of twinning induced plasticity(TWIP)steel sheet was investigated using electron backscatter diffraction and X-ray diffraction.With increasing reduction of the TWIP steel,the fraction of∑1 decreased,whereas the fractions of∑3,∑9,and∑27increased.During 53%reduction,a similar trend could be found from its surface to the center.The gradients of intensities of the fibers decreased with increasing hot-rolling reduction.The intensities of face-centered cubic(fcc)shear textures E and Y were higher in the center than that at the surface for both reductions.During 20% reduction,the intensity of fcc plain strain texture S orientation increased from the center to the surface.