We derive the potential energy of gravity waves(GWs)in the upper troposphere and stratosphere at 45°S-45°N from December 2019 to November 2022 by using temperature profiles retrieved from the Constellation O...We derive the potential energy of gravity waves(GWs)in the upper troposphere and stratosphere at 45°S-45°N from December 2019 to November 2022 by using temperature profiles retrieved from the Constellation Observing System for Meteorology,Ionosphere,and Climate-2(COSMIC-2)satellite.Owing to the dense sampling of COSMIC-2,in addition to the strong peaks of gravity wave potential energy(GWPE)above the Andes and Tibetan Plateau,we found weak peaks above the Rocky,Atlas,Caucasus,and Tianshan Mountains.The land-sea contrast is responsible for the longitudinal variations of the GWPE in the lower and upper stratosphere.At 40°N/S,the peaks were mainly above the topographic regions during the winter.At 20°N/S,the peaks were a slight distance away from the topographic regions and might be the combined effect of nontopographic GWs and mountain waves.Near the Equator,the peaks were mainly above the regions with the lowest sea level altitude and may have resulted from convection.Our results indicate that even above the local regions with lower sea level altitudes compared with the Andes and Tibetan Plateau,the GWPE also exhibits fine structures in geographic distributions.We found that dissipation layers above the tropopause jet provide the body force to generate secondary waves in the upper stratosphere,especially during the winter months of each hemisphere and at latitudes of greater than 20°N/S.展开更多
It is commonly believed that the atmosphere is decoupled from the solid Earth.Thus,it is difficult for the seismic wave energy inside the Earth to propagate into the atmosphere,and atmospheric pressure wave signals ex...It is commonly believed that the atmosphere is decoupled from the solid Earth.Thus,it is difficult for the seismic wave energy inside the Earth to propagate into the atmosphere,and atmospheric pressure wave signals excited by earthquakes are unlikely to exist in atmospheric observations.An increasing number of studies have shown that earthquakes,volcanoes,and tsunamis can perturb the Earth's atmosphere due to various coupling effects.However,the observations mainly focus on acoustic waves with periods of less than 10 min and inertial gravity waves with periods of greater than 1 h.There are almost no clear observations of gravity waves that coincide with observations of low-frequency signals of the Earth's free oscillation frequency band within 1 h.This paper investigates atmospheric gravity wave signals within1 h of surface-atmosphere observations using the periodogram method based on seismometer and microbarometer observations from the global seismic network before and after the July 29,2021 M_(w)8.2 Alaska earthquake in the United States.The numerical results show that the atmospheric gravity wave signals with frequencies similar to those of the Earth's free oscillations _(0)S_(2) and _(0)T_(2) can be detected in the microbaro meter observations.The results con firm the existence of atmospheric gravity waves,indicating that the atmosphere and the solid Earth are not decoupled within this frequency band and that seismic wave energy excited by earthquakes can propagate from the interior of the Earth to the atmosphere and enhance the atmospheric gravity wave signals within 1 h.展开更多
Internal gravity waves(IGWs)are critical in driving Martian atmospheric motion and phenomena.This study investigates Martian IGWs by using high-resolution data from China’s Tianwen-1 mission and the National Aeronaut...Internal gravity waves(IGWs)are critical in driving Martian atmospheric motion and phenomena.This study investigates Martian IGWs by using high-resolution data from China’s Tianwen-1 mission and the National Aeronautics and Space Administration’s Mars Global Surveyor(MGS)by the radio occultation(RO)technique.Key IGW parameters,such as vertical and horizontal wavelengths,intrinsic frequency,and energy density,are extracted based on vertical temperature profiles from the Martian surface to~50 km altitude.Data reveal that the Martian IGWs are predominantly small-scale waves,with vertical wavelengths between 6 and 13 km and horizontal wavelengths extending to thousands of kilometers.These waves propagate almost vertically and exhibit low intrinsic frequencies close to the inertial frequency,with the characteristic of low-frequency inertial IGWs.Tianwen-1 data indicate stronger IGW activity,higher energy density,and less dissipation than MGS data in the northern hemisphere.Moreover,MGS data in the southern hemisphere show higher buoyancy frequencies and lower vertical wavelengths,suggesting more stable atmospheric conditions conducive to IGW propagation.These extracted IGW characteristics can enhance our understanding of the atmospheric dynamics on Mars and contribute valuable information for parameterization in global circulation models.展开更多
Higher-order Korteweg-de Vries (KdV)-modified KdV (mKdV) equations with a higher-degree of nonlinear terms are derived from a simple incompressible non-hydrostatic Boussinesq equation set in atmosphere and are use...Higher-order Korteweg-de Vries (KdV)-modified KdV (mKdV) equations with a higher-degree of nonlinear terms are derived from a simple incompressible non-hydrostatic Boussinesq equation set in atmosphere and are used to investigate gravity waves in atmosphere. By taking advantage of the auxiliary nonlinear ordinary differential equation, periodic wave and solitary wave solutions of the fifth-order KdV-mKdV models with higher-degree nonlinear terms are obtained under some constraint conditions. The analysis shows that the propagation and the periodic structures of gravity waves depend on the properties of the slope of line of constant phase and atmospheric stability. The Jacobi elliptic function wave and solitary wave solutions with slowly varying amplitude are transformed into triangular waves with the abruptly varying amplitude and breaking gravity waves under the effect of atmospheric instability.展开更多
Over the tropics, convection, wind shear (i.e., vertical and horizontal shear of wind and/or geostrophic adjustment comprising spontaneous imbalance in jet streams) and topography are the major sources for the gener...Over the tropics, convection, wind shear (i.e., vertical and horizontal shear of wind and/or geostrophic adjustment comprising spontaneous imbalance in jet streams) and topography are the major sources for the generation of gravity waves. During the summer monsoon season (June August) over the Indian subcontinent, convection and wind shear coexist. To determine the dominant source of gravity waves during monsoon season, an experiment was conducted using mesosphere-stratosphere-troposphere (MST) radar situated at Gadanki (13.5°N, 79.2°E), a tropical observatory in the southern part of the Indian subcontinent. MST radar was operated continuously for 72 h to capture high-frequency gravity waves. During this time, a radiosonde was released every 6 h in addition to the regular launch (once daily to study low-frequency gravity waves) throughout the season. These two data sets were utilized effectively to characterize the jet stream and the associated gravity waves. Data available from collocated instruments along with satellite-based brightness temperature (TBB) data were utilized to characterize the convection in and around Gadanki. Despite the presence of two major sources of gravity wave generation (i.e., convection and wind shear) during the monsoon season, wind shear (both vertical shear and geostrophic adjustment) contributed the most to the generation of gravity waves on various scales.展开更多
The global atmospheric static stability(N2)in the middle atmosphere and its relation to gravity waves(GWs)were investigated by using the temperature profiles measured by the Sounding of the Atmosphere using Broadband ...The global atmospheric static stability(N2)in the middle atmosphere and its relation to gravity waves(GWs)were investigated by using the temperature profiles measured by the Sounding of the Atmosphere using Broadband Emission Radiometry(SABER)instrument from 2002 to 2018.At low latitudes,a layer with enhanced N2 occurs at an altitude of^20 km and exhibits annual oscillations caused by tropopause inversion layers.Above an altitude of^70 km,enhanced N2 exhibits semiannual oscillations at low latitudes caused by the mesosphere inversion layers and annual oscillations at high latitudes resulting from the downward shift of the summer mesopause.The correlation coefficients between N2 and GW amplitudes can be larger than 0.8 at latitudes poleward of^40°N/S.This observation provides factual evidence that a large N2 supports large-amplitude GWs and indicates that N2 plays a dominant role in maintaining GWs at least at high latitudes of the middle atmosphere.This evidence also partially explains the previous results regarding the phase changes of annual oscillations of GWs at high latitudes.展开更多
Concentric gravity waves(CGWs)in the middle and upper atmosphere show wave-coupling processes between the lower atmosphere and the middle and upper atmosphere.In this research,we analyzed a case of CGWs detected simul...Concentric gravity waves(CGWs)in the middle and upper atmosphere show wave-coupling processes between the lower atmosphere and the middle and upper atmosphere.In this research,we analyzed a case of CGWs detected simultaneously by the AIRS(Atmospheric Infrared Sounder)and the VIIRS/DNB(Day/Night Band of the Visible Infrared Imager Radiometer Suite)in the stratosphere and mesosphere.Results showed that gravity waves(GWs)were generated by the collocated Hurricane Bejisa on the island of Mauritius.The AIRS data showed arc-like phase fronts of GWs with horizontal wavelengths of 190 and 150 km at 21:08 coordinated universal time(UTC)on 1 January 2014 and at 10:00 UTC on 2 January 2014,whereas the DNB observed arced GWs with horizontal wavelengths of 60 and 150 km in the same geographic regions at 22:24 UTC.The characteristics of CGW parameters in the stratosphere(~40 km)and the mesosphere(~87 km),such as the vertical wavelength,intrinsic frequency,and intrinsic horizontal phase speed,were first derived together with the background winds from ERA5 reanalysis data and Horizontal Wind Model data through the dispersion relationship of GWs and the wind-filtering theory.展开更多
In the satellite synthetic aperture radar(SAR) images of the Bohai Sea and Huanghai Sea,the authors observe sea surface imprints of wave-like patterns with an average wavelength of 3.8 km.Comparing SAR observations ...In the satellite synthetic aperture radar(SAR) images of the Bohai Sea and Huanghai Sea,the authors observe sea surface imprints of wave-like patterns with an average wavelength of 3.8 km.Comparing SAR observations with sea surface wind fields and surface weather maps,the authors find that the occurrence of the wave-like phenomena is associated with the passing of atmospheric front.The authors define the waves as atmospheric frontal gravity waves.The dynamical parameters of the wave packets are derived from statistics of 9 satellite SAR images obtained from 2002 to 2008.A two-dimensional linear physical wave model is used to analyze the generation mechanism of the waves.The atmospheric frontal wave induced wind variation across the frontal wave packet is compared with wind retrievals from the SAR images.The CMOD-5(C-band scatterometer ocean geophysical model function) is used for SAR wind retrievals VV(transmitted vertical and received vertical) for ENVISAT and HH(transmitted horizontally and received horizontally) for RADARSAT-1.A reasonable agreement between the analytical solution and the SAR observation is reached.This new SAR frontal wave observation adds to the school of SAR observations of sea surface imprints of AGWs including island lee waves,coastal lee waves,and upstream Atmospheric Gravity Waves(AGW).展开更多
In this paper,we use wind observations by a Doppler wind LiDAR near Delingha(37.4°N,97.4°E),Qinghai,Northwestern China to study the characteristics of inertial gravity waves in the stratosphere.We focus on 1...In this paper,we use wind observations by a Doppler wind LiDAR near Delingha(37.4°N,97.4°E),Qinghai,Northwestern China to study the characteristics of inertial gravity waves in the stratosphere.We focus on 10–12 December 2013,a particularly interesting case study.Most of the time,the inertial gravity waves extracted from the LiDAR measurements were stationary with vertical wavelengths of about 9–11 km and horizontal wavelengths of about 800–1000 km.However,for parts of the observational period in this case study,a hodograph analysis indicates that different inertial gravity wave propagation features were present at lower and upper altitudes.In the middle and upper stratosphere(~30–50 km),the waves propagated downward,especially during a period of stronger winds,and to the northwest–southeast.In the lower stratosphere and upper troposphere(~10–20 km),however,waves with upward propagation and northeast–southwest orientation were dominant.By taking into account reanalysis data and satellite observations,we have confirmed the presence of different wave patterns in the lower and upper stratosphere during this part of the observational period.The combined data sets suggest that the different wave patterns at lower and upper height levels are likely to have been associated with the presence of lower and upper stratospheric jet streams.展开更多
Fluid particles in translating surface gravity waves have an orbital motion which decreases in size with increasing mean depth. These wave characteristics came from observations and were not forecast theoretically. Th...Fluid particles in translating surface gravity waves have an orbital motion which decreases in size with increasing mean depth. These wave characteristics came from observations and were not forecast theoretically. The classical potential flow model is incapable of explaining the particle movement due to the irrotational assumption and to a flaw in carrying out the method. When a wave passes by an observer from left to right, the particles move clockwise under a crest and a trough. This correct conclusion is consistent with what the incorrect standard theory implies but should not be considered to have been derived from it.展开更多
This paper focuses on the relic gravity waves produced during the transition from a radiation-dominated inflationary phase to a dust-dominated Friedman-Robertson-Walker-type expansion. We discuss how to investigate th...This paper focuses on the relic gravity waves produced during the transition from a radiation-dominated inflationary phase to a dust-dominated Friedman-Robertson-Walker-type expansion. We discuss how to investigate the spectral energy density by the latest space-based CWs detectors at f =0.1 Hz (i.e. DECICO). In the case of power-law and exponential inflation, we apply the cross-correlation method to the latest detector and get the time dependence of the very early Hubble pararneter.展开更多
Assume that a fluid is inviscid, incompressible, and irrotational. A nonlinear Schr?dinger equation(NLSE) describing the evolution of gravity waves in finite water depth is derived using the multiple-scale analysis me...Assume that a fluid is inviscid, incompressible, and irrotational. A nonlinear Schr?dinger equation(NLSE) describing the evolution of gravity waves in finite water depth is derived using the multiple-scale analysis method. The gravity waves are influenced by a linear shear flow, which is composed of a uniform flow and a shear flow with constant vorticity. The modulational instability(MI) of the NLSE is analyzed, and the region of the MI for gravity waves(the necessary condition for existence of freak waves) is identified. In this work, the uniform background flows along or against wave propagation are referred to as down-flow and up-flow, respectively. Uniform up-flow enhances the MI, whereas uniform down-flow reduces it. Positive vorticity enhances the MI, while negative vorticity reduces it. Hence, the influence of positive(negative)vorticity on MI can be balanced out by that of uniform down(up) flow. Furthermore, the Peregrine breather solution of the NLSE is applied to freak waves. Uniform up-flow increases the steepness of the free surface elevation, while uniform down-flow decreases it. Positive vorticity increases the steepness of the free surface elevation, whereas negative vorticity decreases it.展开更多
A necessary big step up in the modern water wave theories and their widespread application in ocean engineering is how to obtain 6-wave resonance conditions and to prove it. In the light of the existing forms and char...A necessary big step up in the modern water wave theories and their widespread application in ocean engineering is how to obtain 6-wave resonance conditions and to prove it. In the light of the existing forms and characteristics of 3-wave, 4-wave and 5-wave resonance conditions, the 6-wave resonance conditions are proposed and proved for currently a maximum wave-wave resonance interactions of the ocean surface gravity waves in deep water, which will be indispensable to both the Kolmogorov spectrum of the corresponding universal wave turbulence and a synthetic 4-5-6-wave resonant model for the ocean surface gravity waves.展开更多
In this paper, the following important problem is answered: Under what condition can the Hilbert transform be put in the simple form. Then, using the Hilbert technique, it is demonstrated that, with some relative weak...In this paper, the following important problem is answered: Under what condition can the Hilbert transform be put in the simple form. Then, using the Hilbert technique, it is demonstrated that, with some relative weak restrictions, the particle motion at the sea surface and energy transmission may be obtained from a wave record. The analysis show that for the two-dimensional and narrow-band mo- tion (or a physical phenomena, such as capillary waves breaking, which satisfy the narrow-band approx- imation) the local kinetic energy fluctuates in time as the envelope equared multiplied by a constant factor and can be obtained directly from a wave record. It is pointed that the local fluctuatiom of the potential energy as well as the local fluctuations of the total energy can be separated into a slowly varying part and a more rapid oscillating Part. Both Parts can be evaluated by meaas of the Hilbert transform. Finally, a physical interpretation of the envelope of the two-dimensional capillary waves as well as the method for wave group analysis is presented.展开更多
Linear surface gravity waves on a semi-infinite incompressible Voigt medium are studied in this paper.Three dimensionless parameters,the dimensionless viscoelastic parameter (?),the dimensionless wave number and the d...Linear surface gravity waves on a semi-infinite incompressible Voigt medium are studied in this paper.Three dimensionless parameters,the dimensionless viscoelastic parameter (?),the dimensionless wave number and the dimensionless sur- face tension are introduced.A dimensionless characteristic equation describing the waves is derived.This is a sixth order complex algebraic equation which is solved to give the complex dispersion relation.Based on the numerical solution, two critical values of (?),(?)_A=0.607 and (?)_R=2.380,which represent the appearance of the cutoff region and the disappearance of the strong dispersion region,are found.The effects of (?) on the characteristic equation and the properties of the waves are discussed.展开更多
A detailed analysis of the dynamic frequency spectrum characteristics of gravity waves(GWs)during a local heavy rainfall event on 20–21 November 2016 in Foshan,China,is presented.The results of this analysis,which wa...A detailed analysis of the dynamic frequency spectrum characteristics of gravity waves(GWs)during a local heavy rainfall event on 20–21 November 2016 in Foshan,China,is presented.The results of this analysis,which was based on high-precision microbarograph data,indicate that GWs played a key role in generating the rainstorm.The GWs experienced two intermittent periods of amplitude enhancement and period widening.The largest amplitudes of the GWs were 80–160 Pa,with a corresponding period range of 140–270 min,which were approximately 4 h ahead of the rainstorm.The severe storms appeared to affect the GWs by augmenting the wave amplitudes with center amplitudes of approximately 80–100 Pa and periods ranging between 210 and 270 min;in particular,the amplitudes increased to approximately 10 Pa for GWs with shorter periods(less than 36 min).The pre-existing large-amplitude GWs may be precursors to severe storms;that is,these GWs occurred approximately 4 h earlier than the time radars and satellites identified convections.Thus,these results indicate that large-amplitude GWs constitute a possible mechanism for severe-storm warning.展开更多
The Painleve integrability and exact solutions to a coupled nonlinear Schrodinger (CNLS) equation applied in atmospheric dynamics are discussed. Some parametric restrictions of the CNLS equation are given to pass th...The Painleve integrability and exact solutions to a coupled nonlinear Schrodinger (CNLS) equation applied in atmospheric dynamics are discussed. Some parametric restrictions of the CNLS equation are given to pass the Painleve test. Twenty periodic cnoidal wave solutions are obtained by applying the rational expansions of fundamental Jacobi elliptic functions. The exact solutions to the CNLS equation are used to explain the generation and propagation of atmospheric gravity waves.展开更多
Linear surface gravity waves on Maxwell viscoelastic fluids with finite depth are studied in this paper.A dispersion equation describing the spatial decay of the gravity wave in finite depth is derived.A dimensionless...Linear surface gravity waves on Maxwell viscoelastic fluids with finite depth are studied in this paper.A dispersion equation describing the spatial decay of the gravity wave in finite depth is derived.A dimensionless memory(time)number θ is introduced.The dispersion equation for the pure viscous fluid will be a specific case of the dispersion equation for the viscoelastic fluid as θ=0.The complex dispersion equation is numerically solved to investigate the dispersion relation.The influences of θ and water depth on the dispersion characteristics and wave decay are discussed.It is found that the role of elasticity for the Maxwell fluid is to make the surface gravity wave on the Maxwell fluid behave more like the surface gravity wave on the inviscid fluid.展开更多
Precipitation measurements from the Tropical Rainfall Measuring Mission (TRMM) satellite indicate that the southeastern area of Kalimantan (Borneo) Island receives much less rainfall than elsewhere on the island durin...Precipitation measurements from the Tropical Rainfall Measuring Mission (TRMM) satellite indicate that the southeastern area of Kalimantan (Borneo) Island receives much less rainfall than elsewhere on the island during the period from July to October.Results from sur-face meteorological observations show that the diurnal cycle of rainfall differs greatly between the eastern and western coasts of the island.Rainfall on the western coast of the island is frequent in the afternoon and evening,whereas almost all rainfall on the eastern coast occurs in the morning.Meanwhile,the Global Positioning System (GPS)-derived precipitable water (PW) on the eastern coast shows a substantial decrease in moisture in the af-ternoon and evening.Numerical experiments with a mesoscale model reveal that gravity waves driven by di-urnal heating of the elevated land surface of the moun-tains on Sulawesi Island,which lies approximately 300 kilometers to the east of Kalimantan Island,significantly affect the diurnal cycle of rainfall over southeast Kali-mantan Island.展开更多
In addition to being driven by tidal winds,the sporadic E(Es)layers are modulated by gravity waves(GWs),although the effects are not yet comprehensively understood.In this article,we discuss the effects of mesoscale G...In addition to being driven by tidal winds,the sporadic E(Es)layers are modulated by gravity waves(GWs),although the effects are not yet comprehensively understood.In this article,we discuss the effects of mesoscale GWs on the Es layers determined by using a newly developed model,MISE-1D(one-dimensional Model of Ionospheric Sporadic E),with low numerical dissipation and high resolution.Driven by the wind fields resolved by the high-resolution version of the Whole Atmosphere Community Climate Model with thermosphere and ionosphere extension(WACCM-X),the MISE-1D simulation revealed that GWs significantly influence the evolution of the Es layer above 100 km but have a very limited effect at lower altitudes.The effects of GWs are diverse and complex,generally including the generation of fluctuating wavelike structures on the Es layer with frequencies similar to those of the GWs.The mesoscale GWs can also cause increases in the density of Es layers,or they can disperse or diffuse the Es layers and increase their thickness.In addition,the presence of GWs is a key factor in sustaining the Es layers in some cases.展开更多
基金the National Natural Science Foundation of China(Grant Nos.41831073,42174196,and 42374205)the Project of Stable Support for Youth Team in Basic Research Field,Chinese Academy of Sciences(CAS+4 种基金Grant No.YSBR-018)the Informatization Plan of CAS(Grant No.CAS-WX2021PY-0101)the Youth Cross Team Scientific Research project of the Chinese Academy of Sciences(Grant No.JCTD-2021-10)the Open Research Project of Large Research Infrastructures of CAS titled“Study on the Interaction Between Low-/Mid-Latitude Atmosphere and Ionosphere Based on the Chinese Meridian Project.”This work was also supported in part by the Specialized Research Fund and the Open Research Program of the State Key Laboratory of Space Weather.
文摘We derive the potential energy of gravity waves(GWs)in the upper troposphere and stratosphere at 45°S-45°N from December 2019 to November 2022 by using temperature profiles retrieved from the Constellation Observing System for Meteorology,Ionosphere,and Climate-2(COSMIC-2)satellite.Owing to the dense sampling of COSMIC-2,in addition to the strong peaks of gravity wave potential energy(GWPE)above the Andes and Tibetan Plateau,we found weak peaks above the Rocky,Atlas,Caucasus,and Tianshan Mountains.The land-sea contrast is responsible for the longitudinal variations of the GWPE in the lower and upper stratosphere.At 40°N/S,the peaks were mainly above the topographic regions during the winter.At 20°N/S,the peaks were a slight distance away from the topographic regions and might be the combined effect of nontopographic GWs and mountain waves.Near the Equator,the peaks were mainly above the regions with the lowest sea level altitude and may have resulted from convection.Our results indicate that even above the local regions with lower sea level altitudes compared with the Andes and Tibetan Plateau,the GWPE also exhibits fine structures in geographic distributions.We found that dissipation layers above the tropopause jet provide the body force to generate secondary waves in the upper stratosphere,especially during the winter months of each hemisphere and at latitudes of greater than 20°N/S.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB41000000)the National Natural Science Foundation of China(Grant No.42174101,41974023)+1 种基金the Open Fund of Hubei Luojia Laboratory(Grant No.S22H640201)(Germany)The Offshore International Science and Technology Cooperation Center of Frontier Technology of Geodesy。
文摘It is commonly believed that the atmosphere is decoupled from the solid Earth.Thus,it is difficult for the seismic wave energy inside the Earth to propagate into the atmosphere,and atmospheric pressure wave signals excited by earthquakes are unlikely to exist in atmospheric observations.An increasing number of studies have shown that earthquakes,volcanoes,and tsunamis can perturb the Earth's atmosphere due to various coupling effects.However,the observations mainly focus on acoustic waves with periods of less than 10 min and inertial gravity waves with periods of greater than 1 h.There are almost no clear observations of gravity waves that coincide with observations of low-frequency signals of the Earth's free oscillation frequency band within 1 h.This paper investigates atmospheric gravity wave signals within1 h of surface-atmosphere observations using the periodogram method based on seismometer and microbarometer observations from the global seismic network before and after the July 29,2021 M_(w)8.2 Alaska earthquake in the United States.The numerical results show that the atmospheric gravity wave signals with frequencies similar to those of the Earth's free oscillations _(0)S_(2) and _(0)T_(2) can be detected in the microbaro meter observations.The results con firm the existence of atmospheric gravity waves,indicating that the atmosphere and the solid Earth are not decoupled within this frequency band and that seismic wave energy excited by earthquakes can propagate from the interior of the Earth to the atmosphere and enhance the atmospheric gravity wave signals within 1 h.
基金National Natural Science Foundation of China(Grant Nos.42174192,12241101,and 91952111).
文摘Internal gravity waves(IGWs)are critical in driving Martian atmospheric motion and phenomena.This study investigates Martian IGWs by using high-resolution data from China’s Tianwen-1 mission and the National Aeronautics and Space Administration’s Mars Global Surveyor(MGS)by the radio occultation(RO)technique.Key IGW parameters,such as vertical and horizontal wavelengths,intrinsic frequency,and energy density,are extracted based on vertical temperature profiles from the Martian surface to~50 km altitude.Data reveal that the Martian IGWs are predominantly small-scale waves,with vertical wavelengths between 6 and 13 km and horizontal wavelengths extending to thousands of kilometers.These waves propagate almost vertically and exhibit low intrinsic frequencies close to the inertial frequency,with the characteristic of low-frequency inertial IGWs.Tianwen-1 data indicate stronger IGW activity,higher energy density,and less dissipation than MGS data in the northern hemisphere.Moreover,MGS data in the southern hemisphere show higher buoyancy frequencies and lower vertical wavelengths,suggesting more stable atmospheric conditions conducive to IGW propagation.These extracted IGW characteristics can enhance our understanding of the atmospheric dynamics on Mars and contribute valuable information for parameterization in global circulation models.
基金Project supported by the National Natural Science Foundation of China (Grant No 40775069)
文摘Higher-order Korteweg-de Vries (KdV)-modified KdV (mKdV) equations with a higher-degree of nonlinear terms are derived from a simple incompressible non-hydrostatic Boussinesq equation set in atmosphere and are used to investigate gravity waves in atmosphere. By taking advantage of the auxiliary nonlinear ordinary differential equation, periodic wave and solitary wave solutions of the fifth-order KdV-mKdV models with higher-degree nonlinear terms are obtained under some constraint conditions. The analysis shows that the propagation and the periodic structures of gravity waves depend on the properties of the slope of line of constant phase and atmospheric stability. The Jacobi elliptic function wave and solitary wave solutions with slowly varying amplitude are transformed into triangular waves with the abruptly varying amplitude and breaking gravity waves under the effect of atmospheric instability.
基金supported by the National Basic Research Program of China (Grant No. 2010CB428603)the National Natural Science Foundation of China (NSFC) (Grant No. 41025017)+1 种基金support of the research fellowships of NSFCthe Chinese Academy of Sciences
文摘Over the tropics, convection, wind shear (i.e., vertical and horizontal shear of wind and/or geostrophic adjustment comprising spontaneous imbalance in jet streams) and topography are the major sources for the generation of gravity waves. During the summer monsoon season (June August) over the Indian subcontinent, convection and wind shear coexist. To determine the dominant source of gravity waves during monsoon season, an experiment was conducted using mesosphere-stratosphere-troposphere (MST) radar situated at Gadanki (13.5°N, 79.2°E), a tropical observatory in the southern part of the Indian subcontinent. MST radar was operated continuously for 72 h to capture high-frequency gravity waves. During this time, a radiosonde was released every 6 h in addition to the regular launch (once daily to study low-frequency gravity waves) throughout the season. These two data sets were utilized effectively to characterize the jet stream and the associated gravity waves. Data available from collocated instruments along with satellite-based brightness temperature (TBB) data were utilized to characterize the convection in and around Gadanki. Despite the presence of two major sources of gravity wave generation (i.e., convection and wind shear) during the monsoon season, wind shear (both vertical shear and geostrophic adjustment) contributed the most to the generation of gravity waves on various scales.
基金This work was supported by the National Natural Science Foundation of China(grants 41831073 and 41874182).
文摘The global atmospheric static stability(N2)in the middle atmosphere and its relation to gravity waves(GWs)were investigated by using the temperature profiles measured by the Sounding of the Atmosphere using Broadband Emission Radiometry(SABER)instrument from 2002 to 2018.At low latitudes,a layer with enhanced N2 occurs at an altitude of^20 km and exhibits annual oscillations caused by tropopause inversion layers.Above an altitude of^70 km,enhanced N2 exhibits semiannual oscillations at low latitudes caused by the mesosphere inversion layers and annual oscillations at high latitudes resulting from the downward shift of the summer mesopause.The correlation coefficients between N2 and GW amplitudes can be larger than 0.8 at latitudes poleward of^40°N/S.This observation provides factual evidence that a large N2 supports large-amplitude GWs and indicates that N2 plays a dominant role in maintaining GWs at least at high latitudes of the middle atmosphere.This evidence also partially explains the previous results regarding the phase changes of annual oscillations of GWs at high latitudes.
基金the Strategic Priority Research Program of Chinese Academy of Sciences(no.XDA17010301)the National Key Research and Development Program of China(no.2016YFB0501503)+1 种基金the National Natural Science Foundation of China(nos.4190503811872128,91952111,41575031)part of the China Postdoctoral Foundation Program(no.2015M580124)。
文摘Concentric gravity waves(CGWs)in the middle and upper atmosphere show wave-coupling processes between the lower atmosphere and the middle and upper atmosphere.In this research,we analyzed a case of CGWs detected simultaneously by the AIRS(Atmospheric Infrared Sounder)and the VIIRS/DNB(Day/Night Band of the Visible Infrared Imager Radiometer Suite)in the stratosphere and mesosphere.Results showed that gravity waves(GWs)were generated by the collocated Hurricane Bejisa on the island of Mauritius.The AIRS data showed arc-like phase fronts of GWs with horizontal wavelengths of 190 and 150 km at 21:08 coordinated universal time(UTC)on 1 January 2014 and at 10:00 UTC on 2 January 2014,whereas the DNB observed arced GWs with horizontal wavelengths of 60 and 150 km in the same geographic regions at 22:24 UTC.The characteristics of CGW parameters in the stratosphere(~40 km)and the mesosphere(~87 km),such as the vertical wavelength,intrinsic frequency,and intrinsic horizontal phase speed,were first derived together with the background winds from ERA5 reanalysis data and Horizontal Wind Model data through the dispersion relationship of GWs and the wind-filtering theory.
基金RADARSAT-1 data were obtained under the NASA RADARSAT ADRO-2 Program (Project RADARSAT-0011-0071) and processed by the Alaska Satellite FacilityThe ASAR images were provided by the European Space Agency under ENVISAT Projects 141 and 6133
文摘In the satellite synthetic aperture radar(SAR) images of the Bohai Sea and Huanghai Sea,the authors observe sea surface imprints of wave-like patterns with an average wavelength of 3.8 km.Comparing SAR observations with sea surface wind fields and surface weather maps,the authors find that the occurrence of the wave-like phenomena is associated with the passing of atmospheric front.The authors define the waves as atmospheric frontal gravity waves.The dynamical parameters of the wave packets are derived from statistics of 9 satellite SAR images obtained from 2002 to 2008.A two-dimensional linear physical wave model is used to analyze the generation mechanism of the waves.The atmospheric frontal wave induced wind variation across the frontal wave packet is compared with wind retrievals from the SAR images.The CMOD-5(C-band scatterometer ocean geophysical model function) is used for SAR wind retrievals VV(transmitted vertical and received vertical) for ENVISAT and HH(transmitted horizontally and received horizontally) for RADARSAT-1.A reasonable agreement between the analytical solution and the SAR observation is reached.This new SAR frontal wave observation adds to the school of SAR observations of sea surface imprints of AGWs including island lee waves,coastal lee waves,and upstream Atmospheric Gravity Waves(AGW).
基金This work is supported by the B-type Strategic Priority Program of Chinese Academy of Sciences Grant No.XDB41000000the National Natural Science Foundation of China(41774158,41974174,41831071,and 41904135)the China National Space Administration pre-research Project on Civil Aerospace Technologies No.D020105,and the Open Research Project of Large Research Infrastructures of CAS“Study on the interaction between low/mid-latitude atmosphere and ionosphere based on the Chinese Meridian Project.”。
文摘In this paper,we use wind observations by a Doppler wind LiDAR near Delingha(37.4°N,97.4°E),Qinghai,Northwestern China to study the characteristics of inertial gravity waves in the stratosphere.We focus on 10–12 December 2013,a particularly interesting case study.Most of the time,the inertial gravity waves extracted from the LiDAR measurements were stationary with vertical wavelengths of about 9–11 km and horizontal wavelengths of about 800–1000 km.However,for parts of the observational period in this case study,a hodograph analysis indicates that different inertial gravity wave propagation features were present at lower and upper altitudes.In the middle and upper stratosphere(~30–50 km),the waves propagated downward,especially during a period of stronger winds,and to the northwest–southeast.In the lower stratosphere and upper troposphere(~10–20 km),however,waves with upward propagation and northeast–southwest orientation were dominant.By taking into account reanalysis data and satellite observations,we have confirmed the presence of different wave patterns in the lower and upper stratosphere during this part of the observational period.The combined data sets suggest that the different wave patterns at lower and upper height levels are likely to have been associated with the presence of lower and upper stratospheric jet streams.
文摘Fluid particles in translating surface gravity waves have an orbital motion which decreases in size with increasing mean depth. These wave characteristics came from observations and were not forecast theoretically. The classical potential flow model is incapable of explaining the particle movement due to the irrotational assumption and to a flaw in carrying out the method. When a wave passes by an observer from left to right, the particles move clockwise under a crest and a trough. This correct conclusion is consistent with what the incorrect standard theory implies but should not be considered to have been derived from it.
基金Supported by the National Basic Research Program of China under Grant No. 2003 CB 716300the National Natural Science Foundation of China under Grant No. 10575140+2 种基金CAEP Foundation under Grant No. 2008T0401 and 2008T0402Chongqing University Postgraduates Science and Innovation Fund, Project No. 200811B1A0100299Chinese State Scholarship Fund
文摘This paper focuses on the relic gravity waves produced during the transition from a radiation-dominated inflationary phase to a dust-dominated Friedman-Robertson-Walker-type expansion. We discuss how to investigate the spectral energy density by the latest space-based CWs detectors at f =0.1 Hz (i.e. DECICO). In the case of power-law and exponential inflation, we apply the cross-correlation method to the latest detector and get the time dependence of the very early Hubble pararneter.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2016YFC1401404 and 2017YFA0604102)the National Natural Science Foundation of China(Grant No.41830533)
文摘Assume that a fluid is inviscid, incompressible, and irrotational. A nonlinear Schr?dinger equation(NLSE) describing the evolution of gravity waves in finite water depth is derived using the multiple-scale analysis method. The gravity waves are influenced by a linear shear flow, which is composed of a uniform flow and a shear flow with constant vorticity. The modulational instability(MI) of the NLSE is analyzed, and the region of the MI for gravity waves(the necessary condition for existence of freak waves) is identified. In this work, the uniform background flows along or against wave propagation are referred to as down-flow and up-flow, respectively. Uniform up-flow enhances the MI, whereas uniform down-flow reduces it. Positive vorticity enhances the MI, while negative vorticity reduces it. Hence, the influence of positive(negative)vorticity on MI can be balanced out by that of uniform down(up) flow. Furthermore, the Peregrine breather solution of the NLSE is applied to freak waves. Uniform up-flow increases the steepness of the free surface elevation, while uniform down-flow decreases it. Positive vorticity increases the steepness of the free surface elevation, whereas negative vorticity decreases it.
基金Project supported by the National Natural Science Foundation of China(Grant No.11772180)the State Key Laboratory of Ocean Engineering of China(Grant No.1503)
文摘A necessary big step up in the modern water wave theories and their widespread application in ocean engineering is how to obtain 6-wave resonance conditions and to prove it. In the light of the existing forms and characteristics of 3-wave, 4-wave and 5-wave resonance conditions, the 6-wave resonance conditions are proposed and proved for currently a maximum wave-wave resonance interactions of the ocean surface gravity waves in deep water, which will be indispensable to both the Kolmogorov spectrum of the corresponding universal wave turbulence and a synthetic 4-5-6-wave resonant model for the ocean surface gravity waves.
文摘In this paper, the following important problem is answered: Under what condition can the Hilbert transform be put in the simple form. Then, using the Hilbert technique, it is demonstrated that, with some relative weak restrictions, the particle motion at the sea surface and energy transmission may be obtained from a wave record. The analysis show that for the two-dimensional and narrow-band mo- tion (or a physical phenomena, such as capillary waves breaking, which satisfy the narrow-band approx- imation) the local kinetic energy fluctuates in time as the envelope equared multiplied by a constant factor and can be obtained directly from a wave record. It is pointed that the local fluctuatiom of the potential energy as well as the local fluctuations of the total energy can be separated into a slowly varying part and a more rapid oscillating Part. Both Parts can be evaluated by meaas of the Hilbert transform. Finally, a physical interpretation of the envelope of the two-dimensional capillary waves as well as the method for wave group analysis is presented.
基金The project supported by the National Natural Science Foundation of China(59709006)
文摘Linear surface gravity waves on a semi-infinite incompressible Voigt medium are studied in this paper.Three dimensionless parameters,the dimensionless viscoelastic parameter (?),the dimensionless wave number and the dimensionless sur- face tension are introduced.A dimensionless characteristic equation describing the waves is derived.This is a sixth order complex algebraic equation which is solved to give the complex dispersion relation.Based on the numerical solution, two critical values of (?),(?)_A=0.607 and (?)_R=2.380,which represent the appearance of the cutoff region and the disappearance of the strong dispersion region,are found.The effects of (?) on the characteristic equation and the properties of the waves are discussed.
基金sponsored by the National Key R&D Program of China [Grant No.2018YFC1507900]the National Natural Science Foundation of China [Grant No.41530427]。
文摘A detailed analysis of the dynamic frequency spectrum characteristics of gravity waves(GWs)during a local heavy rainfall event on 20–21 November 2016 in Foshan,China,is presented.The results of this analysis,which was based on high-precision microbarograph data,indicate that GWs played a key role in generating the rainstorm.The GWs experienced two intermittent periods of amplitude enhancement and period widening.The largest amplitudes of the GWs were 80–160 Pa,with a corresponding period range of 140–270 min,which were approximately 4 h ahead of the rainstorm.The severe storms appeared to affect the GWs by augmenting the wave amplitudes with center amplitudes of approximately 80–100 Pa and periods ranging between 210 and 270 min;in particular,the amplitudes increased to approximately 10 Pa for GWs with shorter periods(less than 36 min).The pre-existing large-amplitude GWs may be precursors to severe storms;that is,these GWs occurred approximately 4 h earlier than the time radars and satellites identified convections.Thus,these results indicate that large-amplitude GWs constitute a possible mechanism for severe-storm warning.
基金Project supported by the National Natural Science Foundation of China (Nos. 10735030and 40775069)the Natural Science Foundation of Guangdong Province of China(No. 10452840301004616)the Scientific Research Foundation for the Doctors of University of Electronic Science and Technology of China Zhongshan Institute (No. 408YKQ09)
文摘The Painleve integrability and exact solutions to a coupled nonlinear Schrodinger (CNLS) equation applied in atmospheric dynamics are discussed. Some parametric restrictions of the CNLS equation are given to pass the Painleve test. Twenty periodic cnoidal wave solutions are obtained by applying the rational expansions of fundamental Jacobi elliptic functions. The exact solutions to the CNLS equation are used to explain the generation and propagation of atmospheric gravity waves.
基金The project supported by the National Natural Science Foundation of China(50279029)
文摘Linear surface gravity waves on Maxwell viscoelastic fluids with finite depth are studied in this paper.A dispersion equation describing the spatial decay of the gravity wave in finite depth is derived.A dimensionless memory(time)number θ is introduced.The dispersion equation for the pure viscous fluid will be a specific case of the dispersion equation for the viscoelastic fluid as θ=0.The complex dispersion equation is numerically solved to investigate the dispersion relation.The influences of θ and water depth on the dispersion characteristics and wave decay are discussed.It is found that the role of elasticity for the Maxwell fluid is to make the surface gravity wave on the Maxwell fluid behave more like the surface gravity wave on the inviscid fluid.
基金Messrs Syamsul Huda and Suwarti of the BMG,Indonesia for their great support for the observations in this study
文摘Precipitation measurements from the Tropical Rainfall Measuring Mission (TRMM) satellite indicate that the southeastern area of Kalimantan (Borneo) Island receives much less rainfall than elsewhere on the island during the period from July to October.Results from sur-face meteorological observations show that the diurnal cycle of rainfall differs greatly between the eastern and western coasts of the island.Rainfall on the western coast of the island is frequent in the afternoon and evening,whereas almost all rainfall on the eastern coast occurs in the morning.Meanwhile,the Global Positioning System (GPS)-derived precipitable water (PW) on the eastern coast shows a substantial decrease in moisture in the af-ternoon and evening.Numerical experiments with a mesoscale model reveal that gravity waves driven by di-urnal heating of the elevated land surface of the moun-tains on Sulawesi Island,which lies approximately 300 kilometers to the east of Kalimantan Island,significantly affect the diurnal cycle of rainfall over southeast Kali-mantan Island.
基金supported by the Project of Stable Support for Youth Teams in Basic Research Field,Chinese Academy of Sciences(CASGrant No.YSBR-018)+2 种基金the B-type Strategic Priority Program of CAS(Grant No.XDB41000000)the National Natural Science Foundation of China(Grant No.42204165)the National Key Research and Development Program(Grant No.2022YFF0504400).
文摘In addition to being driven by tidal winds,the sporadic E(Es)layers are modulated by gravity waves(GWs),although the effects are not yet comprehensively understood.In this article,we discuss the effects of mesoscale GWs on the Es layers determined by using a newly developed model,MISE-1D(one-dimensional Model of Ionospheric Sporadic E),with low numerical dissipation and high resolution.Driven by the wind fields resolved by the high-resolution version of the Whole Atmosphere Community Climate Model with thermosphere and ionosphere extension(WACCM-X),the MISE-1D simulation revealed that GWs significantly influence the evolution of the Es layer above 100 km but have a very limited effect at lower altitudes.The effects of GWs are diverse and complex,generally including the generation of fluctuating wavelike structures on the Es layer with frequencies similar to those of the GWs.The mesoscale GWs can also cause increases in the density of Es layers,or they can disperse or diffuse the Es layers and increase their thickness.In addition,the presence of GWs is a key factor in sustaining the Es layers in some cases.