Various spectroscopic experiments performed on the AIRBUS ZERO G—located in Bordeaux, France—in the years 2002 to 2012 exhibit minute optical reflection/absorption changes (GIACs) as a result of gravitational change...Various spectroscopic experiments performed on the AIRBUS ZERO G—located in Bordeaux, France—in the years 2002 to 2012 exhibit minute optical reflection/absorption changes (GIACs) as a result of gravitational changes between 0 and 1.8 g in various biological species such as maize, oats, Arabidopsis and particularly Phycomyces sporangiophores. During a flight day, the AIRBUS ZERO G conducts 31 parabolas, each of which lasts about three minutes including a period of 22 s of weightlessness. So far, we participated in 11 parabolic flight campaigns including more than 1000 parabolas performing various kinds of experiments. During our campaigns, we observed an unexplainable variability of the measuring signals (GIACs). Using GPS-positioning systems and three dimensional magnetic field sensors, these finally were traced back to the changing earth’s magnetic field associated with the various flight directions. This is the first time that the interaction of gravity and the Earth’ magnetic field in the primary induction process in living system has been observed.展开更多
We construct a general braneworld inflation scenario where the inflaton field evolves on the DGP brahe and curvature effects are taken into account via incorporation of the Gauss-Bonnet term in the bulk action. While ...We construct a general braneworld inflation scenario where the inflaton field evolves on the DGP brahe and curvature effects are taken into account via incorporation of the Gauss-Bonnet term in the bulk action. While induced gravity on the DGP brane modifies the IR limit of general relativity, the Gauss-Bonnet term in the bulk action modifies the UV sector of the theory. In this setup, the dynamics of perturbations on the brane are studied with details and some confrontation with recent observations are discussed. While the Einstein-Gauss-Bonnet inflation scenario favors only a red spectrum of the scalar perturbation, pure DGP and GBIG inflation models have the capacity to realize the blue spectrum too. In addition, the GBIG inflation scenario in the large field limit requires a smaller number of e-folds than other proposed scenarios in the same situation. For the tensor-to-scalar ratio, the GBIG inflation scenario g/yes a better fit with observationally supported value of R≈ 0.24.展开更多
A laboratory-made tumor cell detection device was fabricated based on both surface plasmon resonance imaging(SPRi) and image processing.In this device,a gravity-induced flow injection chip(gFIC) was exploited to r...A laboratory-made tumor cell detection device was fabricated based on both surface plasmon resonance imaging(SPRi) and image processing.In this device,a gravity-induced flow injection chip(gFIC) was exploited to replace a pump.Also two charge coupled devices(CCDs) were used to detect HepG2 cells by SPRi and image processing,respectively.The results of two CCDs are associated.Protein A was used to modify the sensing surface.The inlet angle was carefully adjusted for the device to get an enhanced image.In the test,the contrast among cell solutions at different concentrations can be easily distinguished.The other CCD using image processing can tell false-positive in some degree.This detection is label-free,real time,and precise.展开更多
基金supported by grant BW 1025 from the DLR/BMBF(Deutsches Zentrum für Luftund Raumfahrt,and Bundesministerium für Bildung und Forschung).
文摘Various spectroscopic experiments performed on the AIRBUS ZERO G—located in Bordeaux, France—in the years 2002 to 2012 exhibit minute optical reflection/absorption changes (GIACs) as a result of gravitational changes between 0 and 1.8 g in various biological species such as maize, oats, Arabidopsis and particularly Phycomyces sporangiophores. During a flight day, the AIRBUS ZERO G conducts 31 parabolas, each of which lasts about three minutes including a period of 22 s of weightlessness. So far, we participated in 11 parabolic flight campaigns including more than 1000 parabolas performing various kinds of experiments. During our campaigns, we observed an unexplainable variability of the measuring signals (GIACs). Using GPS-positioning systems and three dimensional magnetic field sensors, these finally were traced back to the changing earth’s magnetic field associated with the various flight directions. This is the first time that the interaction of gravity and the Earth’ magnetic field in the primary induction process in living system has been observed.
基金Kourosh Nozari is supported financially by the Science and Research Branch,Islamic Azad university,Mazandaran,Iran
文摘We construct a general braneworld inflation scenario where the inflaton field evolves on the DGP brahe and curvature effects are taken into account via incorporation of the Gauss-Bonnet term in the bulk action. While induced gravity on the DGP brane modifies the IR limit of general relativity, the Gauss-Bonnet term in the bulk action modifies the UV sector of the theory. In this setup, the dynamics of perturbations on the brane are studied with details and some confrontation with recent observations are discussed. While the Einstein-Gauss-Bonnet inflation scenario favors only a red spectrum of the scalar perturbation, pure DGP and GBIG inflation models have the capacity to realize the blue spectrum too. In addition, the GBIG inflation scenario in the large field limit requires a smaller number of e-folds than other proposed scenarios in the same situation. For the tensor-to-scalar ratio, the GBIG inflation scenario g/yes a better fit with observationally supported value of R≈ 0.24.
基金Supported by the National Natural Science Foundation of China(Nos.31070772,31270907,21275129).
文摘A laboratory-made tumor cell detection device was fabricated based on both surface plasmon resonance imaging(SPRi) and image processing.In this device,a gravity-induced flow injection chip(gFIC) was exploited to replace a pump.Also two charge coupled devices(CCDs) were used to detect HepG2 cells by SPRi and image processing,respectively.The results of two CCDs are associated.Protein A was used to modify the sensing surface.The inlet angle was carefully adjusted for the device to get an enhanced image.In the test,the contrast among cell solutions at different concentrations can be easily distinguished.The other CCD using image processing can tell false-positive in some degree.This detection is label-free,real time,and precise.