ITER magnet gravity support (GS) has been redesigned as a structure of pre- assembled nmlti-flexible plates instead of the original welded structure. In the past several years, engineering tests of the new structure...ITER magnet gravity support (GS) has been redesigned as a structure of pre- assembled nmlti-flexible plates instead of the original welded structure. In the past several years, engineering tests of the new structure have been proposed. A prototype engineering test plat- form is being developed. In order to apply the loads/load combinations onto the test mock-up, seven hydraulic bolt tensioners in three directions have been applied to simulate various loads (forces and moments), through which the deformation of bolts, flexible plates and clamp blocks, the stress distribution in the flexible plates, the friction between the contact surface, etc. can be monitored/tested. The measurement and control system includes seven sets of synchronization controller, a 16-channel strain gauge, 25 sets of displacement sensors, etc. Principles of EDC220 digital controller and development of multi-channel control software are also demonstrated.展开更多
基金supported by ITER domestic research under specific task 2008GB107001
文摘ITER magnet gravity support (GS) has been redesigned as a structure of pre- assembled nmlti-flexible plates instead of the original welded structure. In the past several years, engineering tests of the new structure have been proposed. A prototype engineering test plat- form is being developed. In order to apply the loads/load combinations onto the test mock-up, seven hydraulic bolt tensioners in three directions have been applied to simulate various loads (forces and moments), through which the deformation of bolts, flexible plates and clamp blocks, the stress distribution in the flexible plates, the friction between the contact surface, etc. can be monitored/tested. The measurement and control system includes seven sets of synchronization controller, a 16-channel strain gauge, 25 sets of displacement sensors, etc. Principles of EDC220 digital controller and development of multi-channel control software are also demonstrated.