期刊文献+
共找到102篇文章
< 1 2 6 >
每页显示 20 50 100
A method for extracting the preseismic gravity anomalies over the Tibetan Plateau based on the maximum shear strain using GRACE data
1
作者 Hui Wang DongMei Song +1 位作者 XinJian Shan Bin Wang 《Earth and Planetary Physics》 EI CAS CSCD 2024年第4期589-608,共20页
The occurrence of earthquakes is closely related to the crustal geotectonic movement and the migration of mass,which consequently cause changes in gravity.The Gravity Recovery And Climate Experiment(GRACE)satellite da... The occurrence of earthquakes is closely related to the crustal geotectonic movement and the migration of mass,which consequently cause changes in gravity.The Gravity Recovery And Climate Experiment(GRACE)satellite data can be used to detect gravity changes associated with large earthquakes.However,previous GRACE satellite-based seismic gravity-change studies have focused more on coseismic gravity changes than on preseismic gravity changes.Moreover,the noise of the north–south stripe in GRACE data is difficult to eliminate,thereby resulting in the loss of some gravity information related to tectonic activities.To explore the preseismic gravity anomalies in a more refined way,we first propose a method of characterizing gravity variation based on the maximum shear strain of gravity,inspired by the concept of crustal strain.The offset index method is then adopted to describe the gravity anomalies,and the spatial and temporal characteristics of gravity anomalies before earthquakes are analyzed at the scales of the fault zone and plate,respectively.In this work,experiments are carried out on the Tibetan Plateau and its surrounding areas,and the following findings are obtained:First,from the observation scale of the fault zone,we detect the occurrence of large-area gravity anomalies near the epicenter,oftentimes about half a year before an earthquake,and these anomalies were distributed along the fault zone.Second,from the observation scale of the plate,we find that when an earthquake occurred on the Tibetan Plateau,a large number of gravity anomalies also occurred at the boundary of the Tibetan Plateau and the Indian Plate.Moreover,the aforementioned experiments confirm that the proposed method can successfully capture the preseismic gravity anomalies of large earthquakes with a magnitude of less than 8,which suggests a new idea for the application of gravity satellite data to earthquake research. 展开更多
关键词 gravity Recovery And Climate Experiment(GRACE)data maximum shear strain offset index K preseismic gravity anomalies Tibetan Plateau fault zone
下载PDF
A VGGNet-based correction for satellite altimetry-derived gravity anomalies to improve the accuracy of bathymetry to depths of 6500 m
2
作者 Xiaolun Chen Xiaowen Luo +6 位作者 Ziyin Wu Xiaoming Qin Jihong Shang Huajun Xu Bin Li Mingwei Wang Hongyang Wan 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第1期112-122,共11页
Understanding the topographic patterns of the seafloor is a very important part of understanding our planet.Although the science involved in bathymetric surveying has advanced much over the decades,less than 20%of the... Understanding the topographic patterns of the seafloor is a very important part of understanding our planet.Although the science involved in bathymetric surveying has advanced much over the decades,less than 20%of the seafloor has been precisely modeled to date,and there is an urgent need to improve the accuracy and reduce the uncertainty of underwater survey data.In this study,we introduce a pretrained visual geometry group network(VGGNet)method based on deep learning.To apply this method,we input gravity anomaly data derived from ship measurements and satellite altimetry into the model and correct the latter,which has a larger spatial coverage,based on the former,which is considered the true value and is more accurate.After obtaining the corrected high-precision gravity model,it is inverted to the corresponding bathymetric model by applying the gravity-depth correlation.We choose four data pairs collected from different environments,i.e.,the Southern Ocean,Pacific Ocean,Atlantic Ocean and Caribbean Sea,to evaluate the topographic correction results of the model.The experiments show that the coefficient of determination(R~2)reaches 0.834 among the results of the four experimental groups,signifying a high correlation.The standard deviation and normalized root mean square error are also evaluated,and the accuracy of their performance improved by up to 24.2%compared with similar research done in recent years.The evaluation of the R^(2) values at different water depths shows that our model can achieve performance results above 0.90 at certain water depths and can also significantly improve results from mid-water depths when compared to previous research.Finally,the bathymetry corrected by our model is able to show an accuracy improvement level of more than 21%within 1%of the total water depths,which is sufficient to prove that the VGGNet-based method has the ability to perform a gravity-bathymetry correction and achieve outstanding results. 展开更多
关键词 gravity anomaly bathymetry inversion VGGNet multibeam sonar satellite altimetry
下载PDF
Characteristics of gravity anomalies and tectonic analysis of Enderby Land in East Antarctica and its adjacent areas
3
作者 Long Ma Chenguang Liu +2 位作者 An Yang Baohua Liu Chenglong Xia 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第2期94-103,共10页
Enderby Land in East Antarctica and its adjacent areas,which are closely related to the Indian Plate in their geological evolution,have become one of the key zones for studies on how the Antarctic continent evolves.Ba... Enderby Land in East Antarctica and its adjacent areas,which are closely related to the Indian Plate in their geological evolution,have become one of the key zones for studies on how the Antarctic continent evolves.Based on the isostasy and flexure theories of the lithosphere and using the CRUST1.0 model as the depth constraint,this paper uses the gravity field model EIGEN-6C4 and topographic data to calculate the isostatic gravity anomalies of Enderby Land and its adjacent areas.Then,the crustal thickness of the study area is calculated,and three comprehensive geophysical interpretation profiles that vertically span the study area are plotted.The results show that the flexural isostatic gravity anomalies in Enderby Land and its adjacent areas are closely related to the regional tectonic setting,and the anomalies in different regions differ substantially,ranging from−50×10^(−5)m/s^(2)to 85×10^(−5)m/s^(2).A zone of high isostatic gravity anomalies(30×10^(−5)−80×10^(−5)m/s^(2))is distributed outside the Cooperation Sea and Queen Maud Land,which may be plate remnants generated by early rifting.Except for the Kerguelen Plateau,which was formed by a hotspot and has a crustal thickness of 15 km,the thickness of the oceanic crust in other parts of the study area changes slightly by approximately 4–9 km,with the thinnest part being in Enderby Basin.The thickness of the inland crust along the coastline increases with the elevation,with the maximum thickness reaching 34 km.The isostatic gravity anomalies corresponding to the zone of high magnetic anomalies along the continental margin of Queen Maud Land are negative and small,with an isostatic adjustment trend indicating Moho surface uplift,and those on the edge of central Enderby Land are near zero,approaching the isostatic state,which may be caused by the magmatism at the early stage of rifting.The continental-oceanic boundary should be close to the contour line of the crustal thickness 10–12 km on the outer edge of the coastline. 展开更多
关键词 Enderby Land and its adjacent areas flexural isostatic gravity anomalies crustal structure isostatic adjustment
下载PDF
Constraining the crustal structure under the central and western Tian Shan based on teleseismic receiver functions and gravity anomalies 被引量:3
4
作者 Yonghua Li Hanhan Tang Lei Shi 《Earthquake Science》 2023年第1期1-14,共14页
The Tian Shan is a vast range that spans several countries in Asia.Understanding its evolutionary history may provide valuable insights into intracontinental orogenic dynamics.In this study,we explored the crustal cha... The Tian Shan is a vast range that spans several countries in Asia.Understanding its evolutionary history may provide valuable insights into intracontinental orogenic dynamics.In this study,we explored the crustal characteristics of the Tian Shan and their relationships to the tectonic evolution of the region.A new H-stacking method that combines the P receiver function and gravity anomalies was used to estimate the thickness and ratio of P-to S-wave velocities(Vp/Vs)for 91 broadband seismic stations in the central and western Tian Shan.Our results revealed significant lateral variations in crustal thickness and Vp/Vs.A—45-km-thick crust and an intermediate-high Vp/Vs(-1.74-1.84)were found in the Kazakh Shield and Tarim Basin,which we interpreted to indicate a mafic crystalline basement and lower crust.The central Tian Shan varied greatly in crustal thickness(40-64 km)and Vp/Vs ratio(1.65-2.00).which may be due to crustal shortening,mafic underplating,and crustal melting.In contrast,we observed a relatively thin crust(42-50 km)with an intermediate Vp/Vs ratio(-1.78)in the western Tian Shan.The differences in the crustal structures between the western and central Tian Shan imply that the Talas-Fergana Fault may be trans-lithospheric. 展开更多
关键词 Tian Shan crustal thickness crustal composition receiver function gravity anomaly
下载PDF
Gravity anomalies determined from mean sea surface model data over the Gulf of Mexico
5
作者 Xuyang Wei Xin Liu +4 位作者 Zhen Li Xiaotao Chang Hongxin Luo Chengcheng Zhu Jinyun Guo 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第12期39-50,共12页
With the improvements in the density and quality of satellite altimetry data,a high-precision and high-resolution mean sea surface model containing abundant information regarding a marine gravity field can be calculat... With the improvements in the density and quality of satellite altimetry data,a high-precision and high-resolution mean sea surface model containing abundant information regarding a marine gravity field can be calculated from long-time series multi-satellite altimeter data.Therefore,in this study,a method was proposed for determining marine gravity anomalies from a mean sea surface model.Taking the Gulf of Mexico(15°–32°N,80°–100°W)as the study area and using a removal-recovery method,the residual gridded deflections of the vertical(DOVs)are calculated by combining the mean sea surface,mean dynamic topography,and XGM2019e_2159 geoid,and then using the inverse Vening-Meinesz method to determine the residual marine gravity anomalies from the residual gridded DOVs.Finally,residual gravity anomalies are added to the XGM2019e_2159 gravity anomalies to derive marine gravity anomaly models.In this study,the marine gravity anomalies were estimated with mean sea surface models CNES_CLS15MSS,DTU21MSS,and SDUST2020MSS and the mean dynamic topography models CNES_CLS18MDT and DTU22MDT.The accuracy of the marine gravity anomalies derived by the mean sea surface model was assessed based on ship-borne gravity data.The results show that the difference between the gravity anomalies derived by DTU21MSS and CNES_CLS18MDT and those of the ship-borne gravity data is optimal.With an increase in the distance from the coast,the difference between the gravity anomalies derived by mean sea surface models and ship-borne gravity data gradually decreases.The accuracy of the difference between the gravity anomalies derived by mean sea surface models and those from ship-borne gravity data are optimal at a depth of 3–4 km.The accuracy of the gravity anomalies derived by the mean sea surface model is high. 展开更多
关键词 mean sea surface gravity anomaly Gulf of Mexico inverse Vening-Meinesz formula mean dynamic topography satellite altimetry
下载PDF
Edge enhancement of gravity anomalies and gravity gradient tensors using an improved small sub-domain filtering method 被引量:4
6
作者 蒋甫玉 高丽坤 《Applied Geophysics》 SCIE CSCD 2012年第2期119-130,233,共13页
In order to enhance geological body boundary visual effects in images and improve interpretation accuracy using gravity and magnetic field data, we propose an improved small sub-domain filtering method to enhance grav... In order to enhance geological body boundary visual effects in images and improve interpretation accuracy using gravity and magnetic field data, we propose an improved small sub-domain filtering method to enhance gravity anomalies and gravity gradient tensors. We discuss the effect of Gaussian white noise on the improved small sub-domain filtering method, as well as analyze the effect of window size on geological body edge recognition at different extension directions. Model experiments show that the improved small sub-domain filtering method is less affected by noise, filter window size, and geological body edge direction so it can more accurately depict geological body edges than the conventional small sub-domain filtering method. It also shows that deeply buried body edges can be well delineated through increasing the filter window size. In application, the enhanced gravity anomalies and calculated gravity gradient tensors of the Hulin basin show that the improved small sub-domain filtering can recognize more horizontal fault locations than the conventional method. 展开更多
关键词 Small sub-domain filter gravity gradient tensor edge enhancement gravity anomaly
下载PDF
Crustal Uplift in the Longmen Shan Mountains Revealed by Isostatic Gravity Anomalies along the Eastern Margin of the Tibetan Plateau 被引量:3
7
作者 LI Yong YAN Zhaokun +4 位作者 ZHOU Rongjun YAN Liang DONG Shunli SHAO Chongjian Svirchev LAURENCE 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2018年第1期56-73,共18页
This study examines the relationship between high positive isostatic gravity anomalies (IGA), steep topography and lower crustal extrusion at the eastern margin of the Tibetan Plateau. IGA data has revealed uplift a... This study examines the relationship between high positive isostatic gravity anomalies (IGA), steep topography and lower crustal extrusion at the eastern margin of the Tibetan Plateau. IGA data has revealed uplift and extrusion of lower crustal flow in the Longmen Shan Mountains (the LMS). Firstly, The high positive IGA zone corresponds to the LMS orogenic belt. It is shown that abrupt changes in IGA correspond to zones of abrupt change of topography, crustal thickness and rock density along the LMS. Secondly, on the basis of the Airy isostasy theory, simulations and inversions of the positive IGA were conducted using three-dimensional bodies. The results indicated that the LMS lacks a mountain root, and that the top surface of the lower crust has been elevated by 11 km, leading to positive IGA, tectonic load and density load. Thirdly, according to Watts's flexural isostasy model, elastic deflection occurs, suggesting that the limited (i.e. narrow) tectonic and density load driven by lower crustal flow in the LMS have led to asymmetric flexural subsidence in the foreland basin and lifting of the forebulge. Finally, based on the correspondence between zones of extremely high positive IGA and the presence of the Precambrian Pengguan-Baoxing complexes in the LMS, the first appearance of erosion gravels from the complexes in the Dayi Conglomerate layer of the Chengdu Basin suggest that positive IGA and lower crustal flow in the LMS took place at 3.6 Ma or slightly earlier. 展开更多
关键词 isostatic gravity anomalies crustal uplift Longmen Shan Mountains lower crustal flow foreland basin the eastern margin of the Tibetan Plateau
下载PDF
Prediction of Gravity Anomalies Over the South China and Philippine Seas from Multi-satellite Altimeter Sea Surface Heights 被引量:1
8
作者 Isaac Dadzie LI Jiancheng CHU Yonghai 《Geo-Spatial Information Science》 2008年第3期174-179,共6页
t Gravity anomalies on a2.5 ×2.5 arc-minute grid in a non-tidal system were derived over the South China and Philippine Seas from multi-satellite altimetry data. North and east components of deflections of the ve... t Gravity anomalies on a2.5 ×2.5 arc-minute grid in a non-tidal system were derived over the South China and Philippine Seas from multi-satellite altimetry data. North and east components of deflections of the vertical were computed from altimeter-derived sea surface heights at crossover locations, and gridded onto a 2.5 × 2.5 arc-minute resolution grid. EGM96-derived components of deflections of the vertical and gravity anomalies gridded into 2.5 × 2.5 arc-minute resolutions were then used as reference global geopotential model quantities in a remove-restore procedure to implement the Inverse Vening Meinesz formula via the 1D-FFT technique to predict the gravity anomalies over the South China and Philippine Seas from the gridded altimeter-derived components of deflections of the vertical. Statistical comparisons between the altimeter-derived and the shipboard gravity anomalies showed that there is a root-mean-square agreement of 5.7 mgals between them. 展开更多
关键词 satellite altimetry sea surface heights deflections of the vertical gravity anomalies
下载PDF
Fast forward modeling of gravity anomalies for two-dimensional bodies of arbitrary shape and density distribution
9
作者 Chen Xin Chen Long-Wei +1 位作者 Luo Tian-Ya Xiong Bin 《Applied Geophysics》 SCIE CSCD 2020年第5期776-783,902,903,共10页
A fast and high precision spatial domain algorithm is presented for forward modeling of two-dimensional(2D)body gravity anomalies of arbitrary shape and density distribution.The new algorithm takes advantage of the co... A fast and high precision spatial domain algorithm is presented for forward modeling of two-dimensional(2D)body gravity anomalies of arbitrary shape and density distribution.The new algorithm takes advantage of the convolution properties of the expression for 2D gravity anomalies,uses a rectangular cell as a grid subdivision unit,and then 2D bodies with irregular cross-sections are approximated by a combination of 2D bodies with a rectangular cross section.The closed-form expression is used to calculate the gravitational anomalies of the combination of 2D bodies with a rectangular cross section.To improve computing effi ciency,the new algorithm uses a fast algorithm for the implementation of the Toeplitz matrix and vector multiplication.The synthetic 2D models with rectangular and circular cross-sections and constant and variable densities are designed to evaluate the computational accuracy and speed of the new algorithm.The experiment results show that the computation costs less than 6 s for a grid subdivision with 10000×10000 elements.Compared to the traditional forward modeling methods,the proposed method significantly improved computational effi ciency while guaranteeing computational accuracy. 展开更多
关键词 two-dimensional bodies gravity anomalies forward modeling Toeplitz matrix
下载PDF
Calculation of geoid undulations and gravity anomaliesin the Northwest Pacific by using the Topex/Poseidonand Geosat altimeter data
10
作者 Pan Jiayi Wang Junqin +1 位作者 Wang Yanfeng Zhang XinmeiYuan Yeli (First Institute of Oceanography State Oceanic Adminitration,Qingdao 266003 China)Zheng Quan’an (Center for Remote Sensing College of Marine Studies University of Delaware Newaerk DE 19716 USA 《Acta Oceanologica Sinica》 SCIE CAS CSCD 1999年第4期523-533,共11页
The geoid undulations in the Northwest Pacific were calculated by usingtheTopex/Poseidon and Geosataltimeter data. Firstly the bias between two types of the altimeter data was removed and the geoid undulations in the... The geoid undulations in the Northwest Pacific were calculated by usingtheTopex/Poseidon and Geosataltimeter data. Firstly the bias between two types of the altimeter data was removed and the geoid undulations in theNorthwest Pacific were acquired by a long wave bias diminishing model with a resolution of 30 km and precision of 14cm. Then an algorithm of inversion of gravity anomalies was derived , and the gravity anomalies in the East China Seawere calculated by using the algorithm and the geoid undulations. The rms of difference between the in situ measure-ments the gravity anomalies from altimeter data was 3 .8× 10-5 m/s2. A method to colculate the gravity anomaliesin a larger area was developed which combined gravity anomalies in four subregions overlapping each other into one data set in a larger region. The error analysys shaws that the model and result of the inversion of gravity anomalies were reliable. 展开更多
关键词 Geoid undulations gravity anomalies Northwest Pacific Topex/Poseidon and Geosat altimeter data
下载PDF
Bathymetry predicting using the altimetry gravity anomalies in South China Sea 被引量:4
11
作者 Zhongmiao Sun Mingda Ouyang Bin Guan 《Geodesy and Geodynamics》 2018年第2期156-161,共6页
In South China Sea(112°E-119°E, 12°N-20°N), 81159 ship soundings published by NGDC(National Geophysics Data Center) and the altimetry gravity anomalies published by SIO(Scripps Institute of Oceanog... In South China Sea(112°E-119°E, 12°N-20°N), 81159 ship soundings published by NGDC(National Geophysics Data Center) and the altimetry gravity anomalies published by SIO(Scripps Institute of Oceanography) were used to predict bathymetry by GGM(gravity-geologic method) and SAS(Smith and Sandwell) method respectively. The residual 40576 ship soundings were used to estimate precisions of the predicted bathymetry models. Results showed that: the standard deviation of difference between the GGM model and ship soundings was 59.75 m and the relative accuracy was 1.86%. The SAS model is60.07 m and 1.87%. The power spectral densities of the ETOPO1, SIO, GGM and SAS models were also compared and analyzed. At last, we presented an integrated bathymetry model by weighted averaging method, the weighted factors were determined by precisions of the ETOPO1, SIO, GGM, and SAS model respectively. 展开更多
关键词 gravity-geologic method Smith and Sandwell method BATHYMETRY gravity anomaly Power spectral density analysis
下载PDF
Active Depths of Main Faults in the Ying-Qiong Basin Investigated by Multi-Scale Wavelet Decomposition of Bouguer Gravity Anomalies and Power Spectral Methods 被引量:2
12
作者 AN Long YU Chong +4 位作者 GONG Wei LI Deyong XING Junhui XU Chong ZHANG Hao 《Journal of Ocean University of China》 SCIE CAS CSCD 2022年第5期1174-1188,共15页
The Ying-Qiong Basin is located on the northwestern margin of the South China Sea and at the junction of the South China Block and the Indochina Block.It is characterized by complex geological structures.The existing ... The Ying-Qiong Basin is located on the northwestern margin of the South China Sea and at the junction of the South China Block and the Indochina Block.It is characterized by complex geological structures.The existing seismic data in the study area is sparse due to the lack of earthquake activities.Because of the limited source energy and poor coverage of seismic data,the knowledge of deep structures in the area,including the spatial distribution of deep faults,is incomplete.Contrarily,satellite gravity data cover the entire study area and can reveal the spatial distribution of faults.Based on the wavelet multi-scale decomposition method,the Bouguer gravity field in the Ying-Qiong Basin was decomposed and reconstructed to obtain the detailed images of the first-to sixth-order gravitational fields.By incorporating the known geological features,the gravitational field responses of the main faults in the Ying-Qiong Basin were identified in the detailed fields,and the power spectrum analysis yielded the depths of 1.4,8,15,26.5,and 39 km for the average burial depths of the bottom surfaces from the first-to fifth-order detailed fields,respectively.The four main faults in the Yinggehai Basin all have a large active depth range:fault A(No.1)is between 5 and 39 km,fault B is between 26.5 and 39 km,and faults C and D are between 15 and 39 km.However,the depth of active faults in the Qiongdongnan Basin is relatively shallow,mainly between 8 and 26.5 km. 展开更多
关键词 Yinggehai Basin Qiongdongnan Basin active depth of fault Bouguer gravity anomaly wavelet multi-scale analysis power spectrum
下载PDF
Pre-seismic gravity anomalies before Linkou Ms6.4 earthquake by continuous gravity observation of Crustal Movement Observation Network of China 被引量:2
13
作者 Xinsheng Wang Honglei Li Yufei Han 《Geodesy and Geodynamics》 2017年第2期120-124,共5页
A Ms6.4 earthquake occurred at Linkou country, Heilongjiang Province (44.8°N, 129.9°E) on January 2, 2016 at a depth of 580 km. Pre-seismic graviW anomalies obtained at a 1 Hz sampling rate from Crustal Mo... A Ms6.4 earthquake occurred at Linkou country, Heilongjiang Province (44.8°N, 129.9°E) on January 2, 2016 at a depth of 580 km. Pre-seismic graviW anomalies obtained at a 1 Hz sampling rate from Crustal Movement Observation Network of China (CMONOC) are analyzed after the earthquake. The results show that: (1) different from previous studies, both pre-seismic amplitude perturbation and co-seismic amplitude perturbation are not critical inversely proportional to epicentral distance; (2) unlike shallow earthquake, the pre-seismic and co-seismic amplitude perturbation of gravity illustrate syn- chronous spatial variation characters with decrease of epicentral distance for Linkou earthquake. This may because Linkou earthquake is a deep earthquake and occurred in Pacific Plate subduction zone; (3) compared to basement and semi-basement, cave can provide a better observation environment for gPhone gravimeter to detect pre-seismic gravity anomalies. 展开更多
关键词 Linkou earthquake Pre-seismic gravity anomaly CMONOC Subduction zone Deep earthquake
下载PDF
Interpretation of Geological and Gravity Data from the Bamiléké Plateau (West-Cameroon): Implication for the Understanding of Its Underground Lithotectonic Geometry
14
作者 Louis Christian Kamgang Chendjou Jean Victor Kenfack +2 位作者 Jules Tcheumenak Kouémo Fidèle Koumetio Armand Kagou Dongmo 《Journal of Geoscience and Environment Protection》 2024年第9期283-314,共32页
The Bamiléké Plateau represents a key domain in the understanding of the geodynamics associated with the central Cameroon shear. The study aimed to highlight the subsurface architecture of the plateaus basem... The Bamiléké Plateau represents a key domain in the understanding of the geodynamics associated with the central Cameroon shear. The study aimed to highlight the subsurface architecture of the plateaus basement setting with focus on high potential areas for hydrogeological and mining development projects. To this end, geological field observations were carried out. Since the structures sought were near-surface, a separation approach based on the upward continuation method was applied to the Bouguer anomaly grid. A set of processing techniques, including vertical derivative or DZ, analytical signal or SA and categorization of gravity signatures, was applied to generate the residual map. The synthesis geological model, obtained from analysis and interpretation of the various transformed maps and 2.5D modeling of two gravity profiles P1 and P2 highlights the following features: 1) intrusions of steep-sided granitic batholiths from Dschang to Bandjoun (profile P1), increasing in width from NW (Dschang) to SE (Bandjoun);2) larger volume batholiths with moderate sides located at Bafang and Bangangté (profile P1). These plutonic massifs were weakened by brittle deformation, which favored the emplacement of phonolite or anorthosite dykes within them. The emplacement of these dykes was accompanied by compressional faults with high dip between Dschang and Bandjoun and extensional faults with medium dip between Bafang and Bangangté. These fault zones (trending N85E to N95E) are ideal for hydrogeological investigations in a basement setting, as well as a series of dyke networks that could potentially be preferred zones for the circulation and accumulation of useful substances. The resulting geological sections P1 and P2 highlight the influence of granitic intrusions in the geological system of the study area, as well as the structural control associated with the various dyke intrusions. All the models obtained can serve as fundamental references for hydrogeological and mining exploration project on the Bamiléké Plateau. 展开更多
关键词 style="font-family:Cambria ">Bamiléké Plateau gravity Measurement gravity anomalies LINEAMENTS
下载PDF
Structural characteristics and tectonic division of the Zambezi Delta basin in the offshore East Africa:evidences from gravity and seismic data
15
作者 Guozhang Fan Wen Li +8 位作者 Liangbo Ding Wanyin Wang Hongping Wang Dingding Wang Lin Li Hao Wang Chaofeng Wang Qingluan Wang Ying Zhang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第4期105-118,共14页
The Zambezi Delta basin is a passive marginal basin located on the East African coast that has good oil and gas exploration potential.Due to the special geological evolutionary background of the Beira High in the Zamb... The Zambezi Delta basin is a passive marginal basin located on the East African coast that has good oil and gas exploration potential.Due to the special geological evolutionary background of the Beira High in the Zambezi Delta basin,it has a low gravity anomaly,and the existing seismic survey lines do not cover the whole basin;therefore,it is difficult to interpret the structural characteristics of the whole basin based solely on gravity or seismic data.Based on satellite altimetry gravity anomaly data,this study infers the distribution characteristics of faults in the Zambezi Delta basin by using the normalized vertical derivative of the total horizontal derivative(NVDR-THDR)technique.Then,constrained by seismic data,the gravity anomaly at the Moho interface is extracted by using the fast forward method of the double-interface model of the gravity anomaly,and this anomaly is then removed from the Bouguer gravity anomaly to obtain the sedimentary layer gravity anomaly.The thickness of the sedimentary strata is obtained by inversing the sedimentary basement depth of the whole basin.Then,uplifts and depressions are divided based on a sedimentary layer thickness of 3 km.This research demonstrates that the Zambezi Delta basin mainly features nearly SN-trending and NE-trending faults and that these faults exhibit east-west partitioning.The nearly SN-trending strike-slip faults controlled the sedimentary development of the basin,and the NE-trending tensile faults may have acted as migration channels for oil,gas and magma.The“overcompensation”effect of the Moho interface gravity anomaly on the gravity anomaly of the sedimentary layer is caused by the depression of the Moho interface beneath the Beira High,which results in a low gravity anomaly value for the Beira High.The pattern of uplifts and depressions trends NE and has the structural characteristics of east-west blocks. 展开更多
关键词 Zambezi Delta basin satellite altimetry gravity anomaly Beira High fault division uplift and depression pattern
下载PDF
Multi-scale inversion of density structure from gravity anomalies in Tarim Basin 被引量:31
16
作者 HOU ZunZe YANG WenCai 《Science China Earth Sciences》 SCIE EI CAS 2011年第3期399-409,共11页
Based on the power spectra of gravity anomalies in Tarim Basin, the anomalies can be decomposed to the following three components: a sub-anomaly formed mainly by the basin crystallized basement, a sub-anomaly formed m... Based on the power spectra of gravity anomalies in Tarim Basin, the anomalies can be decomposed to the following three components: a sub-anomaly formed mainly by the basin crystallized basement, a sub-anomaly formed mainly by deep sedimentary layers, and that by shallow sedimentary layers. A special wavelet transform analysis scheme and a density inversion method are designed and applied to the decomposition and inversion of gravity sub-anomalies, which are correlated with regional geology and drilling data. The results indicate that the deep and the shallow sub-anomalies show some relations with ancient fluid active zones. The negative density disturbances inversed from the shallow sub-anomaly are mainly caused by Mesozoic fluid active zones, whereas the negative density disturbances form the deep sub-anomalies are mainly correlated with Paleozoic fluid active zones. As the ancient fluid movement was good for formation of oil/gas fields, the multi-scale inversion methods for locating the ancient fluid movement zones seem to be helpful and valuable to oil/gas exploration. 展开更多
关键词 gravity anomalies wavelet transform multi-scale analysis density inversion ancient fluid active zones Tarim Basin
原文传递
Spatial Analysis of Gravity Data in the Basement of the Yaoundé-Yoko Area from the Global Gravity Model: Implication on the Sanaga Fault (South-Cameroon)
17
作者 Mouzong Pemi Marcelin Ngatchou Evariste +1 位作者 Njiteu Cyrille Donald Cheunteu Fantah Cyrille Armel 《Open Journal of Geology》 2023年第7期623-650,共28页
In this work, gravity anomalies from the XGM2016 global gravity model are used to study the basement of the Yaounde, Yoko area. The aim is to locate the characteristic tectonic faults and to characterize the geometry ... In this work, gravity anomalies from the XGM2016 global gravity model are used to study the basement of the Yaounde, Yoko area. The aim is to locate the characteristic tectonic faults and to characterize the geometry of the basement of these localities in order to improve the knowledge of the structural and tectonic basement of the study area. Numerical filters (vertical gradient, horizontal gradient, upward continuation) and Euler deconvolution were applied to the gravity anomalies respectively for qualitative and quantitative analysis. The results of the qualitative analysis allowed us to establish the lineament map of the study area;ranging from 0 to 35 km depth. For the quantitative analysis, the work is done in two parts: 1) highlighting the distribution of depths of geological structures in the basement of the study area;2) 2D1/2 modeling of geological structures to highlight the geometry of the basement of Yaounde, Yoko area. Thus, from five suitably selected profiles, the established models reveal the presence of eight blocks of geological structures of different densities and analyze their implications on the Sanaga Fault. Moreover, the models show that the positive anomalies characteristics for the Sanaga Fault reflect the anomalous character due to the strong dominance of the shale intrusion in the basement. 展开更多
关键词 gravity anomalies Global gravity Model BASEMENT LINEAMENTS Numerical Filters Modeling
下载PDF
Implications on Gravity Anomaly Measurements Associated with Different Lithologies in Turkana South Subcounty
18
作者 Daniel Mogaka Nyaberi 《Journal of Geoscience and Environment Protection》 2023年第1期79-118,共40页
The use of gravity data has demonstrated capability for monitoring lithological changes on a large scale as a consequence of differentiating basement and sedimentary of buried valleys. Gravity anomalies are associated... The use of gravity data has demonstrated capability for monitoring lithological changes on a large scale as a consequence of differentiating basement and sedimentary of buried valleys. Gravity anomalies are associated with lateral contrasts in density and therefore deformation by faulting or folding will be manifested if accompanied by lateral density changes, otherwise, the vice versa is true. The study’s objective is to evaluate the effectiveness of gravity method in establishing different lithologies in an area. The study has revealed that regional anomaly gravity map presents high anomalies in the Northern region in the NW-SE trend and low anomalies in the southern trend in NW-SE, while the residual anomaly gravity map shows different trends for the low and high gravity anomalies. The gravity anomalies are well interpreted in line with the lithologies of the study area rather than the deformation of the same lithologies. There are observed high values of gravity anomaly values (ranging from -880.2 to -501.2 g.u.) where there are eolian unconsolidated rocks overlying the basement compared to low gravity anomaly values (ranging from -1338.9 to -1088.7 g.u.) where the andesites, trachytes and phonolites overly the basement. The different regional gravity anomalies relate well with different rock densities in the study area along the line profile for radially averaged power spectrum. The gravity highs are noted in the eastern point and are associated with andesites, trachytes, basalts and igneous rocks, while the gravity lows are associated with sandstone, greywacke, arkose, and eolian unconsolidated rock. The utilization of the information from the Power spectrum analysis demonstrates that the depth to the deepest basement rock is 12.8 km which is in the eastern flank, while the shallowest to the basement of 1.1 km to the western flank. 展开更多
关键词 Regional gravity anomalies Power Spectrum Analysis Density Contrasts Lithologies
下载PDF
Characteristic of Gravity and Magnetic Anomalies in the Daba Shan and the Sichuan basin, China: Implication for Architecture of the Daba Shan 被引量:5
19
作者 ZHANG Jisheng GAO Rui +3 位作者 LI Qiusheng GUAN Ye WANG Haiyan LI Wenhui 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2013年第4期1154-1161,共8页
The Dabashan nappe structural belt links the Hannan block to the west with the Huangling block to the east between Yangxian and Xiangfan. The Dabashan arc-shaped fold belt formed during late Jurassic and was superpose... The Dabashan nappe structural belt links the Hannan block to the west with the Huangling block to the east between Yangxian and Xiangfan. The Dabashan arc-shaped fold belt formed during late Jurassic and was superposed on earlier Triassic folds. To achieve an improved understanding of the deep tectonics of the Dabashan nappe structural belt, we processed and interpreted the gravity and magnetic data for this area using new deep reflection seismic and other geophysical data as constraints. The results show that the Sichuan basin and Daba Mountains lie between the Longmenshan and Wulingshan gravity gradient belts. The positive magnetic anomalies around Nanchong-Tongjiang-Wanyuan-Langao and around Shizhu result from the crystalline basement. Modeling of the gravity and magnetic anomalies in the Daba Mountains and the Sichuan basin shows that the crystalline basement around Nanchong-Tongjiang-Wanyuan-Langao extends to the northeast underneath the Wafangdian fault near Ziyang. The magnetic field boundary in the Zhenba-Wanyuan-Chengkou-Zhenping area is the major boundary of the Dabashan nappe thrusting above the Sichuan Basin. This boundary might be the demarcation between the south Dabashan and the north Dabashan structural elements. The low gravity anomaly between Tongjiang and Chengkou might be partly caused by thickened lower crust. The local low gravity anomaly to the south of Chengkou-Wanyuan might result from Mesozoic strata of low density in the Dabashan foreland depression area. 展开更多
关键词 Daba Mountains nappe structural belt Sichuan basin gravity anomaly magneticanomaly crystalline basement
下载PDF
Robust inversion analysis of local gravity anomalies caused by geological dislocation model of faults 被引量:5
20
作者 黄建梁 申重阳 李辉 《Acta Seismologica Sinica(English Edition)》 EI CSCD 1998年第1期99-109,共11页
Theoretical analysis and practical observations show that fault dislocations can change the gravity field around the fault. Gravity changes which were caused by the repeated dislocations over a long period of time wer... Theoretical analysis and practical observations show that fault dislocations can change the gravity field around the fault. Gravity changes which were caused by the repeated dislocations over a long period of time were superimposed on the Bougeur gravity anomalies. These anomalies became the evidence of historical movement of fault as well as provide a way for the study of paleo earthquakes. This paper investigates inversion methods for the geological dislocation modeling of faults using the local Bouguer's gravity anomalies. To remove the effects of the irrelevant part of gravity anomalies to fault movements, we propose the robust nonlinear inversion method and set up the corresponding algorithm. Modeling examples indicate that the Marquardt's and Baye's least squares solutions depart from the true solution due to the attraction of gross errors in the data. The more seriously the data is contaminated, the more seriously the solutions are biased. In contrast, the proposed robust Marquardt's and Baye's inversion solutions can still maintain consistency with the solution without gross errors, even though 50 percent of the data is contaminated. This indicates that the proposed robust methods are effective. Using the proposed methods, we invert the geological dislocation models of the faults around the Erhai Lake in West Yunnan. The results show that the Northern Cangdong fault and the Erhai fault are normal dip slip faults with about 4 to 5 km dislocations; and that the Southern Cangdong fault has a less dip slip compared with the former two. A satisfactory fitting between the theoretical values of the inversion solution and the actual local gravity field is achievable. 展开更多
关键词 fault movement dislocation model gravity anomaly least squares fitting robust inversion
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部