Biotite and muscovite inclusions inside mica host minerals from the Sutlej section of the Higher Himalayan Crystalline were studied under an optical microscope. These inclusions formed possibly by local recrystallizat...Biotite and muscovite inclusions inside mica host minerals from the Sutlej section of the Higher Himalayan Crystalline were studied under an optical microscope. These inclusions formed possibly by local recrystallization of mica grains during regional prograde metamorphism, with some affected by top-to-SW shear leading to parallelogram shapes. Recrystallization may have been assisted by solution transfer along the cleavage planes of the host grains. The relative competency of deformed phyllosilicate inclusions with the same or different composition to the host depends on the size and orientation of(001) cleavage planes of the inclusions relative to the host. Shearing of mica inclusions led to their parallelogram geometries within the contained mica inclusions. Some of the sheared inclusions deflect cleavage planes in the host minerals and define flanking microstructures. Trapezoidshaped inclusions are a new finding that deserves more attention for their genesis. These structurally anisotropic inclusions did not originate from sub-grains, secondary infillings or retrogression. These inclusions are also not related to pseudomorphism, isomorphism, folding of the bulk rock etc. Some of the inclusions formed by recrystallization of the host mineral during top-to-SW ductile shear.展开更多
The effect of vanadium carbide(VC) on the grain size of commercial pure aluminum was experimentally investigated by varying the content of VC, the holding time, and casting temperature. The refining efficiencies of ...The effect of vanadium carbide(VC) on the grain size of commercial pure aluminum was experimentally investigated by varying the content of VC, the holding time, and casting temperature. The refining efficiencies of VC and Al5Ti1 B were also compared. The refined samples of commercial pure aluminum were examined using optical microscopy, scanning electron microscopy(SEM) and energy-dispersive spectroscopy(EDS). The results suggest that VC is a good refiner of commercial pure aluminum. The addition of only 0.3wt% VC can decrease the grain size of aluminum to 102 μm, whereas the casting temperature and holding time have little effect on the grain size. The refining efficiency of VC is better than that of Al5Ti1 B. The VC particles in molten aluminum act as nuclei and the grain refinement of aluminum alloys by VC particles is achieved via heterogeneous nucleation.展开更多
TiC_x contained Al-Ti-C is a kind of grain refiner for Al alloys. In this work, the influence of C/Ti stoichiometry, i.e. the x value in TiC_x on grain refinement efficiency was investigated. TiC_x particles have been...TiC_x contained Al-Ti-C is a kind of grain refiner for Al alloys. In this work, the influence of C/Ti stoichiometry, i.e. the x value in TiC_x on grain refinement efficiency was investigated. TiC_x particles have been obtained in five Al-5Ti-m C(m = 0.1, 0.5, 0.8, 1, 1.25) master alloys and the x values were measured to be0.72, 0.75, 0.79, 0.81 and 0.8, respectively. It was found that the refinement performance of the master alloys had a close relationship with the x value of TiC_x . The Al-5Ti-m C alloy with lower-x TiC_x shows better refinement efficiency and anti-fading capability. It is supposed that TiC_x particles with lower x are more preferred to release Ti atoms during nucleating process and have a better Ti-absorbing capability.This contributes to the Ti-rich zone formation at TiC_x /melt interface, thus enhancing the refinement and anti-fading capability.展开更多
Prior austenite grain size dependence of the low temperature impact toughness has been addressed in the bainitic weld metals by in situ observations.Usually,decreasing the grain size is the only approach by which both...Prior austenite grain size dependence of the low temperature impact toughness has been addressed in the bainitic weld metals by in situ observations.Usually,decreasing the grain size is the only approach by which both the strength and the toughness of a steel are increased.However,low carbon bainitic steel with small grain size shows a weakening of the low temperature impact toughness in this study.By direct tracking of the morphological evolution during phase transformation,it is found that large austenite grain size dominates the nucleation of intragranular acicular ferrite,whereas small austenite grain size leads to grain boundary nucleation of bainite.This kinetics information will contribute to meet the increasing low temperature toughness requirement of weld metals for the storage tanks and offshore structures.展开更多
Ultrafine austenite grains with average size of 2μm were successfully obtained by combining thermo-mechanical control process followed by reheating in a vanadium microalloyed steel.The mixed microstructure transforme...Ultrafine austenite grains with average size of 2μm were successfully obtained by combining thermo-mechanical control process followed by reheating in a vanadium microalloyed steel.The mixed microstructure transformed from pancaked austenite formed during controlled rolling has a higher density of high angle boundaries,compared to that transformed from equiaxial austenite.It contributes to increasing nucleation density of austenite grain during the reheating process.A certain volume fraction of undissolved nano-sized(Ti,V)C particles,which are formed during the controlled rolling process and/or the reheating process,effectively inhibit austenite grain growth and consequently refine austenite grain size significantly.The critical grain size of austenite calculated by Gladman model agrees well with the experimental result.展开更多
The phase constitution and solidification pathways of AZ91+xSb(x = 0, 0.1, 0.5, 1, in wt%) alloys were investigated through ways of microstructure observation, thermal analysis technique, and thermodynamic calculat...The phase constitution and solidification pathways of AZ91+xSb(x = 0, 0.1, 0.5, 1, in wt%) alloys were investigated through ways of microstructure observation, thermal analysis technique, and thermodynamic calculation. It was found that the non-equilibrium solidification microstructure of AZ91+xSb(x = 0.1, 0.5, 1) is composed of a-Mg matrix, b-Mg17Al12 phase, and intermetallic compound Mg3Sb2. The grain size of the alloys with different Sb contents was quantitatively determined by electron backscattered diffraction technique which shows no grain refinement in Sb-containing AZ91 alloy. Thermodynamic calculations are in reasonable agreement with thermal analysis results, showing that the Mg3Sb2 phase forms after a-Mg nucleation, thus impossible acts as heterogeneous nucleus for a-Mg dendrite. Besides,the solid fraction at dendrite coherency point(fDCPs) determined from thermal analysis decreases slightly with increasing Sb content, which is consistent with the fact that Sb does not refine the grain size of AZ91 alloy.展开更多
Magnesium(Mg)-3% aluminum(Al)(in weight) alloy was modified by carbon(C) inoculation combining with strontium(Sr).The effects of trace 0.1% iron(Fe) addition and operating sequence of carboninoculation and...Magnesium(Mg)-3% aluminum(Al)(in weight) alloy was modified by carbon(C) inoculation combining with strontium(Sr).The effects of trace 0.1% iron(Fe) addition and operating sequence of carboninoculation and Fe addition on the grain size of Mg-3%Al alloy were studied.The results reveal that the Sr addition could effectively suppress grain-coarsening resulted from the inclusion of Fe in the carboninoculated Mg-Al alloy.Sr addition could contribute to the formation of the duplex-phase particles that Al-C-rich phases coated on Al-Fe or Al-C-Fe-rich phases,regardless of the Fe addition sequence.These duplex-phase particles should be the potent substrates for α-Mg grains.Consequently,Sr addition could effectively subsidize the inhibiting effect of Fe on grain refinement and the active nuclei were maintained.In other words,Sr plays a counter role in the poisoning effect of Fe on the microstructure of Mg-3%Al alloy.展开更多
The formation mechanism of intragranular ferrites with acicular morphology was discussed.The ferrites were characterized by scanning electron microscopy.The results showed that the ferrites had an acicular structure w...The formation mechanism of intragranular ferrites with acicular morphology was discussed.The ferrites were characterized by scanning electron microscopy.The results showed that the ferrites had an acicular structure with radial,symmetrical,and acicular laths,and that the inclusions were the nucleation sites of the intragranular acicular ferrites.Transmission electron microscopy(TEM)was used to characterize the inclusions.The results of TEM with energy dispersive spectroscopy and TEM-selected area electron diffraction indicated that the complex inclusions consisted of Ti-Al complex oxides and MnS.The jagged edges of the complex inclusions can be ascribed to the effects of the crystal structure.The stabilization energy U of the coordination polyhedron growth units varies with the type of connection according to the calculation results.A larger Ucorresponds to more stable growth units,which induces the preferentially oriented growth of inclusions,at which point acicular ferrites are formed.展开更多
基金supported by Department of Science and Technology’s (New Delhi) Grant:SR/FTP/ES-117/2009
文摘Biotite and muscovite inclusions inside mica host minerals from the Sutlej section of the Higher Himalayan Crystalline were studied under an optical microscope. These inclusions formed possibly by local recrystallization of mica grains during regional prograde metamorphism, with some affected by top-to-SW shear leading to parallelogram shapes. Recrystallization may have been assisted by solution transfer along the cleavage planes of the host grains. The relative competency of deformed phyllosilicate inclusions with the same or different composition to the host depends on the size and orientation of(001) cleavage planes of the inclusions relative to the host. Shearing of mica inclusions led to their parallelogram geometries within the contained mica inclusions. Some of the sheared inclusions deflect cleavage planes in the host minerals and define flanking microstructures. Trapezoidshaped inclusions are a new finding that deserves more attention for their genesis. These structurally anisotropic inclusions did not originate from sub-grains, secondary infillings or retrogression. These inclusions are also not related to pseudomorphism, isomorphism, folding of the bulk rock etc. Some of the inclusions formed by recrystallization of the host mineral during top-to-SW ductile shear.
基金financially supported by the Department of Science and Technology of Sichuan Province (Nos. 2015KJT0081-2015G, 2015GZ0052, and 13CGZH0200)
文摘The effect of vanadium carbide(VC) on the grain size of commercial pure aluminum was experimentally investigated by varying the content of VC, the holding time, and casting temperature. The refining efficiencies of VC and Al5Ti1 B were also compared. The refined samples of commercial pure aluminum were examined using optical microscopy, scanning electron microscopy(SEM) and energy-dispersive spectroscopy(EDS). The results suggest that VC is a good refiner of commercial pure aluminum. The addition of only 0.3wt% VC can decrease the grain size of aluminum to 102 μm, whereas the casting temperature and holding time have little effect on the grain size. The refining efficiency of VC is better than that of Al5Ti1 B. The VC particles in molten aluminum act as nuclei and the grain refinement of aluminum alloys by VC particles is achieved via heterogeneous nucleation.
基金supported by a grant from the National Natural Science Fund of China (No. 51501092)the National Basic Research Program of China (No. 2012CB825702)
文摘TiC_x contained Al-Ti-C is a kind of grain refiner for Al alloys. In this work, the influence of C/Ti stoichiometry, i.e. the x value in TiC_x on grain refinement efficiency was investigated. TiC_x particles have been obtained in five Al-5Ti-m C(m = 0.1, 0.5, 0.8, 1, 1.25) master alloys and the x values were measured to be0.72, 0.75, 0.79, 0.81 and 0.8, respectively. It was found that the refinement performance of the master alloys had a close relationship with the x value of TiC_x . The Al-5Ti-m C alloy with lower-x TiC_x shows better refinement efficiency and anti-fading capability. It is supposed that TiC_x particles with lower x are more preferred to release Ti atoms during nucleating process and have a better Ti-absorbing capability.This contributes to the Ti-rich zone formation at TiC_x /melt interface, thus enhancing the refinement and anti-fading capability.
文摘Prior austenite grain size dependence of the low temperature impact toughness has been addressed in the bainitic weld metals by in situ observations.Usually,decreasing the grain size is the only approach by which both the strength and the toughness of a steel are increased.However,low carbon bainitic steel with small grain size shows a weakening of the low temperature impact toughness in this study.By direct tracking of the morphological evolution during phase transformation,it is found that large austenite grain size dominates the nucleation of intragranular acicular ferrite,whereas small austenite grain size leads to grain boundary nucleation of bainite.This kinetics information will contribute to meet the increasing low temperature toughness requirement of weld metals for the storage tanks and offshore structures.
基金Sponsored by National Basic Research Program of China(2010CB630805)
文摘Ultrafine austenite grains with average size of 2μm were successfully obtained by combining thermo-mechanical control process followed by reheating in a vanadium microalloyed steel.The mixed microstructure transformed from pancaked austenite formed during controlled rolling has a higher density of high angle boundaries,compared to that transformed from equiaxial austenite.It contributes to increasing nucleation density of austenite grain during the reheating process.A certain volume fraction of undissolved nano-sized(Ti,V)C particles,which are formed during the controlled rolling process and/or the reheating process,effectively inhibit austenite grain growth and consequently refine austenite grain size significantly.The critical grain size of austenite calculated by Gladman model agrees well with the experimental result.
基金financially supported by the National Basic Research Program of China (No. 2013CB632202)the National Natural Science Foundation of China (Nos. 51105350 and 51301173)
文摘The phase constitution and solidification pathways of AZ91+xSb(x = 0, 0.1, 0.5, 1, in wt%) alloys were investigated through ways of microstructure observation, thermal analysis technique, and thermodynamic calculation. It was found that the non-equilibrium solidification microstructure of AZ91+xSb(x = 0.1, 0.5, 1) is composed of a-Mg matrix, b-Mg17Al12 phase, and intermetallic compound Mg3Sb2. The grain size of the alloys with different Sb contents was quantitatively determined by electron backscattered diffraction technique which shows no grain refinement in Sb-containing AZ91 alloy. Thermodynamic calculations are in reasonable agreement with thermal analysis results, showing that the Mg3Sb2 phase forms after a-Mg nucleation, thus impossible acts as heterogeneous nucleus for a-Mg dendrite. Besides,the solid fraction at dendrite coherency point(fDCPs) determined from thermal analysis decreases slightly with increasing Sb content, which is consistent with the fact that Sb does not refine the grain size of AZ91 alloy.
基金supported by the National Natural Science Foundation of China(No.51574127)the Natural Science Foundation of Guangdong Province(No.2014A030313221)
文摘Magnesium(Mg)-3% aluminum(Al)(in weight) alloy was modified by carbon(C) inoculation combining with strontium(Sr).The effects of trace 0.1% iron(Fe) addition and operating sequence of carboninoculation and Fe addition on the grain size of Mg-3%Al alloy were studied.The results reveal that the Sr addition could effectively suppress grain-coarsening resulted from the inclusion of Fe in the carboninoculated Mg-Al alloy.Sr addition could contribute to the formation of the duplex-phase particles that Al-C-rich phases coated on Al-Fe or Al-C-Fe-rich phases,regardless of the Fe addition sequence.These duplex-phase particles should be the potent substrates for α-Mg grains.Consequently,Sr addition could effectively subsidize the inhibiting effect of Fe on grain refinement and the active nuclei were maintained.In other words,Sr plays a counter role in the poisoning effect of Fe on the microstructure of Mg-3%Al alloy.
基金Item Sponsored by National Natural Science Foundation of China(51574106,51474089)Key Funds of Natural Science Foundation of Hebei Province of China(E2016209396)+1 种基金Natural Science Foundation of Hebei Province of China(E2013209207)Research Science Institute on High-level Personnel of Colleges in Hebei Province of China(GCC20142030)
文摘The formation mechanism of intragranular ferrites with acicular morphology was discussed.The ferrites were characterized by scanning electron microscopy.The results showed that the ferrites had an acicular structure with radial,symmetrical,and acicular laths,and that the inclusions were the nucleation sites of the intragranular acicular ferrites.Transmission electron microscopy(TEM)was used to characterize the inclusions.The results of TEM with energy dispersive spectroscopy and TEM-selected area electron diffraction indicated that the complex inclusions consisted of Ti-Al complex oxides and MnS.The jagged edges of the complex inclusions can be ascribed to the effects of the crystal structure.The stabilization energy U of the coordination polyhedron growth units varies with the type of connection according to the calculation results.A larger Ucorresponds to more stable growth units,which induces the preferentially oriented growth of inclusions,at which point acicular ferrites are formed.