Climate change impacts on grasslands that cover a quarter of the global land area, have become unprecedented during the 21~(st) century. One of the important ecological realms, arid grasslands of northern China, which...Climate change impacts on grasslands that cover a quarter of the global land area, have become unprecedented during the 21~(st) century. One of the important ecological realms, arid grasslands of northern China, which occupy more than 70% of the region's land area. However, the impact of climate change on vegetation growth in these arid grasslands is not consistent and lacks corresponding quantitative research. In this study, NDVI(normalized difference vegetation index) and climate factors including temperature, precipitation, solar radiation, soil moisture, and meteorological drought were analyzed to explore the determinants of changes in grassland greenness in Inner Mongolia Autonomous Region(northern China) during 1982–2016. The results showed that grasslands in Inner Mongolia witnessed an obvious trend of seasonal greening during the study period. Two prominent climatic factors,precipitation and soil moisture accounted for approximately 33% and 27% of grassland NDVI trends in the region based on multiple linear regression and boosted regression tree methods. This finding highlights the impact of water constraints to vegetation growth in Inner Mongolia's grasslands. The dominant role of precipitation in regulating grassland NDVI trends in Inner Mongolia significantly weakened from 1982 to 1996, and the role of soil moisture strengthened after 1996. Our findings emphasize the enhanced importance of soil moisture in driving vegetation growth in arid grasslands of Inner Mongolia, which should be thoroughly investigated in the future.展开更多
Based on the physico-biophysical considerations, mathematical analysis and some approximate formulations generally adopted in meteorology and ecology, an ecological dynamic model of grassland is developed. The model c...Based on the physico-biophysical considerations, mathematical analysis and some approximate formulations generally adopted in meteorology and ecology, an ecological dynamic model of grassland is developed. The model consists of three interactive variables, I.e. The biomass of living grass, the biomass of wilted grass, and the soil wetness. The major biophysical processes are represented in parameterization formulas, and the model parameters can be determined inversely by using the observational climatological and ecological data. Some major parameters are adjusted by this method to fit the data (although incomplete) in the Inner Mongolia grassland, and other secondary parameters are estimated through sensitivity studies. The model results are well agreed with reality, e.g., (I) the maintenance of grassland requires a minimum amount of annual precipitation (approximately 300 mm); (ii) there is a significant relationship between the annual precipitation and the biomass of living grass; and (iii) the overgrazing will eventually result in desertification. A specific emphasis is put on the shading effect of the wilted grass accumulated on the soil surface. It effectively reduces the soil surface temperature and the evaporation, hence benefits the maintenance of grassland and the reduction of water loss in the soil.展开更多
基金funded by the National Natural Science Foundation of China (42101295)the Science and Technology Department of Jiangsu (BK20210657)the Natural Science Foundation of Jiangsu Higher Education Institutions of China (21KJB170003)。
文摘Climate change impacts on grasslands that cover a quarter of the global land area, have become unprecedented during the 21~(st) century. One of the important ecological realms, arid grasslands of northern China, which occupy more than 70% of the region's land area. However, the impact of climate change on vegetation growth in these arid grasslands is not consistent and lacks corresponding quantitative research. In this study, NDVI(normalized difference vegetation index) and climate factors including temperature, precipitation, solar radiation, soil moisture, and meteorological drought were analyzed to explore the determinants of changes in grassland greenness in Inner Mongolia Autonomous Region(northern China) during 1982–2016. The results showed that grasslands in Inner Mongolia witnessed an obvious trend of seasonal greening during the study period. Two prominent climatic factors,precipitation and soil moisture accounted for approximately 33% and 27% of grassland NDVI trends in the region based on multiple linear regression and boosted regression tree methods. This finding highlights the impact of water constraints to vegetation growth in Inner Mongolia's grasslands. The dominant role of precipitation in regulating grassland NDVI trends in Inner Mongolia significantly weakened from 1982 to 1996, and the role of soil moisture strengthened after 1996. Our findings emphasize the enhanced importance of soil moisture in driving vegetation growth in arid grasslands of Inner Mongolia, which should be thoroughly investigated in the future.
文摘Based on the physico-biophysical considerations, mathematical analysis and some approximate formulations generally adopted in meteorology and ecology, an ecological dynamic model of grassland is developed. The model consists of three interactive variables, I.e. The biomass of living grass, the biomass of wilted grass, and the soil wetness. The major biophysical processes are represented in parameterization formulas, and the model parameters can be determined inversely by using the observational climatological and ecological data. Some major parameters are adjusted by this method to fit the data (although incomplete) in the Inner Mongolia grassland, and other secondary parameters are estimated through sensitivity studies. The model results are well agreed with reality, e.g., (I) the maintenance of grassland requires a minimum amount of annual precipitation (approximately 300 mm); (ii) there is a significant relationship between the annual precipitation and the biomass of living grass; and (iii) the overgrazing will eventually result in desertification. A specific emphasis is put on the shading effect of the wilted grass accumulated on the soil surface. It effectively reduces the soil surface temperature and the evaporation, hence benefits the maintenance of grassland and the reduction of water loss in the soil.