In this paper,we focus on inferring graph Laplacian matrix from the spatiotemporal signal which is defined as“time-vertex signal”.To realize this,we first represent the signals on a joint graph which is the Cartesia...In this paper,we focus on inferring graph Laplacian matrix from the spatiotemporal signal which is defined as“time-vertex signal”.To realize this,we first represent the signals on a joint graph which is the Cartesian product graph of the time-and vertex-graphs.By assuming the signals follow a Gaussian prior distribution on the joint graph,a meaningful representation that promotes the smoothness property of the joint graph signal is derived.Furthermore,by decoupling the joint graph,the graph learning framework is formulated as a joint optimization problem which includes signal denoising,timeand vertex-graphs learning together.Specifically,two algorithms are proposed to solve the optimization problem,where the discrete second-order difference operator with reversed sign(DSODO)in the time domain is used as the time-graph Laplacian operator to recover the signal and infer a vertex-graph in the first algorithm,and the time-graph,as well as the vertex-graph,is estimated by the other algorithm.Experiments on both synthetic and real-world datasets demonstrate that the proposed algorithms can effectively infer meaningful time-and vertex-graphs from noisy and incomplete data.展开更多
This paper reviews some main results and progress in distributed multi-agent coordination from a graph Laplacian perspective. Distributed multi-agent coordination has been a very active subject studied extensively by ...This paper reviews some main results and progress in distributed multi-agent coordination from a graph Laplacian perspective. Distributed multi-agent coordination has been a very active subject studied extensively by the systems and control community in last decades, including distributed consensus, formation control, sensor localization, distributed optimization, etc. The aim of this paper is to provide both a comprehensive survey of existing literature in distributed multi-agent coordination and a new perspective in terms of graph Laplacian to categorize the fundamental mechanisms for distributed coordination. For different types of graph Laplacians, we summarize their inherent coordination features and specific research issues. This paper also highlights several promising research directions along with some open problems that are deemed important for future study.展开更多
In this paper, we develop a cascadic multigrid algorithm for fast computation of the Fiedler vector of a graph Laplacian, namely, the eigenvector corresponding to the second smallest eigenvalne. This vector has been f...In this paper, we develop a cascadic multigrid algorithm for fast computation of the Fiedler vector of a graph Laplacian, namely, the eigenvector corresponding to the second smallest eigenvalne. This vector has been found to have applications in fields such as graph partitioning and graph drawing. The algorithm is a purely algebraic approach based on a heavy edge coarsening scheme and pointwise smoothing for refinement. To gain theoretical insight, we also consider the related cascadic multigrid method in the geometric setting for elliptic eigenvalue problems and show its uniform convergence under certain assumptions. Numerical tests are presented for computing the Fiedler vector of several practical graphs, and numerical results show the efficiency and optimality of our proposed cascadic multigrid algorithm.展开更多
Active learning in semi-supervised classification involves introducing additional labels for unlabelled data to improve the accuracy of the underlying classifier.A challenge is to identify which points to label to bes...Active learning in semi-supervised classification involves introducing additional labels for unlabelled data to improve the accuracy of the underlying classifier.A challenge is to identify which points to label to best improve performance while limiting the number of new labels."Model Change"active learning quantifies the resulting change incurred in the classifier by introducing the additional label(s).We pair this idea with graph-based semi-supervised learning(SSL)methods,that use the spectrum of the graph Laplacian matrix,which can be truncated to avoid prohibitively large computational and storage costs.We consider a family of convex loss functions for which the acquisition function can be efficiently approximated using the Laplace approximation of the posterior distribution.We show a variety of multiclass examples that illustrate improved performance over prior state-of-art.展开更多
Let Bn^k be the class of bipartite graphs with n vertices and k cut edges. The extremal graphs with the first and the second largest Laplacian spectral radius among all graphs in Bn^K are presented. The bounds of the ...Let Bn^k be the class of bipartite graphs with n vertices and k cut edges. The extremal graphs with the first and the second largest Laplacian spectral radius among all graphs in Bn^K are presented. The bounds of the Laplacian spectral radius of these extremal graphs are also obtained.展开更多
Let G be a simple graph and let Q(G) be the signless Laplacian matrix of G. In this paper we obtain some results on the spectral perturbation of the matrix Q(G) under an edge addition or an edge contraction.
Let G be a simple graph with n vertices and m edges. In this paper, we present some new upper bounds for the adjacency and the signless Laplacian spectral radius of graphs in which every pair of adjacent vertices has ...Let G be a simple graph with n vertices and m edges. In this paper, we present some new upper bounds for the adjacency and the signless Laplacian spectral radius of graphs in which every pair of adjacent vertices has at least one common adjacent vertex. Our results improve some known upper bounds. The main tool we use here is the Lagrange identity.展开更多
For a simple graph G,let matrix Q(G)=D(G) + A(G) be it's signless Laplacian matrix and Q G (λ)=det(λI Q) it's signless Laplacian characteristic polynomial,where D(G) denotes the diagonal matrix of vertex deg...For a simple graph G,let matrix Q(G)=D(G) + A(G) be it's signless Laplacian matrix and Q G (λ)=det(λI Q) it's signless Laplacian characteristic polynomial,where D(G) denotes the diagonal matrix of vertex degrees of G,A(G) denotes its adjacency matrix of G.If all eigenvalues of Q G (λ) are integral,then the graph G is called Q-integral.In this paper,we obtain that the signless Laplacian characteristic polynomials of the complete multi-partite graphs G=K(n_1,n_2,···,n_t).We prove that the complete t-partite graphs K(n,n,···,n)t are Q-integral and give a necessary and sufficient condition for the complete multipartite graphs K(m,···,m)s(n,···,n)t to be Q-integral.We also obtain that the signless Laplacian characteristic polynomials of the complete multipartite graphs K(m,···,m,)s1(n,···,n,)s2(l,···,l)s3.展开更多
In this paper, an equivalent condition of a graph G with t (2≤ t ≤n) distinct Laplacian eigenvalues is established. By applying this condition to t = 3, if G is regular (necessarily be strongly regular), an equi...In this paper, an equivalent condition of a graph G with t (2≤ t ≤n) distinct Laplacian eigenvalues is established. By applying this condition to t = 3, if G is regular (necessarily be strongly regular), an equivalent condition of G being Laplacian integral is given. Also for the case of t = 3, if G is non-regular, it is found that G has diameter 2 and girth at most 5 if G is not a tree. Graph G is characterized in the case of its being triangle-free, bipartite and pentagon-free. In both cases, G is Laplacian integral.展开更多
Lateral interaction in the biological brain is a key mechanism that underlies higher cognitive functions.Linear self‐organising map(SOM)introduces lateral interaction in a general form in which signals of any modalit...Lateral interaction in the biological brain is a key mechanism that underlies higher cognitive functions.Linear self‐organising map(SOM)introduces lateral interaction in a general form in which signals of any modality can be used.Some approaches directly incorporate SOM learning rules into neural networks,but incur complex operations and poor extendibility.The efficient way to implement lateral interaction in deep neural networks is not well established.The use of Laplacian Matrix‐based Smoothing(LS)regularisation is proposed for implementing lateral interaction in a concise form.The authors’derivation and experiments show that lateral interaction implemented by SOM model is a special case of LS‐regulated k‐means,and they both show the topology‐preserving capability.The authors also verify that LS‐regularisation can be used in conjunction with the end‐to‐end training paradigm in deep auto‐encoders.Additionally,the benefits of LS‐regularisation in relaxing the requirement of parameter initialisation in various models and improving the classification performance of prototype classifiers are evaluated.Furthermore,the topologically ordered structure introduced by LS‐regularisation in feature extractor can improve the generalisation performance on classification tasks.Overall,LS‐regularisation is an effective and efficient way to implement lateral interaction and can be easily extended to different models.展开更多
Let LE(G) denote the Laplacian energy of a graph G. In this paper the xyz-transformations G^(xyz) of an r-regular graph G for x,y,z∈{0,1, +,-} are considered. The explicit formulas of LE(G^(xyz)) are presented in ter...Let LE(G) denote the Laplacian energy of a graph G. In this paper the xyz-transformations G^(xyz) of an r-regular graph G for x,y,z∈{0,1, +,-} are considered. The explicit formulas of LE(G^(xyz)) are presented in terms of r,the number of vertices of G for any positive integer r and x,y,z∈{ 0,1},and also for r = 2 and all x,y,z∈{0,1,+,-}. Some Laplacian equienergetic pairs of G^(xyz) for r = 2 and x,y,z∈{0,1, +,-} are obtained. This also provides several ways to construct infinitely many pairs of Laplacian equienergetic graphs.展开更多
A k-cyclic graph is a connected graph of order n and size n + k-1. In this paper, we determine the maximal signless Laplacian spectral radius and the corresponding extremal graph among all C_4-free k-cyclic graphs of ...A k-cyclic graph is a connected graph of order n and size n + k-1. In this paper, we determine the maximal signless Laplacian spectral radius and the corresponding extremal graph among all C_4-free k-cyclic graphs of order n. Furthermore, we determine the first three unicycles and bicyclic, C_4-free graphs whose spectral radius of the signless Laplacian is maximal. Similar results are obtained for the(combinatorial)展开更多
This paper mainly researches on the signless laplacian spectral radius of bipartite graphs Dr(m1,m2;n1,n2). We consider how the signless laplacian spectral radius of Dr(m1,m2;n1,n2)?changes under some special cases. A...This paper mainly researches on the signless laplacian spectral radius of bipartite graphs Dr(m1,m2;n1,n2). We consider how the signless laplacian spectral radius of Dr(m1,m2;n1,n2)?changes under some special cases. As application, we give two upper bounds on the signless laplacian spectral radius of Dr(m1,m2;n1,n2), and determine the graphs that obtain the upper bounds.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.61966007)Key Laboratory of Cognitive Radio and Information Processing,Ministry of Education(No.CRKL180106,No.CRKL180201)+1 种基金Guangxi Key Laboratory of Wireless Wideband Communication and Signal Processing,Guilin University of Electronic Technology(No.GXKL06180107,No.GXKL06190117)Guangxi Colleges and Universities Key Laboratory of Satellite Navigation and Position Sensing.
文摘In this paper,we focus on inferring graph Laplacian matrix from the spatiotemporal signal which is defined as“time-vertex signal”.To realize this,we first represent the signals on a joint graph which is the Cartesian product graph of the time-and vertex-graphs.By assuming the signals follow a Gaussian prior distribution on the joint graph,a meaningful representation that promotes the smoothness property of the joint graph signal is derived.Furthermore,by decoupling the joint graph,the graph learning framework is formulated as a joint optimization problem which includes signal denoising,timeand vertex-graphs learning together.Specifically,two algorithms are proposed to solve the optimization problem,where the discrete second-order difference operator with reversed sign(DSODO)in the time domain is used as the time-graph Laplacian operator to recover the signal and infer a vertex-graph in the first algorithm,and the time-graph,as well as the vertex-graph,is estimated by the other algorithm.Experiments on both synthetic and real-world datasets demonstrate that the proposed algorithms can effectively infer meaningful time-and vertex-graphs from noisy and incomplete data.
基金Project supported by the National Natural Science Foundation of China (No. 61273113)
文摘This paper reviews some main results and progress in distributed multi-agent coordination from a graph Laplacian perspective. Distributed multi-agent coordination has been a very active subject studied extensively by the systems and control community in last decades, including distributed consensus, formation control, sensor localization, distributed optimization, etc. The aim of this paper is to provide both a comprehensive survey of existing literature in distributed multi-agent coordination and a new perspective in terms of graph Laplacian to categorize the fundamental mechanisms for distributed coordination. For different types of graph Laplacians, we summarize their inherent coordination features and specific research issues. This paper also highlights several promising research directions along with some open problems that are deemed important for future study.
文摘In this paper, we develop a cascadic multigrid algorithm for fast computation of the Fiedler vector of a graph Laplacian, namely, the eigenvector corresponding to the second smallest eigenvalne. This vector has been found to have applications in fields such as graph partitioning and graph drawing. The algorithm is a purely algebraic approach based on a heavy edge coarsening scheme and pointwise smoothing for refinement. To gain theoretical insight, we also consider the related cascadic multigrid method in the geometric setting for elliptic eigenvalue problems and show its uniform convergence under certain assumptions. Numerical tests are presented for computing the Fiedler vector of several practical graphs, and numerical results show the efficiency and optimality of our proposed cascadic multigrid algorithm.
基金supported by the DOD National Defense Science and Engineering Graduate(NDSEG)Research Fellowshipsupported by the NGA under Contract No.HM04762110003.
文摘Active learning in semi-supervised classification involves introducing additional labels for unlabelled data to improve the accuracy of the underlying classifier.A challenge is to identify which points to label to best improve performance while limiting the number of new labels."Model Change"active learning quantifies the resulting change incurred in the classifier by introducing the additional label(s).We pair this idea with graph-based semi-supervised learning(SSL)methods,that use the spectrum of the graph Laplacian matrix,which can be truncated to avoid prohibitively large computational and storage costs.We consider a family of convex loss functions for which the acquisition function can be efficiently approximated using the Laplace approximation of the posterior distribution.We show a variety of multiclass examples that illustrate improved performance over prior state-of-art.
基金Fundamental Research Funds for the Central Universities of China(No. 11D10902,No. 11D10913)
文摘Let Bn^k be the class of bipartite graphs with n vertices and k cut edges. The extremal graphs with the first and the second largest Laplacian spectral radius among all graphs in Bn^K are presented. The bounds of the Laplacian spectral radius of these extremal graphs are also obtained.
基金Supported by the National Natural Science Foundation of China(11071002)the Anhui Natural ScienceFoundation of China(11040606M14)NSF of Department of Education of Anhui Province(KJ2011A195)
文摘Let G be a simple graph and let Q(G) be the signless Laplacian matrix of G. In this paper we obtain some results on the spectral perturbation of the matrix Q(G) under an edge addition or an edge contraction.
基金Supported by the National Natural Science Foundation of China(11471077)the Open Research Fund of Key Laboratory of Spatial Data Mining and Information Sharing of MOE(2018LSDMIS09)Foundation of Key Laboratory of Intelligent Metro of Universities in Fujian Province(53001703)
文摘Let G be a simple graph with n vertices and m edges. In this paper, we present some new upper bounds for the adjacency and the signless Laplacian spectral radius of graphs in which every pair of adjacent vertices has at least one common adjacent vertex. Our results improve some known upper bounds. The main tool we use here is the Lagrange identity.
基金Supported by the NSFC(60863006)Supported by the NCET(-06-0912)Supported by the Science-Technology Foundation for Middle-aged and Yong Scientist of Qinghai University(2011-QGY-8)
文摘For a simple graph G,let matrix Q(G)=D(G) + A(G) be it's signless Laplacian matrix and Q G (λ)=det(λI Q) it's signless Laplacian characteristic polynomial,where D(G) denotes the diagonal matrix of vertex degrees of G,A(G) denotes its adjacency matrix of G.If all eigenvalues of Q G (λ) are integral,then the graph G is called Q-integral.In this paper,we obtain that the signless Laplacian characteristic polynomials of the complete multi-partite graphs G=K(n_1,n_2,···,n_t).We prove that the complete t-partite graphs K(n,n,···,n)t are Q-integral and give a necessary and sufficient condition for the complete multipartite graphs K(m,···,m)s(n,···,n)t to be Q-integral.We also obtain that the signless Laplacian characteristic polynomials of the complete multipartite graphs K(m,···,m,)s1(n,···,n,)s2(l,···,l)s3.
基金Supported by the Anhui Provincial Natural Science Foundation(050460102)National Natural Science Foundation of China(10601001,10571163)+3 种基金NSF of Department of Education of Anhui Province(2004kj027,2005kj005zd)Foundation of Anhui Institute of Architecture and Industry(200510307)Foundation of Mathematics Innovation Team of Anhui UniversityFoundation of Talents Group Construction of Anhui University
文摘In this paper, an equivalent condition of a graph G with t (2≤ t ≤n) distinct Laplacian eigenvalues is established. By applying this condition to t = 3, if G is regular (necessarily be strongly regular), an equivalent condition of G being Laplacian integral is given. Also for the case of t = 3, if G is non-regular, it is found that G has diameter 2 and girth at most 5 if G is not a tree. Graph G is characterized in the case of its being triangle-free, bipartite and pentagon-free. In both cases, G is Laplacian integral.
基金supported by the National Natural Science Foundation of China grants 61836014 to CL,and the STI2030‐Major Projects(2022ZD0205100)the Strategic Priority Research Program of Chinese Academy of Science,Grant No.XDB32010300+1 种基金Shanghai Municipal Science and Technology Major Project(Grant No.2018SHZDZX05)the Innovation Academy of Artificial Intelligence,Chinese Academy of Sciences to ZW.
文摘Lateral interaction in the biological brain is a key mechanism that underlies higher cognitive functions.Linear self‐organising map(SOM)introduces lateral interaction in a general form in which signals of any modality can be used.Some approaches directly incorporate SOM learning rules into neural networks,but incur complex operations and poor extendibility.The efficient way to implement lateral interaction in deep neural networks is not well established.The use of Laplacian Matrix‐based Smoothing(LS)regularisation is proposed for implementing lateral interaction in a concise form.The authors’derivation and experiments show that lateral interaction implemented by SOM model is a special case of LS‐regulated k‐means,and they both show the topology‐preserving capability.The authors also verify that LS‐regularisation can be used in conjunction with the end‐to‐end training paradigm in deep auto‐encoders.Additionally,the benefits of LS‐regularisation in relaxing the requirement of parameter initialisation in various models and improving the classification performance of prototype classifiers are evaluated.Furthermore,the topologically ordered structure introduced by LS‐regularisation in feature extractor can improve the generalisation performance on classification tasks.Overall,LS‐regularisation is an effective and efficient way to implement lateral interaction and can be easily extended to different models.
基金National Natural Science Foundation of China(No.11371086)the Fund of Science and Technology Commission of Shanghai Municipality,China(No.13ZR1400100)
文摘Let LE(G) denote the Laplacian energy of a graph G. In this paper the xyz-transformations G^(xyz) of an r-regular graph G for x,y,z∈{0,1, +,-} are considered. The explicit formulas of LE(G^(xyz)) are presented in terms of r,the number of vertices of G for any positive integer r and x,y,z∈{ 0,1},and also for r = 2 and all x,y,z∈{0,1,+,-}. Some Laplacian equienergetic pairs of G^(xyz) for r = 2 and x,y,z∈{0,1, +,-} are obtained. This also provides several ways to construct infinitely many pairs of Laplacian equienergetic graphs.
基金Supported by the National Natural Science Foundation of China(11171273) Supported by the Seed Foundation of Innovation and Creation for Graduate Students in Northwestern Polytechnical Uni- versity(Z2016170)
文摘A k-cyclic graph is a connected graph of order n and size n + k-1. In this paper, we determine the maximal signless Laplacian spectral radius and the corresponding extremal graph among all C_4-free k-cyclic graphs of order n. Furthermore, we determine the first three unicycles and bicyclic, C_4-free graphs whose spectral radius of the signless Laplacian is maximal. Similar results are obtained for the(combinatorial)
文摘This paper mainly researches on the signless laplacian spectral radius of bipartite graphs Dr(m1,m2;n1,n2). We consider how the signless laplacian spectral radius of Dr(m1,m2;n1,n2)?changes under some special cases. As application, we give two upper bounds on the signless laplacian spectral radius of Dr(m1,m2;n1,n2), and determine the graphs that obtain the upper bounds.