Mozambique's continental margin in East Africa was formed during the break-off stage of the east and west Gondwana lands. Studying the geological structure and division of continent-ocean boundary(COB) in Mozambiq...Mozambique's continental margin in East Africa was formed during the break-off stage of the east and west Gondwana lands. Studying the geological structure and division of continent-ocean boundary(COB) in Mozambique's continental margin is considered of great significance to rebuild Gondwana land and understand its movement mode. Along these lines, in this work, the initial Moho was fit using the known Moho depth from reflection seismic profiles, and a 3D multi-point constrained gravity inversion was carried out. Thus, highaccuracy Moho depth and crustal thickness in the study area were acquired. According to the crustal structure distribution based on the inversion results, the continental crust at the narrowest position of the Mozambique Channel was detected. According to the analysis of the crustal thickness, the Mozambique ridge is generally oceanic crust and the COB of the whole Mozambique continental margin is divided.展开更多
Three-dimensional gravity inversion based on the mass property model is very popular in recent years. The time and efficiency of inversion algorithms is relative to the magnitude of the target mesh. One approach is to...Three-dimensional gravity inversion based on the mass property model is very popular in recent years. The time and efficiency of inversion algorithms is relative to the magnitude of the target mesh. One approach is to search over the entire solution space for a more refined result. However, the inversion will be difficult with the increased parameters in the large search space and the number of computations increases exponentially. |n this paper, we propose a novel approach based on the frequency characteristics of the density distribution over the mesh. The purposes of our study are to reduce the parameters of three- dimensional gravity inversion and to lighten the image quality of the inversion result. The results show that the new method can expedite the inversion processing and get a better geological interpretation than tradition methods.展开更多
The gravity inversion is to restore genetic density distribution of the underground target to be explored for explaining the internal structure and distribution of the Earth.In this paper,we propose a new 3D gravity i...The gravity inversion is to restore genetic density distribution of the underground target to be explored for explaining the internal structure and distribution of the Earth.In this paper,we propose a new 3D gravity inversion method based on 3D U-Net++.Compared with two-dimensional gravity inversion,three-dimensional(3D)gravity inversion can more precisely describe the density distribution of underground space.However,conventional 3D gravity inversion method input is two-dimensional,the input and output of the network proposed in our method are three-dimensional.In the training stage,we design a large number of diversifi ed simulation model-data pairs by using the random walk method to improve the generalization ability of the network.In the test phase,we verify the network performance by using the model-data pairs generated by the simulation.To further illustrate the eff ectiveness of the algorithm,we apply the method to the inversion of the San Nicolas mining area,and the inversion results are basically consistent with the borehole measurement results.Moreover,the results of the 3D U-Net++inversion and the 3D U-Net inversion are compared.The density models of the 3D U-Net++inversion have higher resolution,more concentrated inversion results,and a clearer boundary of the density model.展开更多
Focusing inversion is accomplished by the iterative of abnormal source to make the image gradually focused. It can better reflect the underground geological geometry and physical parameters. The model experiments in t...Focusing inversion is accomplished by the iterative of abnormal source to make the image gradually focused. It can better reflect the underground geological geometry and physical parameters. The model experiments in the study show that gravity focusing inversion allows inversion image stabilization and polymerization,which solves the multiple solutions and instability of inversion and so on. The method is applied to measured gravity data processing of certain region of Changbai Mountain,compared to Euler deconvolution,the results show that the method for determining the horizontal position and depth of underground anomalies has good efforts.展开更多
Gravity inversion requires much computation,and inversion results are often non-unique.The first problem is often due to the large number of grid cells.Edge detection method,i.e.,tilt angle method of analytical signal...Gravity inversion requires much computation,and inversion results are often non-unique.The first problem is often due to the large number of grid cells.Edge detection method,i.e.,tilt angle method of analytical signal amplitude(TAS),helps to identify the boundaries of underground geological anomalies at different depths,which can be used to optimize the grid and reduce the number of grid cells.The requirement of smooth inversion is that the boundaries of the meshing area should be continuous rather than jagged.In this paper,the optimized meshing strategy is improved,and the optimized meshing region obtained by the TAS is changed to a regular region to facilitate the smooth inversion.For the second problem,certain constraints can be used to improve the accuracy of inversion.The results of analytic signal amplitude(ASA)are used to delineate the central distribution of geological bodies.We propose a new method using the results of ASA to perform local constraints to reduce the non-uniqueness of inversion.The guided fuzzy c-means(FCM)clustering algorithm combined with priori petrophysical information is also used to reduce the non-uniqueness of gravity inversion.The Open Acc technology is carried out to speed up the computation for parallelizing the serial program on GPU.In general,the TAS is used to reduce the number of grid cells.The local weighting and priori petrophysical constraint are used in conjunction with the FCM algorithm during the inversion,which improves the accuracy of inversion.The inversion is accelerated by the Open Acc technology on GPU.The proposed method is validated using synthetic data,and the results show that the efficiency and accuracy of gravity inversion are greatly improved by using the proposed method.展开更多
We present a 3D inversion method to recover density distribution from gravity data in space domain.Our method firstly employs 3D correlation image of the vertical gradient of gravity data as a starting model to genera...We present a 3D inversion method to recover density distribution from gravity data in space domain.Our method firstly employs 3D correlation image of the vertical gradient of gravity data as a starting model to generate a higher resolution image for inversion.The 3D density distribution is then obtained by inverting the correlation image of gravity data to fit the observed data based on classical inversion method of the steepest descent method.We also perform the effective equivalent storage and subdomain techniques in the starting model calculation,the forward modeling and the inversion procedures,which allow fast computation in space domain with reducing memory consumption but maintaining accuracy.The efficiency and stability of our method is demonstrated on two sets of synthetic data and one set of the Northern Sinai Peninsula gravity data.The inverted 3D density distributions show that high density bodies beneath Risan Aniza and low density bodies exist to the southeast of Risan Aniza at depths between 1~10 and 20 km,which may be originated from hot anomalies in the lower crust.The results show that our inversion method is useful for 3D quantitative interpretation.展开更多
Based on the synchronous joint gravity and magnetic inversion of single interface by Pilkington and the need of revealing Cenozoic and crystalline basement thickness in the new round of oil-gas exploration, we propose...Based on the synchronous joint gravity and magnetic inversion of single interface by Pilkington and the need of revealing Cenozoic and crystalline basement thickness in the new round of oil-gas exploration, we propose a joint gravity and magnetic inversion methodfor two-layer models by concentrating on the relationship between the change of thicknessI and position of the middle layer and anomaly and discuss the effects of the key parameters. Model tests and application to field data show the validity of this method.展开更多
Tikhonov regularization(TR) method has played a very important role in the gravity data and magnetic data process. In this paper, the Tikhonov regularization method with respect to the inversion of gravity data is d...Tikhonov regularization(TR) method has played a very important role in the gravity data and magnetic data process. In this paper, the Tikhonov regularization method with respect to the inversion of gravity data is discussed. and the extrapolated TR method(EXTR) is introduced to improve the fitting error. Furthermore, the effect of the parameters in the EXTR method on the fitting error, number of iterations, and inversion results are discussed in details. The computation results using a synthetic model with the same and different densities indicated that. compared with the TR method, the EXTR method not only achieves the a priori fitting error level set by the interpreter but also increases the fitting precision, although it increases the computation time and number of iterations. And the EXTR inversion results are more compact than the TR inversion results, which are more divergent. The range of the inversion data is closer to the default range of the model parameters, and the model features and default model density distribution agree well.展开更多
The stretched structure and heterogeneity of the crust of the Nansha Block,the southern continental margin of the South China Sea(SCS),are not well understood.We used published ocean bottom seismic(OBS)/multichannel r...The stretched structure and heterogeneity of the crust of the Nansha Block,the southern continental margin of the South China Sea(SCS),are not well understood.We used published ocean bottom seismic(OBS)/multichannel reflection seismic(MCS)profiles across the Nansha Block to establish five two-dimensional crustal structure models.Using gravity modelling with magnetic anomaly inversion,we obtained the distribution of density and local magnetic susceptibility of the crust.The models show that the distribution of density and thickness of the upper crust in the Nansha Block is uneven,and the thick upper crust is prevalent in the regions close to the continent-ocean transition(COT)showing different characteristics.The interpreted Mesozoic granite blocks and Precambrian rigid basement reflects the heterogeneity in the material composition of the SCS continental margin.Based on the thinning styles of different crustal layers,we suggest that the Nansha Block has a three-layer thinning pattern.The uppermost pre-rift layer was deformed via brittle fractures,the upper crust was sheared by discrete shear zones,and the lower crust experienced ductile deformation.The inherited pre-rift thermal regime,mechanical state,and material composition of the SCS continental margin affected the extensional structure of the crust.展开更多
The Guxiang-Tongmai segment of the Jiali fault is situated northeast of the Namche Barwa Syntaxis in northeastern Tibet.It is one of the most active strike-slip faults near the syntaxis and plays a pivotal role in the...The Guxiang-Tongmai segment of the Jiali fault is situated northeast of the Namche Barwa Syntaxis in northeastern Tibet.It is one of the most active strike-slip faults near the syntaxis and plays a pivotal role in the examination of seismic activity within the eastern Himalayan Syntaxis.New study in the research region has yielded a 1:200000 gravity dataset covering an area 1500 km^(2).Using wavelet transform multiscale decomposition,scratch analysis techniques,and 3D gravity inversion methods,gravity anomalies,fault distributions,and density structures were determined across various scales.Through the integration of our new gravity data with other geophysical and geological information,our findings demonstrate substantial variations in the overall crustal density within the region,with the fault distribution closely linked to these density fluctuations.Disparities in stratigraphic density are important causes of variations in the capacity of geological formations to endure regional tectonic stress.Earthquakes are predominantly concentrated within the density transition zone and are primarily situated in regions of elevated density.The hanging wall stress within the Guxiang-Tongmai segment of the Jiali fault exhibits a notable concentration,marked by pronounced anisotropy,and is positioned within the density differential zone,which is prone to earthquakes.展开更多
The 4.20 Lushan Ms7.0 earthquake occurred on the southwest segment of the Longmenshan fault on 20 April 2013. Some meaningful information on the prepa- ration and occurrence of this earthquake was found based on the d...The 4.20 Lushan Ms7.0 earthquake occurred on the southwest segment of the Longmenshan fault on 20 April 2013. Some meaningful information on the prepa- ration and occurrence of this earthquake was found based on the dynamic variation of gravity (DVG). To examine the great progress of the Lushan earthquake, we obtained the density variation (DENV) derived from the DVG using the compact gravity inversion method in this article. The inversion results reveal three main findings: (1) the DENV in the crust in the Jinshajiang fault area changed from positive in 2010-2011 to negative in 2011-2012. (2) The DENV in the Xianshuihe fault area decreased continuously from 2010 to 2012. (3) The DENV of the uppermost mantle of South China decreased in 2010-2011 and increased in 2011-2012. We propose that the flow/expansion of the middle-lower crust beneath the Bayan Har block and Moho subsidence on the southwest margin of the Chuan-Dian block may have been the major causes of the Lushan earthquake.展开更多
Based on a satellite constellation composed of two GRACE-type satellite formations with different inclinations(near polar orbit + low inclination) and the theory of repeat orbit cycle, we discuss the methods for selec...Based on a satellite constellation composed of two GRACE-type satellite formations with different inclinations(near polar orbit + low inclination) and the theory of repeat orbit cycle, we discuss the methods for selecting medium-low inclinations for global and local gravity fields. The effects of this constellation configuration on gravity field inversion are comparatively analyzed using a whole-course dynamics simulation. The results show that compared with the single GRACE-type satellite formation,the use of satellite constellations with different inclination configurations improves the gravity solution precision by 34%. The inclusion of multi-directional observations can improve the spatio-temporal resolution of the satellite missions, and yield gravity field solutions with higher isotropic sensitivity.Furthermore, it is necessary to select the optimal low inclination according to the study area, which will have a significant influence on the gravity field solution.展开更多
Based on the absolute and relative gravity observations in North China from 2009 to 2014,spatial dynamic variations of the regional gravity field are obtained. We employed the Euler deconvolution method and the theore...Based on the absolute and relative gravity observations in North China from 2009 to 2014,spatial dynamic variations of the regional gravity field are obtained. We employed the Euler deconvolution method and the theoretical model to get the best estimates of parameters. Gravity field change caused by the depth and distribution in North China is calculated by back analysis. The results show the structural index that equals 1 is suitable for inversion of the gravity variation data. The inversion results indicate that the depths of anomaly field sources are spread over the Hetao fault. The research method of this paper can be used in the quantitative study on the field source and may shed new light on the interpretations of gravity change, and also provide quantitative basis for earthquake prediction index criterions based on the gravity change.展开更多
Cosmological expansion or inflation is mathematically described by the theoretical notion of inverse gravity whose variations are parameterized by a factor that is a function of the distance to which cosmological expa...Cosmological expansion or inflation is mathematically described by the theoretical notion of inverse gravity whose variations are parameterized by a factor that is a function of the distance to which cosmological expansion takes prominence over gravity. This assertion is referred to as the inverse gravity inflationary assertion. Thus, a correction to Newtonian gravitational force is introduced where a parameterized inverse gravity force term is incorporated into the classical Newtonian gravitational force equation where the inverse force term is negligible for distances less than the distance to which cosmological expansion takes prominence over gravity. Conversely, at distances greater than the distance to which cosmological expansion takes prominence over gravity. The inverse gravity term is shown to be dominant generating universal inflation. Gravitational potential energy is thence defined by the integral of the difference (or subtraction) between the conventional Newtonian gravitational force term and the inverse gravity term with respect to radius (r) which allows the formulation, incorporation, and mathematical description to and of gravitational redshift, the Walker-Robertson scale factor, the Robinson-Walker metric, the Klein-Gordon lagrangian, and dark energy and its relationship to the energy of the big bang in terms of the Inverse gravity inflationary assertion. Moreover, the dynamic pressure of the expansion of a cosmological fluid in a homogeneous isotropic universe is mathematically described in terms of the inverse gravity inflationary assertion using the stress-energy tensor for a perfect fluid. Lastly, Einstein’s field equations for the description of an isotropic and homogeneous universe are derived incorporating the mathematics of the inverse gravity inflationary assertion to fully show that the theoretical concept is potentially interwoven into the cosmological structure of the universe.展开更多
Gravity field is the most basic physical field generated by the material properties of the Earth system.It reflects the spatial distribution,movement and change of materials determined by the interaction and dynamic p...Gravity field is the most basic physical field generated by the material properties of the Earth system.It reflects the spatial distribution,movement and change of materials determined by the interaction and dynamic process inside the Earth.Over the years,a variety of technical means have been used to detect the Earth’s gravity field and supported numerous studies on the global change,resource detection,geological structure movement,water resources change and other related fields of research.Here is part of the progress in surface and marine gravimetry obtained by Chinese geodesy scientists from 2019 to 2023 from the following aspects,including:①Continuous gravity network in Chinese mainland;②Application of superconducting gravity measurement;③Network adjustment for continental-scale gravity survey campaign and data quality control;④Regional time-variable gravity field and its application;⑤Research progress on novel technologies for gravity inversion;⑥Research progress on marine gravity field determination;⑦Application research on marine gravity field.展开更多
To rapidly model the gravity field near elongated asteroids,an intelligent inversion method using Hopfield neural networks(HNNs)is proposed to estimate on-orbit simplified model parameters.First,based on a rotating ma...To rapidly model the gravity field near elongated asteroids,an intelligent inversion method using Hopfield neural networks(HNNs)is proposed to estimate on-orbit simplified model parameters.First,based on a rotating mass dipole model,the gravitational field of asteroids is characterized using a few parameters.To solve all the parameters of this simplified model,a stepped parameter estimation model is constructed based on different gravity field models.Second,to overcome linearization difficulties caused by the coupling of the parameters to be estimated and the system state,a dynamic parameter linearization technique is proposed such that all terms except the parameter terms are known or available.Moreover,the Lyapunov function of the HNNs is matched to the problem of minimizing parameter estimation errors.Equilibrium values of the Lyapunov function areused as estimated values.The proposed method is applied to natural elongated asteroids 216 Kleopatra,951 Gaspra,and 433 Eros.Simulation results indicate that this method can estimate the simplified model parameters rapidly,and that the estimated simplified model provides a good approximation of the gravity field of elongated asteroids.展开更多
The southern segment of the North-South Seismic Belt in China is a critical region for earthquake preparedness and risk reduction efforts.However,limited by the low density of seismic stations and the use of single-pa...The southern segment of the North-South Seismic Belt in China is a critical region for earthquake preparedness and risk reduction efforts.However,limited by the low density of seismic stations and the use of single-parameter physical structural models,the deep tectonic features and seismogenic environment in this area remain controversial.Thus,a comprehensive analysis based on high-resolution crustal structures and multiple physical parameters is required.In this study,we applied the ambient noise tomography method to obtain the three-dimensional(3D)crustal S-wave velocity structure using continuous waveform data from 112 permanent stations and 350 densely distributed temporary stations in the southern segment of the North-South Seismic Belt.Then,we obtained the high-resolution 3D density structure through wavenumber-domain 3D gravity imaging constrained by the velocity structure.The low-velocity and low-density anomalies in the upper crust of the study area were mainly distributed in the Sichuan Basin and around Dali and Simao,while the high-velocity and high-density anomalies were primarily distributed in the Panxi region,corresponding to the surface geological features.Two prominent low-velocity and low-density anomalies were observed in the middle and lower crust:one to the west of the Songpan-Garzêblock and Sichuan-Yunnan diamond-shaped block,and the other near the Anninghe-Xiaojiang fault.Combined with the spatial distribution of seismic events in the study area,we found that previous earthquakes predominantly occurred in the transition zones between high and low anomaly regions and in the low-velocity and low-density zones in the upper crust.In contrast,moderate-to-strong earthquakes mainly occurred within the transition zones between high and low anomaly regions and close to the high-velocity and high-density regions,often with low-velocity and low-density layers below their hypocenters.Fluids play a critical role in the seismogenic process by reducing fault strength and destabilizing the stress state,which may be a triggering factor for earthquakes in the study area.Additionally,the upwelling of molten materials from the mantle may lead to energy accumulation and stress conce-ntration,providing an important seismogenic background for moderate-to-strong earthquakes in this area.展开更多
A three-dimensional density model of the crust and uppermost mantle is determined by the inversion of a set of GOCE gravity and gradients residual anomalies beneath the eastern margin of the Tibetan Plateau and its su...A three-dimensional density model of the crust and uppermost mantle is determined by the inversion of a set of GOCE gravity and gradients residual anomalies beneath the eastern margin of the Tibetan Plateau and its surrounding areas. In our work, we choose five independent gravity gradients (Txx, Tzz, Txy, Txz, Tyz) to perform density inversion. Objective function is given based on Tikhonov regularization theory. Seismic S-wave velocities play the role of initial constraint for the inversion based on a relationship between density and S-wave velocity. Damped Least Square method is used during the inversion. The final density results offer some insights into understanding the underlying geodynamic processes: (1) Low densities in the margin of the Tibet, along with low wave velocity and resistivity results, yield conversions from soft and weak Tibet to the hard and rigid cratons. (2)The lowest densities are found in the boundary of the plateau, instead of the whole Tibet indicates that the effects of extrusion stress environment in the margin affect the changes of the substance there. The substances and environments conditioning for the earthquake preparations and strong deformation in this transitional zone. (3) Evident low-D anomaly in the upper and middle crust in the Lasha terrane and Songpan-Ganzi terrane illustrated the eastward sub-ducted of southeastern Tibet, which could be accounts for the frequent volcano and earthouakes there.展开更多
The sand-conglomerate fans are the major depositional systems in the lower third member of Shahejie Formation in Shengtuo area, which formed in the deep lacustrine environment characterized by steep slope gradient, ne...The sand-conglomerate fans are the major depositional systems in the lower third member of Shahejie Formation in Shengtuo area, which formed in the deep lacustrine environment characterized by steep slope gradient, near sources and intensive tectonic activity. This work was focused on the sedimentary feature of the glutenite segment to conduct the seismic sedimentology research. The near-shore subaqueous fans and its relative gravity channel and slump turbidite fan depositions were identified according to observation and description of cores combining with the numerous data of seismic and logging. Then, the depositional model was built depending on the analysis of palaeogeomorphology. The seismic attributes which are related to the hydrocarbon but relative independent were chosen to conduct the analysis, the reservoir area of the glutenite segment was found performing a distribution where the amplitude value is relatively higher, and finally the RMS amplitude attribute was chosen to conduct the attribute predicting. At the same time, the horizontal distribution of the sedimentary facies was analyzed qualitatively. At last, the sparse spike inversion method was used to conduct the acoustic impedance inversion, and the inversion result can distinguish glutenite reservoir which is greater than 5 m. This method quantitatively characterizes the distribution area of the favorable reservoir sand.展开更多
In this paper, we analyze lithospheric density distribution of China and surrounding regions on the basis of 30' × 30' gravity data and 1°×1 °P-wave velodty data, Firstly, we used the empirical e...In this paper, we analyze lithospheric density distribution of China and surrounding regions on the basis of 30' × 30' gravity data and 1°×1 °P-wave velodty data, Firstly, we used the empirical equation be- tween the density and the P-wave velocity difference as the base of the initial model of the Asian lithospheric density. Secondly, we calculated the gravity anomaly, caused by the Moho discontinuity and the sedimentary layer discontinuity, by the Parker formula. Thirdly, the gravity anomaly of the spherical harmonics with 2 40 order for the anomalous body below the lithosphere is calculated based on the model of EGM96. Finally, by using Algebra Reconstruction Techniques (ART), the inversion of 30' ~ 30' residual lithospheric Bouguer gravity anomaly caused by the lithosphere yields a rather detailed struc- tural model. The results show that the lithospheric density distribution of China and surrounding regions has a certain connection with the tectonic structure. The density is relatively high in the Philippine Sea plate, Japan Sea, the Indian plate, the Kazakhstan shield and the Western Siberia plain, whereas the Tibetan Plateau has low-density characteristics. The minimum value of density lies in the north of Philippines, in the Taiwan province and in the Ryukyu island arc.展开更多
基金The National Natural Science Foundation of China under contract No. 42076078China–Mozambique Joint Cruise under contract No. GASI-01-DLJHJ-CM。
文摘Mozambique's continental margin in East Africa was formed during the break-off stage of the east and west Gondwana lands. Studying the geological structure and division of continent-ocean boundary(COB) in Mozambique's continental margin is considered of great significance to rebuild Gondwana land and understand its movement mode. Along these lines, in this work, the initial Moho was fit using the known Moho depth from reflection seismic profiles, and a 3D multi-point constrained gravity inversion was carried out. Thus, highaccuracy Moho depth and crustal thickness in the study area were acquired. According to the crustal structure distribution based on the inversion results, the continental crust at the narrowest position of the Mozambique Channel was detected. According to the analysis of the crustal thickness, the Mozambique ridge is generally oceanic crust and the COB of the whole Mozambique continental margin is divided.
基金supported by the Key Project Fund of the Chinese Academy of Sciences under grant number (kzcx2-yw-203-01)the Major State Basic Research Development Program of China(973 Program,Grant No.2007CB41170404)
文摘Three-dimensional gravity inversion based on the mass property model is very popular in recent years. The time and efficiency of inversion algorithms is relative to the magnitude of the target mesh. One approach is to search over the entire solution space for a more refined result. However, the inversion will be difficult with the increased parameters in the large search space and the number of computations increases exponentially. |n this paper, we propose a novel approach based on the frequency characteristics of the density distribution over the mesh. The purposes of our study are to reduce the parameters of three- dimensional gravity inversion and to lighten the image quality of the inversion result. The results show that the new method can expedite the inversion processing and get a better geological interpretation than tradition methods.
基金supported by the Key Laboratory of Geological Survey and Evaluation of Ministry of Education (China University of Geosciences)(No. GLAB2020ZR13)
文摘The gravity inversion is to restore genetic density distribution of the underground target to be explored for explaining the internal structure and distribution of the Earth.In this paper,we propose a new 3D gravity inversion method based on 3D U-Net++.Compared with two-dimensional gravity inversion,three-dimensional(3D)gravity inversion can more precisely describe the density distribution of underground space.However,conventional 3D gravity inversion method input is two-dimensional,the input and output of the network proposed in our method are three-dimensional.In the training stage,we design a large number of diversifi ed simulation model-data pairs by using the random walk method to improve the generalization ability of the network.In the test phase,we verify the network performance by using the model-data pairs generated by the simulation.To further illustrate the eff ectiveness of the algorithm,we apply the method to the inversion of the San Nicolas mining area,and the inversion results are basically consistent with the borehole measurement results.Moreover,the results of the 3D U-Net++inversion and the 3D U-Net inversion are compared.The density models of the 3D U-Net++inversion have higher resolution,more concentrated inversion results,and a clearer boundary of the density model.
文摘Focusing inversion is accomplished by the iterative of abnormal source to make the image gradually focused. It can better reflect the underground geological geometry and physical parameters. The model experiments in the study show that gravity focusing inversion allows inversion image stabilization and polymerization,which solves the multiple solutions and instability of inversion and so on. The method is applied to measured gravity data processing of certain region of Changbai Mountain,compared to Euler deconvolution,the results show that the method for determining the horizontal position and depth of underground anomalies has good efforts.
基金supported by the National Key Research and Development Program of China Project(Grant No.2018YFC0603502)
文摘Gravity inversion requires much computation,and inversion results are often non-unique.The first problem is often due to the large number of grid cells.Edge detection method,i.e.,tilt angle method of analytical signal amplitude(TAS),helps to identify the boundaries of underground geological anomalies at different depths,which can be used to optimize the grid and reduce the number of grid cells.The requirement of smooth inversion is that the boundaries of the meshing area should be continuous rather than jagged.In this paper,the optimized meshing strategy is improved,and the optimized meshing region obtained by the TAS is changed to a regular region to facilitate the smooth inversion.For the second problem,certain constraints can be used to improve the accuracy of inversion.The results of analytic signal amplitude(ASA)are used to delineate the central distribution of geological bodies.We propose a new method using the results of ASA to perform local constraints to reduce the non-uniqueness of inversion.The guided fuzzy c-means(FCM)clustering algorithm combined with priori petrophysical information is also used to reduce the non-uniqueness of gravity inversion.The Open Acc technology is carried out to speed up the computation for parallelizing the serial program on GPU.In general,the TAS is used to reduce the number of grid cells.The local weighting and priori petrophysical constraint are used in conjunction with the FCM algorithm during the inversion,which improves the accuracy of inversion.The inversion is accelerated by the Open Acc technology on GPU.The proposed method is validated using synthetic data,and the results show that the efficiency and accuracy of gravity inversion are greatly improved by using the proposed method.
基金the Institute of Crustal Dynamics,China Earthquake Administration(Grant No.ZDJ2019-09)the National Science Foundation of China(Grant No.41704086)the National Key Research&Development Program(2016YFC060110401).
文摘We present a 3D inversion method to recover density distribution from gravity data in space domain.Our method firstly employs 3D correlation image of the vertical gradient of gravity data as a starting model to generate a higher resolution image for inversion.The 3D density distribution is then obtained by inverting the correlation image of gravity data to fit the observed data based on classical inversion method of the steepest descent method.We also perform the effective equivalent storage and subdomain techniques in the starting model calculation,the forward modeling and the inversion procedures,which allow fast computation in space domain with reducing memory consumption but maintaining accuracy.The efficiency and stability of our method is demonstrated on two sets of synthetic data and one set of the Northern Sinai Peninsula gravity data.The inverted 3D density distributions show that high density bodies beneath Risan Aniza and low density bodies exist to the southeast of Risan Aniza at depths between 1~10 and 20 km,which may be originated from hot anomalies in the lower crust.The results show that our inversion method is useful for 3D quantitative interpretation.
基金Supported by the National Natural Science Foundation of China(Grant No.40674063)National Hi-tech Research and Development Program of China(863Program)(Grant No.2006AA09Z311)
文摘Based on the synchronous joint gravity and magnetic inversion of single interface by Pilkington and the need of revealing Cenozoic and crystalline basement thickness in the new round of oil-gas exploration, we propose a joint gravity and magnetic inversion methodfor two-layer models by concentrating on the relationship between the change of thicknessI and position of the middle layer and anomaly and discuss the effects of the key parameters. Model tests and application to field data show the validity of this method.
基金supported by the National Scientific and Technological Plan(Nos.2009BAB43B00 and 2009BAB43B01)
文摘Tikhonov regularization(TR) method has played a very important role in the gravity data and magnetic data process. In this paper, the Tikhonov regularization method with respect to the inversion of gravity data is discussed. and the extrapolated TR method(EXTR) is introduced to improve the fitting error. Furthermore, the effect of the parameters in the EXTR method on the fitting error, number of iterations, and inversion results are discussed in details. The computation results using a synthetic model with the same and different densities indicated that. compared with the TR method, the EXTR method not only achieves the a priori fitting error level set by the interpreter but also increases the fitting precision, although it increases the computation time and number of iterations. And the EXTR inversion results are more compact than the TR inversion results, which are more divergent. The range of the inversion data is closer to the default range of the model parameters, and the model features and default model density distribution agree well.
基金Supported by the National Natural Science Foundation of China(Nos.42076078,41776057,42176055)the Open Foundation of Key Laboratory of Submarine Geosciences,Ministry of Natural Resources(No.KLSG2004)。
文摘The stretched structure and heterogeneity of the crust of the Nansha Block,the southern continental margin of the South China Sea(SCS),are not well understood.We used published ocean bottom seismic(OBS)/multichannel reflection seismic(MCS)profiles across the Nansha Block to establish five two-dimensional crustal structure models.Using gravity modelling with magnetic anomaly inversion,we obtained the distribution of density and local magnetic susceptibility of the crust.The models show that the distribution of density and thickness of the upper crust in the Nansha Block is uneven,and the thick upper crust is prevalent in the regions close to the continent-ocean transition(COT)showing different characteristics.The interpreted Mesozoic granite blocks and Precambrian rigid basement reflects the heterogeneity in the material composition of the SCS continental margin.Based on the thinning styles of different crustal layers,we suggest that the Nansha Block has a three-layer thinning pattern.The uppermost pre-rift layer was deformed via brittle fractures,the upper crust was sheared by discrete shear zones,and the lower crust experienced ductile deformation.The inherited pre-rift thermal regime,mechanical state,and material composition of the SCS continental margin affected the extensional structure of the crust.
基金supported by the National Foundation of China(Grant Nos.41941016 and 42174123)China Geological Survey(Grant No.DD20221630).
文摘The Guxiang-Tongmai segment of the Jiali fault is situated northeast of the Namche Barwa Syntaxis in northeastern Tibet.It is one of the most active strike-slip faults near the syntaxis and plays a pivotal role in the examination of seismic activity within the eastern Himalayan Syntaxis.New study in the research region has yielded a 1:200000 gravity dataset covering an area 1500 km^(2).Using wavelet transform multiscale decomposition,scratch analysis techniques,and 3D gravity inversion methods,gravity anomalies,fault distributions,and density structures were determined across various scales.Through the integration of our new gravity data with other geophysical and geological information,our findings demonstrate substantial variations in the overall crustal density within the region,with the fault distribution closely linked to these density fluctuations.Disparities in stratigraphic density are important causes of variations in the capacity of geological formations to endure regional tectonic stress.Earthquakes are predominantly concentrated within the density transition zone and are primarily situated in regions of elevated density.The hanging wall stress within the Guxiang-Tongmai segment of the Jiali fault exhibits a notable concentration,marked by pronounced anisotropy,and is positioned within the density differential zone,which is prone to earthquakes.
基金supported by the National Natural Science Foundation of China (41304060)the National Key Basic Research Program of China (973 Program, 2013CB733305)Scientific Investigation of April 20, 2013 M7.0 Lushan, Sichuan Earthquake
文摘The 4.20 Lushan Ms7.0 earthquake occurred on the southwest segment of the Longmenshan fault on 20 April 2013. Some meaningful information on the prepa- ration and occurrence of this earthquake was found based on the dynamic variation of gravity (DVG). To examine the great progress of the Lushan earthquake, we obtained the density variation (DENV) derived from the DVG using the compact gravity inversion method in this article. The inversion results reveal three main findings: (1) the DENV in the crust in the Jinshajiang fault area changed from positive in 2010-2011 to negative in 2011-2012. (2) The DENV in the Xianshuihe fault area decreased continuously from 2010 to 2012. (3) The DENV of the uppermost mantle of South China decreased in 2010-2011 and increased in 2011-2012. We propose that the flow/expansion of the middle-lower crust beneath the Bayan Har block and Moho subsidence on the southwest margin of the Chuan-Dian block may have been the major causes of the Lushan earthquake.
基金financially supported by the National Key R&D Program of China (2018YFC1503503)the National Natural Science Foundation of China (41974012)。
文摘Based on a satellite constellation composed of two GRACE-type satellite formations with different inclinations(near polar orbit + low inclination) and the theory of repeat orbit cycle, we discuss the methods for selecting medium-low inclinations for global and local gravity fields. The effects of this constellation configuration on gravity field inversion are comparatively analyzed using a whole-course dynamics simulation. The results show that compared with the single GRACE-type satellite formation,the use of satellite constellations with different inclination configurations improves the gravity solution precision by 34%. The inclusion of multi-directional observations can improve the spatio-temporal resolution of the satellite missions, and yield gravity field solutions with higher isotropic sensitivity.Furthermore, it is necessary to select the optimal low inclination according to the study area, which will have a significant influence on the gravity field solution.
基金funded by the Natural Science Foundation of China(61627824,41274083)the Youth Foundation of Earthquake Prediction(2017010227)
文摘Based on the absolute and relative gravity observations in North China from 2009 to 2014,spatial dynamic variations of the regional gravity field are obtained. We employed the Euler deconvolution method and the theoretical model to get the best estimates of parameters. Gravity field change caused by the depth and distribution in North China is calculated by back analysis. The results show the structural index that equals 1 is suitable for inversion of the gravity variation data. The inversion results indicate that the depths of anomaly field sources are spread over the Hetao fault. The research method of this paper can be used in the quantitative study on the field source and may shed new light on the interpretations of gravity change, and also provide quantitative basis for earthquake prediction index criterions based on the gravity change.
文摘Cosmological expansion or inflation is mathematically described by the theoretical notion of inverse gravity whose variations are parameterized by a factor that is a function of the distance to which cosmological expansion takes prominence over gravity. This assertion is referred to as the inverse gravity inflationary assertion. Thus, a correction to Newtonian gravitational force is introduced where a parameterized inverse gravity force term is incorporated into the classical Newtonian gravitational force equation where the inverse force term is negligible for distances less than the distance to which cosmological expansion takes prominence over gravity. Conversely, at distances greater than the distance to which cosmological expansion takes prominence over gravity. The inverse gravity term is shown to be dominant generating universal inflation. Gravitational potential energy is thence defined by the integral of the difference (or subtraction) between the conventional Newtonian gravitational force term and the inverse gravity term with respect to radius (r) which allows the formulation, incorporation, and mathematical description to and of gravitational redshift, the Walker-Robertson scale factor, the Robinson-Walker metric, the Klein-Gordon lagrangian, and dark energy and its relationship to the energy of the big bang in terms of the Inverse gravity inflationary assertion. Moreover, the dynamic pressure of the expansion of a cosmological fluid in a homogeneous isotropic universe is mathematically described in terms of the inverse gravity inflationary assertion using the stress-energy tensor for a perfect fluid. Lastly, Einstein’s field equations for the description of an isotropic and homogeneous universe are derived incorporating the mathematics of the inverse gravity inflationary assertion to fully show that the theoretical concept is potentially interwoven into the cosmological structure of the universe.
基金Open Fund of Hubei Luojia Laboratory(No.220100033)National Natural Science Foundation of China(Nos.42174108,42192535,42242015)。
文摘Gravity field is the most basic physical field generated by the material properties of the Earth system.It reflects the spatial distribution,movement and change of materials determined by the interaction and dynamic process inside the Earth.Over the years,a variety of technical means have been used to detect the Earth’s gravity field and supported numerous studies on the global change,resource detection,geological structure movement,water resources change and other related fields of research.Here is part of the progress in surface and marine gravimetry obtained by Chinese geodesy scientists from 2019 to 2023 from the following aspects,including:①Continuous gravity network in Chinese mainland;②Application of superconducting gravity measurement;③Network adjustment for continental-scale gravity survey campaign and data quality control;④Regional time-variable gravity field and its application;⑤Research progress on novel technologies for gravity inversion;⑥Research progress on marine gravity field determination;⑦Application research on marine gravity field.
基金supported by the National Natural Science Foundation of China(No.12102177)the Natural Science Foundation of Jiangsu Province(No.BK20220130).
文摘To rapidly model the gravity field near elongated asteroids,an intelligent inversion method using Hopfield neural networks(HNNs)is proposed to estimate on-orbit simplified model parameters.First,based on a rotating mass dipole model,the gravitational field of asteroids is characterized using a few parameters.To solve all the parameters of this simplified model,a stepped parameter estimation model is constructed based on different gravity field models.Second,to overcome linearization difficulties caused by the coupling of the parameters to be estimated and the system state,a dynamic parameter linearization technique is proposed such that all terms except the parameter terms are known or available.Moreover,the Lyapunov function of the HNNs is matched to the problem of minimizing parameter estimation errors.Equilibrium values of the Lyapunov function areused as estimated values.The proposed method is applied to natural elongated asteroids 216 Kleopatra,951 Gaspra,and 433 Eros.Simulation results indicate that this method can estimate the simplified model parameters rapidly,and that the estimated simplified model provides a good approximation of the gravity field of elongated asteroids.
基金This research was jointly funded by the National Key R&D Program of China(No.2021YFA0715101)the National Natural Science Foundation of China(Nos.41974101 and 41774098)the MOST Special Fund from the State Key Laboratory of Geological Processes and Mineral Resources,China University of Geosciences.We thank the two anonymous reviewers and the associate editor for their precious comments and suggestions。
文摘The southern segment of the North-South Seismic Belt in China is a critical region for earthquake preparedness and risk reduction efforts.However,limited by the low density of seismic stations and the use of single-parameter physical structural models,the deep tectonic features and seismogenic environment in this area remain controversial.Thus,a comprehensive analysis based on high-resolution crustal structures and multiple physical parameters is required.In this study,we applied the ambient noise tomography method to obtain the three-dimensional(3D)crustal S-wave velocity structure using continuous waveform data from 112 permanent stations and 350 densely distributed temporary stations in the southern segment of the North-South Seismic Belt.Then,we obtained the high-resolution 3D density structure through wavenumber-domain 3D gravity imaging constrained by the velocity structure.The low-velocity and low-density anomalies in the upper crust of the study area were mainly distributed in the Sichuan Basin and around Dali and Simao,while the high-velocity and high-density anomalies were primarily distributed in the Panxi region,corresponding to the surface geological features.Two prominent low-velocity and low-density anomalies were observed in the middle and lower crust:one to the west of the Songpan-Garzêblock and Sichuan-Yunnan diamond-shaped block,and the other near the Anninghe-Xiaojiang fault.Combined with the spatial distribution of seismic events in the study area,we found that previous earthquakes predominantly occurred in the transition zones between high and low anomaly regions and in the low-velocity and low-density zones in the upper crust.In contrast,moderate-to-strong earthquakes mainly occurred within the transition zones between high and low anomaly regions and close to the high-velocity and high-density regions,often with low-velocity and low-density layers below their hypocenters.Fluids play a critical role in the seismogenic process by reducing fault strength and destabilizing the stress state,which may be a triggering factor for earthquakes in the study area.Additionally,the upwelling of molten materials from the mantle may lead to energy accumulation and stress conce-ntration,providing an important seismogenic background for moderate-to-strong earthquakes in this area.
基金the Major State Basic Research Development Program of China 973 Program(2013CB733301)the National Natural Science Fund(41274025) for supporting the work
文摘A three-dimensional density model of the crust and uppermost mantle is determined by the inversion of a set of GOCE gravity and gradients residual anomalies beneath the eastern margin of the Tibetan Plateau and its surrounding areas. In our work, we choose five independent gravity gradients (Txx, Tzz, Txy, Txz, Tyz) to perform density inversion. Objective function is given based on Tikhonov regularization theory. Seismic S-wave velocities play the role of initial constraint for the inversion based on a relationship between density and S-wave velocity. Damped Least Square method is used during the inversion. The final density results offer some insights into understanding the underlying geodynamic processes: (1) Low densities in the margin of the Tibet, along with low wave velocity and resistivity results, yield conversions from soft and weak Tibet to the hard and rigid cratons. (2)The lowest densities are found in the boundary of the plateau, instead of the whole Tibet indicates that the effects of extrusion stress environment in the margin affect the changes of the substance there. The substances and environments conditioning for the earthquake preparations and strong deformation in this transitional zone. (3) Evident low-D anomaly in the upper and middle crust in the Lasha terrane and Songpan-Ganzi terrane illustrated the eastward sub-ducted of southeastern Tibet, which could be accounts for the frequent volcano and earthouakes there.
基金Project(41172109)supported by the National Natural Science Foundation of ChinaProject(20110003110014)supported by the ResearchFoundation for the Doctoral Program of Higher Education,China
文摘The sand-conglomerate fans are the major depositional systems in the lower third member of Shahejie Formation in Shengtuo area, which formed in the deep lacustrine environment characterized by steep slope gradient, near sources and intensive tectonic activity. This work was focused on the sedimentary feature of the glutenite segment to conduct the seismic sedimentology research. The near-shore subaqueous fans and its relative gravity channel and slump turbidite fan depositions were identified according to observation and description of cores combining with the numerous data of seismic and logging. Then, the depositional model was built depending on the analysis of palaeogeomorphology. The seismic attributes which are related to the hydrocarbon but relative independent were chosen to conduct the analysis, the reservoir area of the glutenite segment was found performing a distribution where the amplitude value is relatively higher, and finally the RMS amplitude attribute was chosen to conduct the attribute predicting. At the same time, the horizontal distribution of the sedimentary facies was analyzed qualitatively. At last, the sparse spike inversion method was used to conduct the acoustic impedance inversion, and the inversion result can distinguish glutenite reservoir which is greater than 5 m. This method quantitatively characterizes the distribution area of the favorable reservoir sand.
基金supported by Project SinoProbe-02: Experiment and Integration of Deep Probe Techniques in ChinaNational Natural Science Foundation of China (NSFC, Grant No. 40874067)the Research Fund for the Doctoral Program of Higher Education (Grant No. 20070491520)
文摘In this paper, we analyze lithospheric density distribution of China and surrounding regions on the basis of 30' × 30' gravity data and 1°×1 °P-wave velodty data, Firstly, we used the empirical equation be- tween the density and the P-wave velocity difference as the base of the initial model of the Asian lithospheric density. Secondly, we calculated the gravity anomaly, caused by the Moho discontinuity and the sedimentary layer discontinuity, by the Parker formula. Thirdly, the gravity anomaly of the spherical harmonics with 2 40 order for the anomalous body below the lithosphere is calculated based on the model of EGM96. Finally, by using Algebra Reconstruction Techniques (ART), the inversion of 30' ~ 30' residual lithospheric Bouguer gravity anomaly caused by the lithosphere yields a rather detailed struc- tural model. The results show that the lithospheric density distribution of China and surrounding regions has a certain connection with the tectonic structure. The density is relatively high in the Philippine Sea plate, Japan Sea, the Indian plate, the Kazakhstan shield and the Western Siberia plain, whereas the Tibetan Plateau has low-density characteristics. The minimum value of density lies in the north of Philippines, in the Taiwan province and in the Ryukyu island arc.