With the diversified development of big data,detection and precision guidance technologies,electromagnetic(EM)functional materials and devices serving multiple spectrums have become a hot topic.Exploring the multispec...With the diversified development of big data,detection and precision guidance technologies,electromagnetic(EM)functional materials and devices serving multiple spectrums have become a hot topic.Exploring the multispectral response of materials is a challenging and meaningful scientific question.In this study,MXene/TiO_(2)hybrids with tunable conduction loss and polarization relaxation are fabricated by in situ atomic reconstruction engineering.More importantly,MXene/TiO_(2)hybrids exhibit adjustable spectral responses in the GHz,infrared and visible spectrums,and several EM devices are constructed based on this.An antenna array provides excellent EM energy harvesting in multiple microwave bands,with|S11|up to−63.2 dB,and can be tuned by the degree of bending.An ultra-wideband bandpass filter realizes a passband of about 5.4 GHz and effectively suppresses the transmission of EM signals in the stopband.An infrared stealth device has an emissivity of less than 0.2 in the infrared spectrum at wavelengths of 6-14μm.This work can provide new inspiration for the design and development of multifunctional,multi-spectrum EM devices.展开更多
Novel graphene-like boron nitride(BN)/Bi_(3)O_(4)Br photocatalysts have been controllably synthesized through a facile solvothermal method for the first time. Layer contact stacking between graphene-like BN and ultrat...Novel graphene-like boron nitride(BN)/Bi_(3)O_(4)Br photocatalysts have been controllably synthesized through a facile solvothermal method for the first time. Layer contact stacking between graphene-like BN and ultrathin Bi_(3)O_(4)Br was achieved with strong interaction. Dehalogenation is designed to harvest more visible light, and the ultrathin structure of Bi_(3)O_(4)Br is designed to accelerate charge transfer from inside to the surface. After graphene-like BN was engineered, photocatalytic performance greatly improved under visible light irradiation. Graphene-like BN can act as a surface electron-withdrawing center and adsorption center, facilitating molecular oxygen activation. O_(2)^(·-)was determined to be the main active species during the degradation process through analyses of electron spin resonance and XPS valence band spectra.展开更多
Electrophoretic deposition in conjunction with electrochemical reduction was used to make flexible free-standing graphene-like films. Firstly, graphene oxide (GO) film was deposited on graphite substrate by electrop...Electrophoretic deposition in conjunction with electrochemical reduction was used to make flexible free-standing graphene-like films. Firstly, graphene oxide (GO) film was deposited on graphite substrate by electrophoretic deposition method, and then reduced by subsequent electrochemical reduction of GO to obtain reduced GO (ERGO) film with high electrochemical performance. The morphology, structure and electrochemical performance of the prepared graphene-like film were confirmed by SEM, XRD and FT-IR. These unique materials were found to provide high specific capacitance and good cycling stability. The high specific capacitance of 254 F/g was obtained from cyclic voltammetry measurement at a scan rate of 10 mV/s. When the current density increased to 83.3 A/g, the specific capacitance values still remained 132 F/g. Meanwhile, the high powder density of 39.1 kW/kg was measured at energy density of 11.8 W-h/kg in 1 mol/L H2SO4 solution. Furthermore, at a constant scan rate of 50 mV/s, 97.02% of its capacitance was retained for 1000 cycles. These promising results were attributed to the unique assembly structure of graphene film and low contact resistance, which indicated their potential application to electrochemical capacitors.展开更多
A series of N-doped carbon materials(NCs)were synthesized by using biomass citric acid and dicyandiamide as renewable raw materials via a facile onestep pyrolysis method. The characterization of microstructural featur...A series of N-doped carbon materials(NCs)were synthesized by using biomass citric acid and dicyandiamide as renewable raw materials via a facile onestep pyrolysis method. The characterization of microstructural features shows that the NCs samples are composed of few-layered graphene-like nanoflakes with controlled in situ N doping, which is attributed to the confined pyrolysis of citric acid within the interlayers of the dicyandiamide-derived g-C_3N_4 with high nitrogen contents. Evidently, the pore volumes of the NCs increased with the increasing content of dicyandiamide in the precursor. Among these samples, the NCs nanoflakes prepared with the citric acid/dicyandiamide mass ratio of 1:6, NC-6,show the highest N content of ~6.2 at%, in which pyridinic and graphitic N groups are predominant. Compared to the commercial Pt/C catalyst, the as-prepared NC-6 exhibits a small negative shift of ~66 mV at the half-wave potential, demonstrating excellent electrocatalytic activity in the oxygen reduction reaction. Moreover, NC-6 also shows better long-term stability and resistance to methanol crossover compared to Pt/C. The efficient and stable performance are attributed to the graphene-like microstructure and high content of pyridinic and graphitic doped nitrogen in the sample, which creates more active sites as well as facilitating charge transfer due to the close four-electron reaction pathway. The superior electrocatalytic activity coupled with the facile synthetic method presents a new pathway to cost-effective electrocatalysts for practical fuel cells or metal–air batteries.展开更多
High performance of lithium-sulfur batteries have been dragged down by their shuttling behavior which is complicated multiphase transition-based 16-electron redox reactions of the S8/Li2 S.In this article,the triple-p...High performance of lithium-sulfur batteries have been dragged down by their shuttling behavior which is complicated multiphase transition-based 16-electron redox reactions of the S8/Li2 S.In this article,the triple-phase interfaces of graphene-like carbon clusters on antimony trisulfide(C-Sb_(2)S_(3))nanowires are tailored to design a multifunctional polysulfide host which can inhibit migration of polysulfides and accelerate conversion kinetics of redox electrochemical reactions.Benefiting from the triple-interface design of polysulfides/Sb_(2)S_(3)/carbon clusters,the C-Sb_(2)S_(3) electrode not only anchors polysulfide migration by the synergistic effect of Sb,S,and C atoms as interfacial active sites,but also the graphene-like carbon clusters shorten the diffusion paths to further favor redox electron/ion transport through the liquid(electrolyte/polysulfide)and solid(Li2 S/S8,carbon clusters,and Sb_(2)S_(3))-based triple-phases.Therefore,these Li_(2)S_(6)-based C-Sb_(2)S_(3) cells possess high sulfur loading,excellent cycling stability,impressive specific capacity,and great rate capability.This work of interfacial engineering reveals insight for powering reaction kinetics in the complicated multistep catalysis reaction with multiphase evolution-based chargetransfer/non-transfer processes.展开更多
The combination of a powerful CO_(2)-enriching carrier and robust active component provides a new idea for the construction of efficient catalysts for electrocatalytic CO_(2)reduction.Herein,novel perforated nitrogen-...The combination of a powerful CO_(2)-enriching carrier and robust active component provides a new idea for the construction of efficient catalysts for electrocatalytic CO_(2)reduction.Herein,novel perforated nitrogen-rich graphene-like carbon nanolayers(PNGC)are prepared from biomass derivatives,which promotes the oriented deposition of In-doped Cu_(2)(OH)_(3)(NO_(3))nanosheet patches.A robust Cu-In/PNGC composite catalyst is then obtained via simple in-situ electrochemical reduction.Unsurprisingly,CuIn/PNGC exhibits a CO Faradaic efficiency(FECO)of 91.3%and a remarkable CO partial current density(jCO)of 136.4 m A cm^(-2)at a moderate overpotential of 0.59 V for electrocatalytic CO_(2)reduction reaction(CO_(2)RR).DFT calculations and experimental studies indicate that the strong carrier effect of PNGC makes PNGC carried Cu-In nanosheets improved the adsorption capacity of CO_(2)gas,reconfigured electronic structure,and reduced free energy of key intermediate formation,thereby the CO_(2)activation and conversion are promoted.展开更多
Density functional calculations have been performed to investigate the adsorption of twenty two different kinds of metal adatoms on graphene-like BC3. In contrast to the graphene adsorbed with adatoms, the BC3 with ad...Density functional calculations have been performed to investigate the adsorption of twenty two different kinds of metal adatoms on graphene-like BC3. In contrast to the graphene adsorbed with adatoms, the BC3 with adatoms shows many interesting properties.(1) The interaction between the metal adatoms and the BC3 sheet is remarkably strong. The Li, Na, K, and Ca possess the binding energies larger than the cohesive energies of their corresponding bulk metals.(2)The Li, Na, and K adatoms form approximately ideal ionic bonds with BC3, while the Be, Mg, and Ca adatoms form ionic bonds with BC3 with slight hybridization of covalent bonds. The Al, Ga, In, Sn, and all transition metal adatoms form covalent bonds with BC3.(3) For all the structures studied, there exhibit metal, half-metal, semiconducting, and spin-semiconducting behaviors. Especially, the BC3 with Co adatom shows a quantum anomalous Hall(QAH) phase with a Chern number of -1 based on local density approximation calculations.(4) For Li, Na, K, Ca, Ga, In, Sn, Ti, V, Cr,Ni, Pd, and Pt, there exists a trend that the adatom species with lower ionization potential have lower work function. Our results indicate the potential applications of functionalization of BC3 with metal adatoms.展开更多
This work focuses on the ground-state phase diagram,the compensation temperatures and the critical behaviors of a ferrimagnetic graphene-like trilayer induced by crystal fields and exchange couplings.The simulation re...This work focuses on the ground-state phase diagram,the compensation temperatures and the critical behaviors of a ferrimagnetic graphene-like trilayer induced by crystal fields and exchange couplings.The simulation results show that a negative decrease in crystal field or an increase in exchange coupling can increase the critical temperature.More importantly,an M curve with double compensation temperatures can be observed,which is not predicted by the Neel theory.This remarkable compensation phenomenon has potential application value in the field of magnetic recording.展开更多
By using first principles calculations, four two-dimensional B-C-N ternary sheets with ordered and uniform element distribution are predicted based on the C, B, or N filled g-C3N4 sheet. These B-C-N ternary sheets are...By using first principles calculations, four two-dimensional B-C-N ternary sheets with ordered and uniform element distribution are predicted based on the C, B, or N filled g-C3N4 sheet. These B-C-N ternary sheets are metallic except for B4-C3N4 monolayer, which is a semiconductor with an energy band gap of 1.18 eV. In particular, the BnC-C3N4 is a ferromagnetic metal with a net magnetic moment of 0.57 μB/cell, which can be used to develop metal-free spintronic device. The calculated formation energy indicates these B-C-N ternary sheets are highly thermal stable. It presents a new route to obtain uniform B-C-N ternary sheet for electronic and spintronic applications.展开更多
Using the Monte Carlo method,the compensation temperature and hysteresis loops of a ferrimagnetic mixed spin-3/2 and spin-5/2 Ising-type graphene-like bilayer are investigated induced by different physical parameters ...Using the Monte Carlo method,the compensation temperature and hysteresis loops of a ferrimagnetic mixed spin-3/2 and spin-5/2 Ising-type graphene-like bilayer are investigated induced by different physical parameters such as crystal field,exchange coupling,external magnetic field,and temperature.The variations of magnetization,magnetic susceptibility,specific heat,and internal energy with the change of temperature are discussed.In addition,we also plot the phase diagrams including transition temperature and compensation temperature.Finally,multiple hysteresis loops under certain parameters are given.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.52373280,52177014,51977009,52273257).
文摘With the diversified development of big data,detection and precision guidance technologies,electromagnetic(EM)functional materials and devices serving multiple spectrums have become a hot topic.Exploring the multispectral response of materials is a challenging and meaningful scientific question.In this study,MXene/TiO_(2)hybrids with tunable conduction loss and polarization relaxation are fabricated by in situ atomic reconstruction engineering.More importantly,MXene/TiO_(2)hybrids exhibit adjustable spectral responses in the GHz,infrared and visible spectrums,and several EM devices are constructed based on this.An antenna array provides excellent EM energy harvesting in multiple microwave bands,with|S11|up to−63.2 dB,and can be tuned by the degree of bending.An ultra-wideband bandpass filter realizes a passband of about 5.4 GHz and effectively suppresses the transmission of EM signals in the stopband.An infrared stealth device has an emissivity of less than 0.2 in the infrared spectrum at wavelengths of 6-14μm.This work can provide new inspiration for the design and development of multifunctional,multi-spectrum EM devices.
基金financially supported by the Fundamental Research Funds for the Central Universities (No.30922010302)the Start-Up Grant from Nanjing University of Science and Technology (AE89991/397)。
文摘Novel graphene-like boron nitride(BN)/Bi_(3)O_(4)Br photocatalysts have been controllably synthesized through a facile solvothermal method for the first time. Layer contact stacking between graphene-like BN and ultrathin Bi_(3)O_(4)Br was achieved with strong interaction. Dehalogenation is designed to harvest more visible light, and the ultrathin structure of Bi_(3)O_(4)Br is designed to accelerate charge transfer from inside to the surface. After graphene-like BN was engineered, photocatalytic performance greatly improved under visible light irradiation. Graphene-like BN can act as a surface electron-withdrawing center and adsorption center, facilitating molecular oxygen activation. O_(2)^(·-)was determined to be the main active species during the degradation process through analyses of electron spin resonance and XPS valence band spectra.
基金Projects(21361020,21061012)supported by the National Natural Science Foundation of ChinaProject(NZ12156)supported by the Natural Science Foundation of Ningxia,ChinaProject(N-09-13)supported by Project of State Key Laboratory of Catalysis,Dalian Institute of Chemical Physics of the Chinese Academy of Sciences
文摘Electrophoretic deposition in conjunction with electrochemical reduction was used to make flexible free-standing graphene-like films. Firstly, graphene oxide (GO) film was deposited on graphite substrate by electrophoretic deposition method, and then reduced by subsequent electrochemical reduction of GO to obtain reduced GO (ERGO) film with high electrochemical performance. The morphology, structure and electrochemical performance of the prepared graphene-like film were confirmed by SEM, XRD and FT-IR. These unique materials were found to provide high specific capacitance and good cycling stability. The high specific capacitance of 254 F/g was obtained from cyclic voltammetry measurement at a scan rate of 10 mV/s. When the current density increased to 83.3 A/g, the specific capacitance values still remained 132 F/g. Meanwhile, the high powder density of 39.1 kW/kg was measured at energy density of 11.8 W-h/kg in 1 mol/L H2SO4 solution. Furthermore, at a constant scan rate of 50 mV/s, 97.02% of its capacitance was retained for 1000 cycles. These promising results were attributed to the unique assembly structure of graphene film and low contact resistance, which indicated their potential application to electrochemical capacitors.
基金the financial support from the National Key Research and Development Program of China (2016YFB0700204)Natural Science Foundation of Jiangsu Province (No. BK20140472)+2 种基金NSFC (51602332, 51502327)Science and Technology Commission of Shanghai Municipality (15520720400, 15YF1413800, 14DZ2261203, 16DZ2260603)One Hundred Talent Plan of Chinese Academy of Sciences
文摘A series of N-doped carbon materials(NCs)were synthesized by using biomass citric acid and dicyandiamide as renewable raw materials via a facile onestep pyrolysis method. The characterization of microstructural features shows that the NCs samples are composed of few-layered graphene-like nanoflakes with controlled in situ N doping, which is attributed to the confined pyrolysis of citric acid within the interlayers of the dicyandiamide-derived g-C_3N_4 with high nitrogen contents. Evidently, the pore volumes of the NCs increased with the increasing content of dicyandiamide in the precursor. Among these samples, the NCs nanoflakes prepared with the citric acid/dicyandiamide mass ratio of 1:6, NC-6,show the highest N content of ~6.2 at%, in which pyridinic and graphitic N groups are predominant. Compared to the commercial Pt/C catalyst, the as-prepared NC-6 exhibits a small negative shift of ~66 mV at the half-wave potential, demonstrating excellent electrocatalytic activity in the oxygen reduction reaction. Moreover, NC-6 also shows better long-term stability and resistance to methanol crossover compared to Pt/C. The efficient and stable performance are attributed to the graphene-like microstructure and high content of pyridinic and graphitic doped nitrogen in the sample, which creates more active sites as well as facilitating charge transfer due to the close four-electron reaction pathway. The superior electrocatalytic activity coupled with the facile synthetic method presents a new pathway to cost-effective electrocatalysts for practical fuel cells or metal–air batteries.
基金supported by the National Natural Science Foundation of China(Grant No.61904080)the Natural Science Foundation of Jiangsu Province(Grant No.BK20190670)+1 种基金the Natural Science Foundation of Colleges and Universities in Jiangsu Province(Grant No.19KJB530008)the Technology Innovation Project for Overseas Scholar in Nanjing,the Start-up Foundation of Nanjing Tech University。
文摘High performance of lithium-sulfur batteries have been dragged down by their shuttling behavior which is complicated multiphase transition-based 16-electron redox reactions of the S8/Li2 S.In this article,the triple-phase interfaces of graphene-like carbon clusters on antimony trisulfide(C-Sb_(2)S_(3))nanowires are tailored to design a multifunctional polysulfide host which can inhibit migration of polysulfides and accelerate conversion kinetics of redox electrochemical reactions.Benefiting from the triple-interface design of polysulfides/Sb_(2)S_(3)/carbon clusters,the C-Sb_(2)S_(3) electrode not only anchors polysulfide migration by the synergistic effect of Sb,S,and C atoms as interfacial active sites,but also the graphene-like carbon clusters shorten the diffusion paths to further favor redox electron/ion transport through the liquid(electrolyte/polysulfide)and solid(Li2 S/S8,carbon clusters,and Sb_(2)S_(3))-based triple-phases.Therefore,these Li_(2)S_(6)-based C-Sb_(2)S_(3) cells possess high sulfur loading,excellent cycling stability,impressive specific capacity,and great rate capability.This work of interfacial engineering reveals insight for powering reaction kinetics in the complicated multistep catalysis reaction with multiphase evolution-based chargetransfer/non-transfer processes.
基金supported by the National Natural Science Foundation of China(U21B2099)。
文摘The combination of a powerful CO_(2)-enriching carrier and robust active component provides a new idea for the construction of efficient catalysts for electrocatalytic CO_(2)reduction.Herein,novel perforated nitrogen-rich graphene-like carbon nanolayers(PNGC)are prepared from biomass derivatives,which promotes the oriented deposition of In-doped Cu_(2)(OH)_(3)(NO_(3))nanosheet patches.A robust Cu-In/PNGC composite catalyst is then obtained via simple in-situ electrochemical reduction.Unsurprisingly,CuIn/PNGC exhibits a CO Faradaic efficiency(FECO)of 91.3%and a remarkable CO partial current density(jCO)of 136.4 m A cm^(-2)at a moderate overpotential of 0.59 V for electrocatalytic CO_(2)reduction reaction(CO_(2)RR).DFT calculations and experimental studies indicate that the strong carrier effect of PNGC makes PNGC carried Cu-In nanosheets improved the adsorption capacity of CO_(2)gas,reconfigured electronic structure,and reduced free energy of key intermediate formation,thereby the CO_(2)activation and conversion are promoted.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11774396 and 11704322)Shandong Natural Science Funds for Doctoral Program,China(Grant No.ZR2017BA017)
文摘Density functional calculations have been performed to investigate the adsorption of twenty two different kinds of metal adatoms on graphene-like BC3. In contrast to the graphene adsorbed with adatoms, the BC3 with adatoms shows many interesting properties.(1) The interaction between the metal adatoms and the BC3 sheet is remarkably strong. The Li, Na, K, and Ca possess the binding energies larger than the cohesive energies of their corresponding bulk metals.(2)The Li, Na, and K adatoms form approximately ideal ionic bonds with BC3, while the Be, Mg, and Ca adatoms form ionic bonds with BC3 with slight hybridization of covalent bonds. The Al, Ga, In, Sn, and all transition metal adatoms form covalent bonds with BC3.(3) For all the structures studied, there exhibit metal, half-metal, semiconducting, and spin-semiconducting behaviors. Especially, the BC3 with Co adatom shows a quantum anomalous Hall(QAH) phase with a Chern number of -1 based on local density approximation calculations.(4) For Li, Na, K, Ca, Ga, In, Sn, Ti, V, Cr,Ni, Pd, and Pt, there exists a trend that the adatom species with lower ionization potential have lower work function. Our results indicate the potential applications of functionalization of BC3 with metal adatoms.
基金funded by National Natural Science Foundation of China (grant no. U22A20215)the Natural Science Foundation of Liaoning Province (grant no. 2023MS-218)
文摘This work focuses on the ground-state phase diagram,the compensation temperatures and the critical behaviors of a ferrimagnetic graphene-like trilayer induced by crystal fields and exchange couplings.The simulation results show that a negative decrease in crystal field or an increase in exchange coupling can increase the critical temperature.More importantly,an M curve with double compensation temperatures can be observed,which is not predicted by the Neel theory.This remarkable compensation phenomenon has potential application value in the field of magnetic recording.
基金V. ACKNOWLEDGMENTS This work was supported by the National Key Basic Research Program (No.2012CB922001 and No.2011CB921404), the National Natural Science Foundation of China (No.21121003 and No.51172223), the Strategic Priority Research Program of CAS (No.XDB01020300), One Hundred Talent Program of CAS, the National Young Top Talent Program of Organization Department of China, the Fundamental Research Funds for the Central Universities (No.WK2060140014 and No.WK2060190025), and USTCSCC, SCCAS, Tianjin, and Shanghai Supercomputer Centers.
文摘By using first principles calculations, four two-dimensional B-C-N ternary sheets with ordered and uniform element distribution are predicted based on the C, B, or N filled g-C3N4 sheet. These B-C-N ternary sheets are metallic except for B4-C3N4 monolayer, which is a semiconductor with an energy band gap of 1.18 eV. In particular, the BnC-C3N4 is a ferromagnetic metal with a net magnetic moment of 0.57 μB/cell, which can be used to develop metal-free spintronic device. The calculated formation energy indicates these B-C-N ternary sheets are highly thermal stable. It presents a new route to obtain uniform B-C-N ternary sheet for electronic and spintronic applications.
基金funded by the Project of Liaoning Education Department (No.LJKMZ20220500)the Natural Sciences Foundation of Liaoning province (Grant No.20230157)+1 种基金the National Natural Science Foundation of China (No.21976124)the Liaoning Revitalization Talents Program (No.XLYC2007195)。
文摘Using the Monte Carlo method,the compensation temperature and hysteresis loops of a ferrimagnetic mixed spin-3/2 and spin-5/2 Ising-type graphene-like bilayer are investigated induced by different physical parameters such as crystal field,exchange coupling,external magnetic field,and temperature.The variations of magnetization,magnetic susceptibility,specific heat,and internal energy with the change of temperature are discussed.In addition,we also plot the phase diagrams including transition temperature and compensation temperature.Finally,multiple hysteresis loops under certain parameters are given.