The comprehension of sediment grain size parameters and the corresponding sedimentary environment holds paramount importance in elucidating the engineering geological attributes of the subaqueous seabed.This study del...The comprehension of sediment grain size parameters and the corresponding sedimentary environment holds paramount importance in elucidating the engineering geological attributes of the subaqueous seabed.This study delineated the sedimentary environment zoning in the northern sea area of Qingdao through cluster analysis of grain size parameters derived from 123 surface sediment samples.The study analyzed the correlation between sediment geotechnical indices and grain size parameters across diverse sedimentary environments.A correlation equation was established for samples exhibiting a strong correlation.The study found four distinct sedimentary environments in the study area:coastal,transitional,shallow sea,and residual.Within the same sedimentary environment,the average grain size and sorting coefficient exhibit significant correlations with geotechnical indices such as water content,density,shear strength,plastic limit,liquid limit,and plastic index.However,notable disparities in the correlation between grain size parameters and geotechnical indices emerge across different sedimentary environments.展开更多
Suspended sediment concentration(SSC) is an important parameter in marine sedimentology. With the development of technology, many acoustic and optical devices, such as the Laser In-Situ Scattering and Transmissometry,...Suspended sediment concentration(SSC) is an important parameter in marine sedimentology. With the development of technology, many acoustic and optical devices, such as the Laser In-Situ Scattering and Transmissometry, have been designed to measure in situ SSC and grain size distribution. But due to fund or other restrictions, many experiments were only conducted in laboratory, using an indoor laser grain-size analyzer and gravimetric method to measure grain size distribution and concentration, respectively. In this study the laboratory experiment is simplified by omitting the tiring step of gravimetric method. The connections between SSC and other parameters(obscuration, D50 and sorting index) were investigated based on 124 surface sediment samples collected from different offshore areas. A new method is developed for determining SSC in laboratory using a laser grain-size analyzer.展开更多
A Hillert-type three-dimensional grain growth rate model was derived throughthe grain topology-size correlation model, combined with a topology-dependent grain growth rateequation in three dimensions. It shows clearly...A Hillert-type three-dimensional grain growth rate model was derived throughthe grain topology-size correlation model, combined with a topology-dependent grain growth rateequation in three dimensions. It shows clearly that the Hillert-type 3D grain growth rate model mayalso be described with topology considerations of microstructure. The size parameter bearing in themodel is further discussed both according to the derived model and in another approach with the aidof quantitative relationship between the grain size and the integral mean curvature over grainsurface. Both approaches successfully demonstrate that, if the concerned grains can be wellapproximated by a space-filling convex polyhedra in shape, the grain size parameter bearing in theHillert-type 3D grain growth model should be a parameter proportional to the mean grain tangentradius.展开更多
The objective of this study is to predict grain size and heat transfer coefficient at the metal-die interface during high pressure die casting process and solidification of the magnesium alloy AM60. Multiple runs of t...The objective of this study is to predict grain size and heat transfer coefficient at the metal-die interface during high pressure die casting process and solidification of the magnesium alloy AM60. Multiple runs of the commercial casting simulation package, ProCASTTM, were used to model the mold filling and solidification events employing a range of interfacial heat transfer coefficient values. The simulation results were used to estimate the centerline cooling curve at various locations through the casting. The centerline cooling curves, together with the die temperature and the thermodynamic properties of the alloy, were then used as inputs to compute the solution to the Stefan problem of a moving phase boundary, thereby providing the through-thickness cooling curves at each chosen location of the casting, Finally, the local cooling rate was used to calculate the resulting grain size via previously established relationships. The effects of die temperature, filling time and heat transfer coefficient on the grain structure in skin region and core region were quantitatively characterized. It was observed that the grain size of skin region strongly depends on above three factors whereas the grain size of core region shows dependence on the interracial heat transfer coefficient and thickness of the samples. The grain size distribution from surface to center was estimated from the relationship between grain size and the predicted cooling rate. The prediction of grain size matches well with experimental results. A comparison of the predicted and experimentally determined grain size profiles enables the determination of the apparent interracial heat transfer coefficient for different locations.展开更多
The delta evolution and erosion process of the abandoned Yellow River Delta (AYRD) have been extensively studied. However, the variation of sediment at a large littoral scale along the north coast of Jiangsu is less...The delta evolution and erosion process of the abandoned Yellow River Delta (AYRD) have been extensively studied. However, the variation of sediment at a large littoral scale along the north coast of Jiangsu is less understood. In this study, the data of surface sediment samples obtained in the littoral area of the Yellow River Delta in 2006 and 2012 is used to study the sediment variability and sediment transport trends by using the geostatistics analysis tool and the grain size trend analysis model, In order to ensure the applicability of the model, the geostatistics method is used to determine the characteristic distance (De) with the average range value (Ao) of grain size parameter. Filtering method (removing data that not at a sampling station) is used to improve accuracy of data selection. The results show that sedimentary spatial correlation in Lianyun Port area and southern part of the abandoned Yellow River Delta (AS) is better than that in the northern part of the abandoned Yellow River Delta (AN). Sediment in the area is found to be anisotropy at the northeast-southeast direc- tion. The grain size trend analysis reveals that the sediment trend is towards bayhead and southerly in the Haizhou Bay, southeasterly along the shoreline in the south Lianyun Port, northwesterly in AN and easterly-southeasterly in AS respectively. The investigation of possible relationships between Do, Ao, sediment transport and delta evolution shows a close link between Do and Ao of one sediment combination. It is also found that sediment transport trends could reasonably represent the delta evolution to a certain degree.展开更多
基金funded by the National Key R&D Program Project(No.2022YFC3103604).
文摘The comprehension of sediment grain size parameters and the corresponding sedimentary environment holds paramount importance in elucidating the engineering geological attributes of the subaqueous seabed.This study delineated the sedimentary environment zoning in the northern sea area of Qingdao through cluster analysis of grain size parameters derived from 123 surface sediment samples.The study analyzed the correlation between sediment geotechnical indices and grain size parameters across diverse sedimentary environments.A correlation equation was established for samples exhibiting a strong correlation.The study found four distinct sedimentary environments in the study area:coastal,transitional,shallow sea,and residual.Within the same sedimentary environment,the average grain size and sorting coefficient exhibit significant correlations with geotechnical indices such as water content,density,shear strength,plastic limit,liquid limit,and plastic index.However,notable disparities in the correlation between grain size parameters and geotechnical indices emerge across different sedimentary environments.
基金sponsored by Marine Commonweal Scientific Research Foundation (201005009)
文摘Suspended sediment concentration(SSC) is an important parameter in marine sedimentology. With the development of technology, many acoustic and optical devices, such as the Laser In-Situ Scattering and Transmissometry, have been designed to measure in situ SSC and grain size distribution. But due to fund or other restrictions, many experiments were only conducted in laboratory, using an indoor laser grain-size analyzer and gravimetric method to measure grain size distribution and concentration, respectively. In this study the laboratory experiment is simplified by omitting the tiring step of gravimetric method. The connections between SSC and other parameters(obscuration, D50 and sorting index) were investigated based on 124 surface sediment samples collected from different offshore areas. A new method is developed for determining SSC in laboratory using a laser grain-size analyzer.
基金This project was financially supported by the National Natural Science Foundation of China (No.50171008 and No.50271009).
文摘A Hillert-type three-dimensional grain growth rate model was derived throughthe grain topology-size correlation model, combined with a topology-dependent grain growth rateequation in three dimensions. It shows clearly that the Hillert-type 3D grain growth rate model mayalso be described with topology considerations of microstructure. The size parameter bearing in themodel is further discussed both according to the derived model and in another approach with the aidof quantitative relationship between the grain size and the integral mean curvature over grainsurface. Both approaches successfully demonstrate that, if the concerned grains can be wellapproximated by a space-filling convex polyhedra in shape, the grain size parameter bearing in theHillert-type 3D grain growth model should be a parameter proportional to the mean grain tangentradius.
基金jointly supported by Canadian Network for Research and Innovation in Machining TechnologyNatural Sciences and Engineering Research Council of Canada-Automotive Partnership Canada programNRCan’s Office of Energy R&D through the Program on Energy R&D
文摘The objective of this study is to predict grain size and heat transfer coefficient at the metal-die interface during high pressure die casting process and solidification of the magnesium alloy AM60. Multiple runs of the commercial casting simulation package, ProCASTTM, were used to model the mold filling and solidification events employing a range of interfacial heat transfer coefficient values. The simulation results were used to estimate the centerline cooling curve at various locations through the casting. The centerline cooling curves, together with the die temperature and the thermodynamic properties of the alloy, were then used as inputs to compute the solution to the Stefan problem of a moving phase boundary, thereby providing the through-thickness cooling curves at each chosen location of the casting, Finally, the local cooling rate was used to calculate the resulting grain size via previously established relationships. The effects of die temperature, filling time and heat transfer coefficient on the grain structure in skin region and core region were quantitatively characterized. It was observed that the grain size of skin region strongly depends on above three factors whereas the grain size of core region shows dependence on the interracial heat transfer coefficient and thickness of the samples. The grain size distribution from surface to center was estimated from the relationship between grain size and the predicted cooling rate. The prediction of grain size matches well with experimental results. A comparison of the predicted and experimentally determined grain size profiles enables the determination of the apparent interracial heat transfer coefficient for different locations.
基金Special Funding of Global Change Research Major Scientific Research Plan Project,No.2010CB951202State Key Laboratory of Estuarine and Coastal Research,ECNU,No.SKLEC-2012KYYW06
文摘The delta evolution and erosion process of the abandoned Yellow River Delta (AYRD) have been extensively studied. However, the variation of sediment at a large littoral scale along the north coast of Jiangsu is less understood. In this study, the data of surface sediment samples obtained in the littoral area of the Yellow River Delta in 2006 and 2012 is used to study the sediment variability and sediment transport trends by using the geostatistics analysis tool and the grain size trend analysis model, In order to ensure the applicability of the model, the geostatistics method is used to determine the characteristic distance (De) with the average range value (Ao) of grain size parameter. Filtering method (removing data that not at a sampling station) is used to improve accuracy of data selection. The results show that sedimentary spatial correlation in Lianyun Port area and southern part of the abandoned Yellow River Delta (AS) is better than that in the northern part of the abandoned Yellow River Delta (AN). Sediment in the area is found to be anisotropy at the northeast-southeast direc- tion. The grain size trend analysis reveals that the sediment trend is towards bayhead and southerly in the Haizhou Bay, southeasterly along the shoreline in the south Lianyun Port, northwesterly in AN and easterly-southeasterly in AS respectively. The investigation of possible relationships between Do, Ao, sediment transport and delta evolution shows a close link between Do and Ao of one sediment combination. It is also found that sediment transport trends could reasonably represent the delta evolution to a certain degree.