期刊文献+
共找到80篇文章
< 1 2 4 >
每页显示 20 50 100
Using WGM2012 to Compute Gravity Anomaly Corrections of Leveling Observations in China
1
作者 Yanhui CAI Li ZHANG Xu MA 《Journal of Geodesy and Geoinformation Science》 CSCD 2023年第1期88-94,共7页
Gravity Anomaly Correction(GAC)is a very important term in leveling data processing.In most cases,it is troublesome for field surveyors to measure gravity when leveling.In this paper,based on the complete Bouguer Grav... Gravity Anomaly Correction(GAC)is a very important term in leveling data processing.In most cases,it is troublesome for field surveyors to measure gravity when leveling.In this paper,based on the complete Bouguer Gravity Anomaly(BGA)map of WGM2012,the feasibility of replacing in-situ gravity surveying in China is investigated.For leveling application,that is to evaluate the accuracy of WGM2012 in China.Because WGM2012 is organized with a standard rectangle grid,two interpolation methods,bilinear interpolating and Inverse Distance Weighted(IDW)interpolating,are proposed.Four sample areas in China,i.e.,Hanzhong,Chengdu,Linzhi and Shantou,are selected to evaluate the systems bias and precision of WGM2012.Numerical results show the average system bias of WGM2012 BGA in west China is about-100.1 mGal(1 mGal=10^(-5) m/s^(2))and the standard deviation is about 30.7 mGal.Tests in Shantou indicate the system bias in plain areas is about-130.4 mGal and standard deviation is about 6.8 mGal.All these experiments means the accuracy of WGM2012 is limited in high mountain areas of western China,but in plain areas,such as Shantou,WGM2012 BGA map is quite good for most leveling applications after calibrating the system bias. 展开更多
关键词 Bouguer gravity anomaly(BGA) gravity anomaly Correction(GAC) precise leveling WGM2012 bilinear Interpolation Inverse Distance Weighted(IDW)interpolation
下载PDF
Implications on Gravity Anomaly Measurements Associated with Different Lithologies in Turkana South Subcounty
2
作者 Daniel Mogaka Nyaberi 《Journal of Geoscience and Environment Protection》 2023年第1期79-118,共40页
The use of gravity data has demonstrated capability for monitoring lithological changes on a large scale as a consequence of differentiating basement and sedimentary of buried valleys. Gravity anomalies are associated... The use of gravity data has demonstrated capability for monitoring lithological changes on a large scale as a consequence of differentiating basement and sedimentary of buried valleys. Gravity anomalies are associated with lateral contrasts in density and therefore deformation by faulting or folding will be manifested if accompanied by lateral density changes, otherwise, the vice versa is true. The study’s objective is to evaluate the effectiveness of gravity method in establishing different lithologies in an area. The study has revealed that regional anomaly gravity map presents high anomalies in the Northern region in the NW-SE trend and low anomalies in the southern trend in NW-SE, while the residual anomaly gravity map shows different trends for the low and high gravity anomalies. The gravity anomalies are well interpreted in line with the lithologies of the study area rather than the deformation of the same lithologies. There are observed high values of gravity anomaly values (ranging from -880.2 to -501.2 g.u.) where there are eolian unconsolidated rocks overlying the basement compared to low gravity anomaly values (ranging from -1338.9 to -1088.7 g.u.) where the andesites, trachytes and phonolites overly the basement. The different regional gravity anomalies relate well with different rock densities in the study area along the line profile for radially averaged power spectrum. The gravity highs are noted in the eastern point and are associated with andesites, trachytes, basalts and igneous rocks, while the gravity lows are associated with sandstone, greywacke, arkose, and eolian unconsolidated rock. The utilization of the information from the Power spectrum analysis demonstrates that the depth to the deepest basement rock is 12.8 km which is in the eastern flank, while the shallowest to the basement of 1.1 km to the western flank. 展开更多
关键词 Regional gravity Anomalies Power Spectrum Analysis Density Contrasts Lithologies
下载PDF
Frozen subduction in the Yangtze block:insights from the deep seismic profiling and gravity anomaly in east Sichuan fold belt 被引量:6
3
作者 Xiaosong Xiong Rui Gao +2 位作者 Haiyan Wang Jisheng Zhang Lianghui Guo 《Earthquake Science》 CSCD 2016年第2期61-70,共10页
The Sichuan basin is the main part of the middle-upper Yangtze block, which has been experienced a long-term tectonic evolution since Archean. The Yangtze block was regarded as a stable block until the collision with ... The Sichuan basin is the main part of the middle-upper Yangtze block, which has been experienced a long-term tectonic evolution since Archean. The Yangtze block was regarded as a stable block until the collision with the Cathaysia block in late Neoproterozoic. A new deep seismic reflection profile conducted in the eastern Sichuan fold belt(ESFB) discovered a serials of south-dipping reflectors shown from lower crust to the mantle imply a frozen subduction zone within the Yangtze block. In order to prove the speculation, we also obtain the middle-lower crustal gravity anomalies by removing the gravity anomalies induced by the sedimentary rocks and the mantle beneath the Moho, which shows the mid-lower crustal structure of the Sichuan basin can be divided into eastern and western parts. Combined with the geochronology and Aeromagnetic anomalies, we speculated the Yangtze block was amalgamated by the West Sichuan and East Sichuan blocks separated by the Huayin-Chongqing line. The frozen subduction zone subsequently shifted to a shear zone accommodated the lower crustal shortening when the decollement at the base of the Nanhua system functioned in the upper plate. 展开更多
关键词 Sichuan basin Frozen subduction Deep seismic reflection gravity anomaly
下载PDF
Bouguer Gravity Anomaly in the Andean Orogenic Belt and its Dynamic Implications for Regional Tectonic Evolution 被引量:1
4
作者 ZHU Xiaosan LU Minjie ZHENG Hongwei 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2022年第3期806-824,共19页
Calculated Bouguer gravity anomalies from the Andean orogenic belt interpreted as derived from regional gravity data to aid understanding of the lithospheric structure and tectonic evolution of the belt.These anomalie... Calculated Bouguer gravity anomalies from the Andean orogenic belt interpreted as derived from regional gravity data to aid understanding of the lithospheric structure and tectonic evolution of the belt.These anomalies reveal lithospheric structures distributed throughout the belt,including linear and circular structures.NE-trending structures reflect sinistral transpression across the northern part of the belt,and NW-trending structures represent dextral transtension in the southern part.These results are supported by gravity-anomaly patterns that demonstrate mantle flow in a trench-parallel direction both northward and southward away from the stagnation band that is beneath the subducting Nazca slab.This mantle flow has served as an important driving force in the evolution of the Andean orogenic belt.Features of the modified tectonic model of the Andean orogenic belt are consistent with the spatial variation in and interpretation of Bouguer gravity anomalies. 展开更多
关键词 Bouguer gravity anomaly stagnation band lithospheric structure Nazca slab Andean orogenic belt
下载PDF
Relationship between the regional tectonic activity and crustal structure in the eastern Tibetan plateau discovered by gravity anomaly 被引量:1
5
作者 Xiao Xu Rui Gao Xiaoyu Guo 《Earthquake Science》 CSCD 2016年第2期71-81,共11页
The eastern Tibetan plateau has been getting more and more attention because it combines active faults,uplifting, and large earthquakes together in a high-population region. Based on the previous researches, the most ... The eastern Tibetan plateau has been getting more and more attention because it combines active faults,uplifting, and large earthquakes together in a high-population region. Based on the previous researches, the most of Cenozoic tectonic activities were related to the regional structure of the local blocks within the crustal scale. Thus,a better understanding of the crustal structure of the regional tectonic blocks is an important topic for further study. In this paper, we combined the simple Bouguer gravity anomaly with the Moho depths from previous studies to investigate the crustal structure in this area. To highlight the crustal structures, the gravity anomaly caused by the Moho relief has been reduced by forward modeling calculations. A total horizontal derivative(THD) had been applied on the gravity residuals. The results indicated that the crustal gravity residual is compatible with the topography and the geological settings of the regional blocks,including the Sichuan basin, the Chuxiong basin, the Xiaojiang fault, and the Jinhe fault, as well as the Longmenshan fault zone. The THD emphasized the west margin of Yangtze block, i.e., the Longriba fault zone and the Xiaojiang fault cut through the Yangtze block. The checkboard pattern of the gravity residual in the SongpanGarze fold belt and Chuandian fragment shows that the crust is undergoing a southward and SE-directed extrusion,which is coincident with the flowing direction indicatedfrom the GPS measurements. By integrating the interpretations, the stepwise extensional mechanism of the eastern Tibetan plateau is supported by the southeastward crustal deformation, and the extrusion of Chuandian fragment is achieved by Xianshuihe fault. 展开更多
关键词 Eastern Tibetan plateau Tectonic activity Crustal structures gravity anomaly
下载PDF
Refining geoid and vertical gradient of gravity anomaly 被引量:1
6
作者 Zhang Chijun Bian Shaofeng +2 位作者 Yi Zhourun Liu Lingtao Fang Jian 《Geodesy and Geodynamics》 2011年第4期1-9,共9页
We have derived and tested several relations between geoid (N) and quasi-geoid (~) with model validation. The elevation correction consists of the first-term (Bouguer anomaly) and second-term (vertical gradient... We have derived and tested several relations between geoid (N) and quasi-geoid (~) with model validation. The elevation correction consists of the first-term (Bouguer anomaly) and second-term (vertical gradient of gravity anomaly). The vertical gradient was obtained from direct measurement and terrain calcula- tion. The test results demonstrated that the precision of geoid can reach centimeter-level in mountains less than 5000 meters high. 展开更多
关键词 refine GEOID QUASI-GEOID gravity anomaly vertical gradient
下载PDF
Interpretation of residual gravity anomaly caused by simple shaped bodies using very fast simulated annealing global optimization 被引量:3
7
作者 Arkoprovo Biswas 《Geoscience Frontiers》 SCIE CAS CSCD 2015年第6期875-893,共19页
A very fast simulated annealing(VFSA) global optimization is used to interpret residual gravity anomaly.Since,VFSA optimization yields a large number of best-fitted models in a vast model space;the nature of uncerta... A very fast simulated annealing(VFSA) global optimization is used to interpret residual gravity anomaly.Since,VFSA optimization yields a large number of best-fitted models in a vast model space;the nature of uncertainty in the interpretation is also examined simultaneously in the present study.The results of VFSA optimization reveal that various parameters show a number of equivalent solutions when shape of the target body is not known and shape factor 'q' is also optimized together with other model parameters.The study reveals that amplitude coefficient k is strongly dependent on shape factor.This shows that there is a multi-model type uncertainty between these two model parameters derived from the analysis of cross-plots.However,the appraised values of shape factor from various VFSA runs clearly indicate whether the subsurface structure is sphere,horizontal or vertical cylinder type structure.Accordingly,the exact shape factor(1.5 for sphere,1.0 for horizontal cylinder and 0.5 for vertical cylinder)is fixed and optimization process is repeated.After fixing the shape factor,analysis of uncertainty and cross-plots shows a well-defined uni-model characteristic.The mean model computed after fixing the shape factor gives the utmost consistent results.Inversion of noise-free and noisy synthetic data as well as field data demonstrates the efficacy of the approach. 展开更多
关键词 gravity anomaly Idealized body Uncertainty VFSA Subsurface structure Ore exploration
下载PDF
Gravity anomaly and crustal density structure in Jilantai rift zone and its adjacent region
8
作者 Guiju Wu Chongyang Shen +1 位作者 Hongbo Tan Guangliang Yang 《Earthquake Science》 CSCD 2016年第4期235-242,共8页
This paper deals with the interpretation of Bouguer gravity anomalies measured along a 250 km long Suhaitu-Etuokeqi gravity profile located at the transitional zone of the Alxa and Ordos blocks where geophysical chara... This paper deals with the interpretation of Bouguer gravity anomalies measured along a 250 km long Suhaitu-Etuokeqi gravity profile located at the transitional zone of the Alxa and Ordos blocks where geophysical characteristics are very complex. The analysis is carried out in terms of the ratio of elevation and Bouguer gravity anomaly, the normalized full gradient of a section of the Bouguer gravity anomaly (Gh) and the crustal density structure reveal that (1) the ratio of highs and lows of elevation and Bouguer gravity anomaly is large between Zhengyiguan fault (F4) and Helandonglu fault (F6), which can be explained due to crustal inhomogeneities related to the uplift of the Qinghai-Tibet block in the northeast; (2) the main active faults correspond to the Gh contour strip or cut the local region, and generally show strong deformation characteristics, for example the Bayanwulashan mountain front fault (F1) or the southeast boundary of Alxa block is in accord with the western change belt of Gh, a belt about 10 km wide that extends to about 30 km; (3) Yinchuan- Pingluo fault (FS) is the seismogenic structure of the Pin- gluo M earthquake, and its focal depth is about 15 km; (4) the Moho depth trend and Bouguer gravity anomaly vari- ation indicates that the regional gravity field is strongly correlated with the Moho discontinuity. 展开更多
关键词 Yinchuan-Helanshan uplift Jilantai rift zone gravity profile Bouguer gravity anomaly Crustal densitystructure Normalized full gravity gradient SEISMOGENESIS
下载PDF
Crustal structure of the Qiangtang and Songpan-Ganzi terranes(eastern Tibet) from the 2-D normalized full gradient of gravity anomaly
9
作者 Songbai Xuan Chongyang Shen 《Geodesy and Geodynamics》 CSCD 2022年第6期535-543,共9页
Numerous geophysical studies have revealed the lithospheric structure of the Qiangtang and the Songpan-Ganzi terranes in the eastern Tibetan Plateau.However,crust-mantle evolution and crustal response to the Indian li... Numerous geophysical studies have revealed the lithospheric structure of the Qiangtang and the Songpan-Ganzi terranes in the eastern Tibetan Plateau.However,crust-mantle evolution and crustal response to the Indian lithospheric subduction are still controversial.Answering these questions requires additional information regarding crustal structure.In this study,the 2-D normalized full gradient(NFG)of the Bouguer gravity anomaly was used to investigate anomalous sources and interpret the crustal structure underneath the Qiangtang and Songpan-Ganzi terranes.The NFG-derived structures with loworder harmonic numbers(N=33 and N=43)showed that an anomalous source beneath the southern Qiangtang terrane had a characteristic northeastward-dipping shape,suggesting the northeastward motion of the crustal material induced by underthrusting Indian lithospheric mantle.The NFG images with harmonic number N=53 showed a large-scale anomalous source in the lower crust of the transformational zone from the Qiangtang terrane to the Songpan-Ganzi terrane,consistent with thickening crust and resistance of lower crustal flow.The anomalous source demonstrated by the NFG results with harmonic number N=71,located in the upper crust underneath the Ganzi-Yushu fault,suggested a seismogenic body of the 2010 M6.9 Yushu event. 展开更多
关键词 gravity anomaly Normalized full gradient Crustal structures Anomalous sources Qiangtang and Songpan-Ganzi terranes
下载PDF
Characteristics of isostatic gravity anomaly in Sichuan-Yunnan region,China
10
作者 Bingcheng Liu Yiyan Zhou Guangliang Yang 《Geodesy and Geodynamics》 2017年第4期238-245,共8页
Sichuan-Yunnan region in China, a tectonic transition belt where earthquakes occurred frequently and intensely, has a distinct variation characteristic of gradient zone of Bouguer gravity anomaly (BGA). Many deep fa... Sichuan-Yunnan region in China, a tectonic transition belt where earthquakes occurred frequently and intensely, has a distinct variation characteristic of gradient zone of Bouguer gravity anomaly (BGA). Many deep faults and epicenters of severe earthquake scatter along the BGA gradient zones. Here we apply two forward models (Airy model and Vening Meinesz model) of isostatic gravity mechanisms (local versus regional) in this region to calculated the isostatic gravity anomaly (IGA). Afterwards, the relationship between IGA and distribution of faults as well as seismicity is also illustrated. The IGA results show that the two models are similar and most parts of the study area are in an isostatic state. Most featured faults are distributed along the steep anomaly gradient zones; earthquakes tend to occur in the non-isostatic area and steep gradient belt of IGA. The distribution of root thickness based on regional mechanism can be associated with the main trend of BGA variation. The regional mechanism is more plausible and closer to the reality because of its relatively further consideration of the horizontal forces derived from adjacent particles in the crust. Then we analyze the effect of isostasy on the tectonic movements and find that the isostatic adjustment is not the main cause of the continuous uplift process of Longmenshan Mountain fault zone. which is due to the Indian-Eurasian continental collision. 展开更多
关键词 lsostatic gravity anomaly Isostasy Airy model Vening meinesz model Sichuan-Yunnan region Fault Earthquake
下载PDF
A VGGNet-based correction for satellite altimetry-derived gravity anomalies to improve the accuracy of bathymetry to depths of 6500 m
11
作者 Xiaolun Chen Xiaowen Luo +6 位作者 Ziyin Wu Xiaoming Qin Jihong Shang Huajun Xu Bin Li Mingwei Wang Hongyang Wan 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第1期112-122,共11页
Understanding the topographic patterns of the seafloor is a very important part of understanding our planet.Although the science involved in bathymetric surveying has advanced much over the decades,less than 20%of the... Understanding the topographic patterns of the seafloor is a very important part of understanding our planet.Although the science involved in bathymetric surveying has advanced much over the decades,less than 20%of the seafloor has been precisely modeled to date,and there is an urgent need to improve the accuracy and reduce the uncertainty of underwater survey data.In this study,we introduce a pretrained visual geometry group network(VGGNet)method based on deep learning.To apply this method,we input gravity anomaly data derived from ship measurements and satellite altimetry into the model and correct the latter,which has a larger spatial coverage,based on the former,which is considered the true value and is more accurate.After obtaining the corrected high-precision gravity model,it is inverted to the corresponding bathymetric model by applying the gravity-depth correlation.We choose four data pairs collected from different environments,i.e.,the Southern Ocean,Pacific Ocean,Atlantic Ocean and Caribbean Sea,to evaluate the topographic correction results of the model.The experiments show that the coefficient of determination(R~2)reaches 0.834 among the results of the four experimental groups,signifying a high correlation.The standard deviation and normalized root mean square error are also evaluated,and the accuracy of their performance improved by up to 24.2%compared with similar research done in recent years.The evaluation of the R^(2) values at different water depths shows that our model can achieve performance results above 0.90 at certain water depths and can also significantly improve results from mid-water depths when compared to previous research.Finally,the bathymetry corrected by our model is able to show an accuracy improvement level of more than 21%within 1%of the total water depths,which is sufficient to prove that the VGGNet-based method has the ability to perform a gravity-bathymetry correction and achieve outstanding results. 展开更多
关键词 gravity anomaly bathymetry inversion VGGNet multibeam sonar satellite altimetry
下载PDF
Structural characteristics and tectonic division of the Zambezi Delta basin in the offshore East Africa:evidences from gravity and seismic data
12
作者 Guozhang Fan Wen Li +8 位作者 Liangbo Ding Wanyin Wang Hongping Wang Dingding Wang Lin Li Hao Wang Chaofeng Wang Qingluan Wang Ying Zhang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第4期105-118,共14页
The Zambezi Delta basin is a passive marginal basin located on the East African coast that has good oil and gas exploration potential.Due to the special geological evolutionary background of the Beira High in the Zamb... The Zambezi Delta basin is a passive marginal basin located on the East African coast that has good oil and gas exploration potential.Due to the special geological evolutionary background of the Beira High in the Zambezi Delta basin,it has a low gravity anomaly,and the existing seismic survey lines do not cover the whole basin;therefore,it is difficult to interpret the structural characteristics of the whole basin based solely on gravity or seismic data.Based on satellite altimetry gravity anomaly data,this study infers the distribution characteristics of faults in the Zambezi Delta basin by using the normalized vertical derivative of the total horizontal derivative(NVDR-THDR)technique.Then,constrained by seismic data,the gravity anomaly at the Moho interface is extracted by using the fast forward method of the double-interface model of the gravity anomaly,and this anomaly is then removed from the Bouguer gravity anomaly to obtain the sedimentary layer gravity anomaly.The thickness of the sedimentary strata is obtained by inversing the sedimentary basement depth of the whole basin.Then,uplifts and depressions are divided based on a sedimentary layer thickness of 3 km.This research demonstrates that the Zambezi Delta basin mainly features nearly SN-trending and NE-trending faults and that these faults exhibit east-west partitioning.The nearly SN-trending strike-slip faults controlled the sedimentary development of the basin,and the NE-trending tensile faults may have acted as migration channels for oil,gas and magma.The“overcompensation”effect of the Moho interface gravity anomaly on the gravity anomaly of the sedimentary layer is caused by the depression of the Moho interface beneath the Beira High,which results in a low gravity anomaly value for the Beira High.The pattern of uplifts and depressions trends NE and has the structural characteristics of east-west blocks. 展开更多
关键词 Zambezi Delta basin satellite altimetry gravity anomaly Beira High fault division uplift and depression pattern
下载PDF
Estimation of Depth to Salt Domes from Normalized Full Gradient of Gravity Anomaly and Examples from the USA and Denmark 被引量:3
13
作者 Hamid Aghajani Ali Moradzadeh 曾华霖 《Journal of Earth Science》 SCIE CAS CSCD 2009年第6期1012-1016,共5页
We present an estimation of depth of anomalous bodies using normalized full gradient (NFG) of gravity anomaly. Maxima in the NFG map can locate the bodies and indicate their depth. Model calculation using a sphere a... We present an estimation of depth of anomalous bodies using normalized full gradient (NFG) of gravity anomaly. Maxima in the NFG map can locate the bodies and indicate their depth. Model calculation using a sphere and application of the NFG method to gravity anomalies over salt domes in the USA and Denmark shows effectiveness of the method. However, the accuracy of depth estimation strongly depends on the number of term N in the Fourier series used to calculate the NFG. An optimum N for the calculation can be given from a test. 展开更多
关键词 depth estimation anomalous body normalized full gradient gravity anomaly Fourier series.
原文传递
Constraining the crustal structure under the central and western Tian Shan based on teleseismic receiver functions and gravity anomalies 被引量:2
14
作者 Yonghua Li Hanhan Tang Lei Shi 《Earthquake Science》 2023年第1期1-14,共14页
The Tian Shan is a vast range that spans several countries in Asia.Understanding its evolutionary history may provide valuable insights into intracontinental orogenic dynamics.In this study,we explored the crustal cha... The Tian Shan is a vast range that spans several countries in Asia.Understanding its evolutionary history may provide valuable insights into intracontinental orogenic dynamics.In this study,we explored the crustal characteristics of the Tian Shan and their relationships to the tectonic evolution of the region.A new H-stacking method that combines the P receiver function and gravity anomalies was used to estimate the thickness and ratio of P-to S-wave velocities(Vp/Vs)for 91 broadband seismic stations in the central and western Tian Shan.Our results revealed significant lateral variations in crustal thickness and Vp/Vs.A—45-km-thick crust and an intermediate-high Vp/Vs(-1.74-1.84)were found in the Kazakh Shield and Tarim Basin,which we interpreted to indicate a mafic crystalline basement and lower crust.The central Tian Shan varied greatly in crustal thickness(40-64 km)and Vp/Vs ratio(1.65-2.00).which may be due to crustal shortening,mafic underplating,and crustal melting.In contrast,we observed a relatively thin crust(42-50 km)with an intermediate Vp/Vs ratio(-1.78)in the western Tian Shan.The differences in the crustal structures between the western and central Tian Shan imply that the Talas-Fergana Fault may be trans-lithospheric. 展开更多
关键词 Tian Shan crustal thickness crustal composition receiver function gravity anomaly
下载PDF
On the colocation iterative solution model and algorithm for gravity anomaly
15
作者 杨元喜 刘长建 《Acta Seismologica Sinica(English Edition)》 CSCD 1996年第4期76-81,共6页
An effective method of random approach of gravity anomaly is collocation. To improve the reliability of collocation root, it is crucial to improve the reliability of covariance function of gravity anomaly. In thi... An effective method of random approach of gravity anomaly is collocation. To improve the reliability of collocation root, it is crucial to improve the reliability of covariance function of gravity anomaly. In this paper, a set of theoretical models of iterative fitting covariance function and predicting gravity anomaly is established. Through practical calculation, it shows that after finite iterative collocating, they do work well. 展开更多
关键词 gravity anomaly random approach COLLOCATION iterative root covariance.
下载PDF
Features of isostatic gravity anomaly and seismic activity in the Central Asian region
16
作者 方盛明 冯锐 +3 位作者 田长征 孙桂香 王志理 李长法 《Acta Seismologica Sinica(English Edition)》 CSCD 1997年第6期105-109,共5页
In this paper, the lithospheric isostatic gravity anomaly with its distribution features in the Central Asian region (30°~70°N, 50°~140°E), according to the research of the lithospheric isostati... In this paper, the lithospheric isostatic gravity anomaly with its distribution features in the Central Asian region (30°~70°N, 50°~140°E), according to the research of the lithospheric isostatic principle, is discussed. Moreover, some primary structures and seismic activities in this region are discussed. 展开更多
关键词 isostatic gravity anomaly regional structure seismic activity the Central Asian region
下载PDF
Gravity anomalies determined from mean sea surface model data over the Gulf of Mexico
17
作者 Xuyang Wei Xin Liu +4 位作者 Zhen Li Xiaotao Chang Hongxin Luo Chengcheng Zhu Jinyun Guo 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第12期39-50,共12页
With the improvements in the density and quality of satellite altimetry data,a high-precision and high-resolution mean sea surface model containing abundant information regarding a marine gravity field can be calculat... With the improvements in the density and quality of satellite altimetry data,a high-precision and high-resolution mean sea surface model containing abundant information regarding a marine gravity field can be calculated from long-time series multi-satellite altimeter data.Therefore,in this study,a method was proposed for determining marine gravity anomalies from a mean sea surface model.Taking the Gulf of Mexico(15°–32°N,80°–100°W)as the study area and using a removal-recovery method,the residual gridded deflections of the vertical(DOVs)are calculated by combining the mean sea surface,mean dynamic topography,and XGM2019e_2159 geoid,and then using the inverse Vening-Meinesz method to determine the residual marine gravity anomalies from the residual gridded DOVs.Finally,residual gravity anomalies are added to the XGM2019e_2159 gravity anomalies to derive marine gravity anomaly models.In this study,the marine gravity anomalies were estimated with mean sea surface models CNES_CLS15MSS,DTU21MSS,and SDUST2020MSS and the mean dynamic topography models CNES_CLS18MDT and DTU22MDT.The accuracy of the marine gravity anomalies derived by the mean sea surface model was assessed based on ship-borne gravity data.The results show that the difference between the gravity anomalies derived by DTU21MSS and CNES_CLS18MDT and those of the ship-borne gravity data is optimal.With an increase in the distance from the coast,the difference between the gravity anomalies derived by mean sea surface models and ship-borne gravity data gradually decreases.The accuracy of the difference between the gravity anomalies derived by mean sea surface models and those from ship-borne gravity data are optimal at a depth of 3–4 km.The accuracy of the gravity anomalies derived by the mean sea surface model is high. 展开更多
关键词 mean sea surface gravity anomaly Gulf of Mexico inverse Vening-Meinesz formula mean dynamic topography satellite altimetry
下载PDF
Characteristics of gravity anomalies and tectonic analysis of Enderby Land in East Antarctica and its adjacent areas
18
作者 Long Ma Chenguang Liu +2 位作者 An Yang Baohua Liu Chenglong Xia 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第2期94-103,共10页
Enderby Land in East Antarctica and its adjacent areas,which are closely related to the Indian Plate in their geological evolution,have become one of the key zones for studies on how the Antarctic continent evolves.Ba... Enderby Land in East Antarctica and its adjacent areas,which are closely related to the Indian Plate in their geological evolution,have become one of the key zones for studies on how the Antarctic continent evolves.Based on the isostasy and flexure theories of the lithosphere and using the CRUST1.0 model as the depth constraint,this paper uses the gravity field model EIGEN-6C4 and topographic data to calculate the isostatic gravity anomalies of Enderby Land and its adjacent areas.Then,the crustal thickness of the study area is calculated,and three comprehensive geophysical interpretation profiles that vertically span the study area are plotted.The results show that the flexural isostatic gravity anomalies in Enderby Land and its adjacent areas are closely related to the regional tectonic setting,and the anomalies in different regions differ substantially,ranging from−50×10^(−5)m/s^(2)to 85×10^(−5)m/s^(2).A zone of high isostatic gravity anomalies(30×10^(−5)−80×10^(−5)m/s^(2))is distributed outside the Cooperation Sea and Queen Maud Land,which may be plate remnants generated by early rifting.Except for the Kerguelen Plateau,which was formed by a hotspot and has a crustal thickness of 15 km,the thickness of the oceanic crust in other parts of the study area changes slightly by approximately 4–9 km,with the thinnest part being in Enderby Basin.The thickness of the inland crust along the coastline increases with the elevation,with the maximum thickness reaching 34 km.The isostatic gravity anomalies corresponding to the zone of high magnetic anomalies along the continental margin of Queen Maud Land are negative and small,with an isostatic adjustment trend indicating Moho surface uplift,and those on the edge of central Enderby Land are near zero,approaching the isostatic state,which may be caused by the magmatism at the early stage of rifting.The continental-oceanic boundary should be close to the contour line of the crustal thickness 10–12 km on the outer edge of the coastline. 展开更多
关键词 Enderby Land and its adjacent areas flexural isostatic gravity anomalies crustal structure isostatic adjustment
下载PDF
Spatial Analysis of Gravity Data in the Basement of the Yaoundé-Yoko Area from the Global Gravity Model: Implication on the Sanaga Fault (South-Cameroon)
19
作者 Mouzong Pemi Marcelin Ngatchou Evariste +1 位作者 Njiteu Cyrille Donald Cheunteu Fantah Cyrille Armel 《Open Journal of Geology》 2023年第7期623-650,共28页
In this work, gravity anomalies from the XGM2016 global gravity model are used to study the basement of the Yaounde, Yoko area. The aim is to locate the characteristic tectonic faults and to characterize the geometry ... In this work, gravity anomalies from the XGM2016 global gravity model are used to study the basement of the Yaounde, Yoko area. The aim is to locate the characteristic tectonic faults and to characterize the geometry of the basement of these localities in order to improve the knowledge of the structural and tectonic basement of the study area. Numerical filters (vertical gradient, horizontal gradient, upward continuation) and Euler deconvolution were applied to the gravity anomalies respectively for qualitative and quantitative analysis. The results of the qualitative analysis allowed us to establish the lineament map of the study area;ranging from 0 to 35 km depth. For the quantitative analysis, the work is done in two parts: 1) highlighting the distribution of depths of geological structures in the basement of the study area;2) 2D1/2 modeling of geological structures to highlight the geometry of the basement of Yaounde, Yoko area. Thus, from five suitably selected profiles, the established models reveal the presence of eight blocks of geological structures of different densities and analyze their implications on the Sanaga Fault. Moreover, the models show that the positive anomalies characteristics for the Sanaga Fault reflect the anomalous character due to the strong dominance of the shale intrusion in the basement. 展开更多
关键词 gravity Anomalies Global gravity Model BASEMENT LINEAMENTS Numerical Filters Modeling
下载PDF
Distribution law and susceptibility of geohazards across a gradient belt of the Western Sichuan Plateau
20
作者 LI Tianbin WANG Jianfeng +4 位作者 HE Chaoyang MENG Lubo LI Chaofei MA Junjie WEI Daqiang 《Journal of Mountain Science》 SCIE CSCD 2024年第6期1849-1867,共19页
Across a gradient belt of the Western Sichuan Plateau,geohazards have seriously limited economic and social development.According to incomplete statistics,15,673 geohazards have been recorded in the study area.In orde... Across a gradient belt of the Western Sichuan Plateau,geohazards have seriously limited economic and social development.According to incomplete statistics,15,673 geohazards have been recorded in the study area.In order to mitigate the threat of geohazards to human engineering activities in the region,an overall understanding of the distribution pattern of geohazards and susceptibility assessment are necessary.In this paper,a gradient belt of the Western Sichuan Plateau and its zoning criteria were defined.Subsequently,on the basis of relief amplitude,distance to faults,rainfall,and human activities,three indicators of endogenic process were introduced:Bouguer gravity anomaly gradient,vertical deformation gradient,and horizontal deformation gradient.Thereafter,the distribution patterns of geohazards were investigated through mathematical statistics and ArcGIS software.By randomly selecting 10,449 hazards,a geohazard susceptibility map was generated using the Information Value(IV)model.Finally,the IV model was validated against 5224 hazards using the Area Under Curve(AUC)method.The results show that 47.6%of the geohazards were distributed in the zone of steep slope.Geohazards showed strong responses to distance to faults,human activities,and annual rainfall.The distribution of geohazards in the gradient belt of the Western Sichuan Plateau is more sensitive to vertical internal dynamics factors(such as vertical deformation gradient and Bouguer gravity anomaly gradient)without any apparent sensitivity to horizontal internal dynamics factors.The areas of high and very-high risk account for up to 32.22%,mainly distributed in the Longmenshan and Anning River faults.According to the AUC plot,the success rate of the IV model for generating the susceptibility map is 76%.This susceptibility map and geohazard distribution pattern can provide a reference for geological disaster monitoring,preparation of post-disaster emergency measures,and town planning. 展开更多
关键词 Gradient belt GEOHAZARDS Distribution law Bouguer gravity anomaly gradient Vertical deformation gradient SUSCEPTIBILITY
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部