Since the efficiency of treatment of thyroid disorder depends on the risk of malignancy, indeterminate follicular neoplasm (FN) images should be classified. The diagnosis process has been done by visual interpretation...Since the efficiency of treatment of thyroid disorder depends on the risk of malignancy, indeterminate follicular neoplasm (FN) images should be classified. The diagnosis process has been done by visual interpretation of experienced pathologists. However, it is difficult to separate the favor benign from borderline types. Thus, this paper presents a classification approach based on 3D nuclei model to classify favor benign and borderline types of follicular thyroid adenoma (FTA) in cytological specimens. The proposed method utilized 3D gray level co-occurrence matrix (GLCM) and random forest classifier. It was applied to 22 data sets of FN images. Furthermore, the use of 3D GLCM was compared with 2D GLCM to evaluate the classification results. From experimental results, the proposed system achieved 95.45% of the classification. The use of 3D GLCM was better than 2D GLCM according to the accuracy of classification. Consequently, the proposed method probably helps a pathologist as a prescreening tool.展开更多
The mechanical properties of materials greatly depend on the microstructure morphology. The quantitative characterization of material microstructures is essential for the performance prediction and hence the material ...The mechanical properties of materials greatly depend on the microstructure morphology. The quantitative characterization of material microstructures is essential for the performance prediction and hence the material design. At present,the quantitative characterization methods mainly rely on the microstructure characterization of shape, size, distribution,and volume fraction, which related to the mechanical properties. These traditional methods have been applied for several decades and the subjectivity of human factors induces unavoidable errors. In this paper, we try to bypass the traditional operations and identify the relationship between the microstructures and the material properties by the texture of image itself directly. The statistical approach is based on gray level Co-occurrence matrix(GLCM), allowing an objective and repeatable study on material microstructures. We first present how to identify GLCM with the optimal parameters, and then apply the method on three systems with different microstructures. The results show that GLCM can reveal the interface information and microstructures complexity with less human impact. Naturally, there is a good correlation between GLCM and the mechanical properties.展开更多
AIM: To develop an automatic tool on screening diabetic retinopathy(DR) from diabetic patients.METHODS: We extracted textures from eye fundus images of each diabetes subject using grey level co-occurrence matrix metho...AIM: To develop an automatic tool on screening diabetic retinopathy(DR) from diabetic patients.METHODS: We extracted textures from eye fundus images of each diabetes subject using grey level co-occurrence matrix method and trained a Bayesian model based on these textures. The receiver operating characteristic(ROC) curve was used to estimate the sensitivity and specificity of the Bayesian model.RESULTS: A total of 1000 eyes fundus images from diabetic patients in which 298 eyes were diagnosed as DR by two ophthalmologists. The Bayesian model was trained using four extracted textures including contrast, entropy, angular second moment and correlation using a training dataset. The Bayesian model achieved a sensitivity of 0.949 and a specificity of 0.928 in the validation dataset. The area under the ROC curve was 0.938, and the 10-fold cross validation method showed that the average accuracy rate is 93.5%.CONCLUSION: Textures extracted by grey level cooccurrence can be useful information for DR diagnosis, and a trained Bayesian model based on these textures can be an effective tool for DR screening among diabetic patients.展开更多
In recent years,binary image steganography has developed so rapidly that the research of binary image steganalysis becomes more important for information security.In most state-of-the-art binary image steganographic s...In recent years,binary image steganography has developed so rapidly that the research of binary image steganalysis becomes more important for information security.In most state-of-the-art binary image steganographic schemes,they always find out the flippable pixels to minimize the embedding distortions.For this reason,the stego images generated by the previous schemes maintain visual quality and it is hard for steganalyzer to capture the embedding trace in spacial domain.However,the distortion maps can be calculated for cover and stego images and the difference between them is significant.In this paper,a novel binary image steganalytic scheme is proposed,which is based on distortion level co-occurrence matrix.The proposed scheme first generates the corresponding distortion maps for cover and stego images.Then the co-occurrence matrix is constructed on the distortion level maps to represent the features of cover and stego images.Finally,support vector machine,based on the gaussian kernel,is used to classify the features.Compared with the prior steganalytic methods,experimental results demonstrate that the proposed scheme can effectively detect stego images.展开更多
Classifying the texture of granules in 2D images has aroused manifold research atten-tion for its technical challenges in image processing areas.This letter presents an aggregate texture identification approach by joi...Classifying the texture of granules in 2D images has aroused manifold research atten-tion for its technical challenges in image processing areas.This letter presents an aggregate texture identification approach by jointly using Gray Level Co-occurrence Probability(GLCP) and BP neural network techniques.First, up to 8 GLCP-associated texture feature parameters are defined and computed, and these consequent parameters next serve as the inputs feeding to the BP neural network to calculate the similarity to any of given aggregate texture type.A finite number of aggregate images of 3 kinds, with each containing specific type of mineral particles, are put to the identification test, experimentally proving the feasibility and robustness of the proposed method.展开更多
The paper puts forward a method on controlling the AM-OLED panel to display image with high gray scale levels. It also gives an ASIC design sample to implement this method. A twenty sub-fields scan scheme has been tak...The paper puts forward a method on controlling the AM-OLED panel to display image with high gray scale levels. It also gives an ASIC design sample to implement this method. A twenty sub-fields scan scheme has been taken into use in the chip to display 256 gray scale levels on a QVGA resolution AM-OLED display screen. The functions of image scaling and rotating have also been implemented for multiply application. The simulation and chip test result show that the chip design has met the design requirements.展开更多
The macula is an imperative part present in our human visual system which is most responsible for clear and colour vision. For the people suffering from diabetes, the various parts of the body including the retina of ...The macula is an imperative part present in our human visual system which is most responsible for clear and colour vision. For the people suffering from diabetes, the various parts of the body including the retina of the eye are affected. These retinal damages cause swelling and other abnormalities nearby macula. The pathologies in macula due to diabetes are called Diabetic Macular oEdema (DME). It affects patients’ vision that may lead to vision loss. It can be overcome by advance identification of causes for swelling. The major causes for the swelling are neovascularization and other abnormalities occurring in the blood vessels nearby the macula. The aim of this work is to avoid vision loss by detecting the presence of abnormalities in macula in advance. The pathologies present in the abnormal images are detected by image segmentation technique viz. Fuzzy K-means algorithm. The classification is done by two different classifiers namely Cascade Neural Network and Partial Least Square which are employed to identify whether the image is normal or abnormal. The results of both the classifiers are compared with respect to classifier accuracy, sensitivity and specificity. The classifier accuracies of Cascade Neural Network and Partial Least Square are 96.84% and 94.36%, respectively. The information about the severity of the disease and the localization of pathologies are very useful to the ophthalmologist for diagnosing the disease and apply proper treatments to the patients to avoid the formation of any lesion and prevent vision loss.展开更多
Seismic texture attributes are closely related to seismic facies and reservoir characteristics and are thus widely used in seismic data interpretation.However,information is mislaid in the stacking process when tradit...Seismic texture attributes are closely related to seismic facies and reservoir characteristics and are thus widely used in seismic data interpretation.However,information is mislaid in the stacking process when traditional texture attributes are extracted from poststack data,which is detrimental to complex reservoir description.In this study,pre-stack texture attributes are introduced,these attributes can not only capable of precisely depicting the lateral continuity of waveforms between different reflection points but also reflect amplitude versus offset,anisotropy,and heterogeneity in the medium.Due to its strong ability to represent stratigraphies,a pre-stack-data-based seismic facies analysis method is proposed using the selforganizing map algorithm.This method is tested on wide azimuth seismic data from China,and the advantages of pre-stack texture attributes in the description of stratum lateral changes are verified,in addition to the method's ability to reveal anisotropy and heterogeneity characteristics.The pre-stack texture classification results effectively distinguish different seismic reflection patterns,thereby providing reliable evidence for use in seismic facies analysis.展开更多
Based on the stability and inequality of texture features between coal and rock,this study used the digital image analysis technique to propose a coal–rock interface detection method.By using gray level co-occurrence...Based on the stability and inequality of texture features between coal and rock,this study used the digital image analysis technique to propose a coal–rock interface detection method.By using gray level co-occurrence matrix,twenty-two texture features were extracted from the images of coal and rock.Data dimension of the feature space reduced to four by feature selection,which was according to a separability criterion based on inter-class mean difference and within-class scatter.The experimental results show that the optimized features were effective in improving the separability of the samples and reducing the time complexity of the algorithm.In the optimized low-dimensional feature space,the coal–rock classifer was set up using the fsher discriminant method.Using the 10-fold cross-validation technique,the performance of the classifer was evaluated,and an average recognition rate of 94.12%was obtained.The results of comparative experiments show that the identifcation performance of the proposed method was superior to the texture description method based on gray histogram and gradient histogram.展开更多
With the development of satellite technology,the satellite imagery of the earth’s surface and the whole surface makes it possible to survey surface resources and master the dynamic changes of the earth with high effi...With the development of satellite technology,the satellite imagery of the earth’s surface and the whole surface makes it possible to survey surface resources and master the dynamic changes of the earth with high efficiency and low consumption.As an important tool for satellite remote sensing image processing,remote sensing image classification has become a hot topic.According to the natural texture characteristics of remote sensing images,this paper combines different texture features with the Extreme Learning Machine,and proposes a new remote sensing image classification algorithm.The experimental tests are carried out through the standard test dataset SAT-4 and SAT-6.Our results show that the proposed method is a simpler and more efficient remote sensing image classification algorithm.It also achieves 99.434%recognition accuracy on SAT-4,which is 1.5%higher than the 97.95%accuracy achieved by DeepSat.At the same time,the recognition accuracy of SAT-6 reaches 99.5728%,which is 5.6%higher than DeepSat’s 93.9%.展开更多
The first generation coherence algorithm (the C1 algorithm) that calculates the coherence of seismic data in-line and cross-line was developed using statistical cross-correlation theory, and it has the limitation th...The first generation coherence algorithm (the C1 algorithm) that calculates the coherence of seismic data in-line and cross-line was developed using statistical cross-correlation theory, and it has the limitation that the technique can only be applied to horizons. Based on the texture technique, the texture coherence algorithm uses seismic information in different directions and differences among multiple traces. It can not only calculate seismic coherence in in-line and cross-line directions but also in all other directions. In this study, we suggested first an optimization method and a criterion for constructing the gray level co-occurrence matrix of the seismic texture coherence algorithm. Then the co-occurrence matrix was prepared to evaluate differences among multiple traces. Compared with the C1 algorithm, the seismic texture coherence algorithm suggested in this paper is better than the C1 in its information extraction and application. Furthermore, it implements the multi-direction information fusion and it, also has the advantage of simplicity and effectiveness, and improves the resolution of the seismic profile. Application of the method to field data shows that the texture coherence attribute is superior to that of C 1 and that it has merits in identification of faults and channels.展开更多
Melanoma is of the lethal and rare types of skin cancer.It is curable at an initial stage and the patient can survive easily.It is very difficult to screen all skin lesion patients due to costly treatment.Clinicians ar...Melanoma is of the lethal and rare types of skin cancer.It is curable at an initial stage and the patient can survive easily.It is very difficult to screen all skin lesion patients due to costly treatment.Clinicians are requiring a correct method for the right treatment for dermoscopic clinical features such as lesion borders,pigment networks,and the color of melanoma.These challenges are required an automated system to classify the clinical features of melanoma and non-melanoma disease.The trained clinicians can overcome the issues such as low contrast,lesions varying in size,color,and the existence of several objects like hair,reflections,air bubbles,and oils on almost all images.Active contour is one of the suitable methods with some drawbacks for the segmentation of irre-gular shapes.An entropy and morphology-based automated mask selection is pro-posed for the active contour method.The proposed method can improve the overall segmentation along with the boundary of melanoma images.In this study,features have been extracted to perform the classification on different texture scales like Gray level co-occurrence matrix(GLCM)and Local binary pattern(LBP).When four different moments pull out in six different color spaces like HSV,Lin RGB,YIQ,YCbCr,XYZ,and CIE L*a*b then global information from different colors channels have been combined.Therefore,hybrid fused texture features;such as local,color feature as global,shape features,and Artificial neural network(ANN)as classifiers have been proposed for the categorization of the malignant and non-malignant.Experimentations had been carried out on datasets Dermis,DermQuest,and PH2.The results of our advanced method showed super-iority and contrast with the existing state-of-the-art techniques.展开更多
Brain neoplasms are recognized with a biopsy,which is not commonly done before decisive brain surgery.By using Convolutional Neural Networks(CNNs)and textural features,the process of diagnosing brain tumors by radiolo...Brain neoplasms are recognized with a biopsy,which is not commonly done before decisive brain surgery.By using Convolutional Neural Networks(CNNs)and textural features,the process of diagnosing brain tumors by radiologists would be a noninvasive procedure.This paper proposes a features fusion model that can distinguish between no tumor and brain tumor types via a novel deep learning structure.The proposed model extracts Gray Level Co-occurrence Matrix(GLCM)textural features from MRI brain tumor images.Moreover,a deep neural network(DNN)model has been proposed to select the most salient features from the GLCM.Moreover,it manipulates the extraction of the additional high levels of salient features from a proposed CNN model.Finally,a fusion process has been utilized between these two types of features to form the input layer of additional proposed DNN model which is responsible for the recognition process.Two common datasets have been applied and tested,Br35H and FigShare datasets.The first dataset contains binary labels,while the second one splits the brain tumor into four classes;glioma,meningioma,pituitary,and no cancer.Moreover,several performance metrics have been evaluated from both datasets,including,accuracy,sensitivity,specificity,F-score,and training time.Experimental results show that the proposed methodology has achieved superior performance compared with the current state of art studies.The proposed system has achieved about 98.22%accuracy value in the case of the Br35H dataset however,an accuracy of 98.01%has been achieved in the case of the FigShare dataset.展开更多
One of the most important methods that finds usefulness in various applications, such as searching historical manuscripts, forensic search, bank check reading, mail sorting, book and handwritten notes transcription, i...One of the most important methods that finds usefulness in various applications, such as searching historical manuscripts, forensic search, bank check reading, mail sorting, book and handwritten notes transcription, is handwritten character recognition. The common issues in the character recognition are often due to different writing styles, orientation angle, size variation(regarding length and height), etc. This study presents a classification model using a hybrid classifier for the character recognition by combining holoentropy enabled decision tree(HDT) and deep neural network(DNN). In feature extraction, the local gradient features that include histogram oriented gabor feature and grid level feature, and grey level co-occurrence matrix(GLCM) features are extracted. Then, the extracted features are concatenated to encode shape, color, texture, local and statistical information, for the recognition of characters in the image by applying the extracted features to the hybrid classifier. In the experimental analysis, recognition accuracy of 96% is achieved. Thus, it can be suggested that the proposed model intends to provide more accurate character recognition rate compared to that of character recognition techniques used in the literature.展开更多
It is very important to accurately recognize and locate pulverized and block coal seen in a coal mine's infrared image monitoring system. Infrared monitor images of pulverized and block coal were sampled in the ro...It is very important to accurately recognize and locate pulverized and block coal seen in a coal mine's infrared image monitoring system. Infrared monitor images of pulverized and block coal were sampled in the roadway of a coal mine. Texture statistics from the grey level dependence matrix were selected as the criterion for classification. The distributions of the texture statistics were calculated and analysed. A normalizing function was added to the front end of the BP network with one hidden layer. An additional classification layer is joined behind the linear layer. The recognition of pulverized from block coal images was tested using the improved BP network. The results of the experiment show that texture variables from the grey level dependence matrix can act as recognizable features of the image. The innovative improved BP network can then recognize the pulverized and block coal images.展开更多
The use of massive image databases has increased drastically over the few years due to evolution of multimedia technology.Image retrieval has become one of the vital tools in image processing applications.Content-Base...The use of massive image databases has increased drastically over the few years due to evolution of multimedia technology.Image retrieval has become one of the vital tools in image processing applications.Content-Based Image Retrieval(CBIR)has been widely used in varied applications.But,the results produced by the usage of a single image feature are not satisfactory.So,multiple image features are used very often for attaining better results.But,fast and effective searching for relevant images from a database becomes a challenging task.In the previous existing system,the CBIR has used the combined feature extraction technique using color auto-correlogram,Rotation-Invariant Uniform Local Binary Patterns(RULBP)and local energy.However,the existing system does not provide significant results in terms of recall and precision.Also,the computational complexity is higher for the existing CBIR systems.In order to handle the above mentioned issues,the Gray Level Co-occurrence Matrix(GLCM)with Deep Learning based Enhanced Convolution Neural Network(DLECNN)is proposed in this work.The proposed system framework includes noise reduction using histogram equalization,feature extraction using GLCM,similarity matching computation using Hierarchal and Fuzzy c-Means(HFCM)algorithm and the image retrieval using DLECNN algorithm.The histogram equalization has been used for computing the image enhancement.This enhanced image has a uniform histogram.Then,the GLCM method has been used to extract the features such as shape,texture,colour,annotations and keywords.The HFCM similarity measure is used for computing the query image vector's similarity index with every database images.For enhancing the performance of this image retrieval approach,the DLECNN algorithm is proposed to retrieve more accurate features of the image.The proposed GLCM+DLECNN algorithm provides better results associated with high accuracy,precision,recall,f-measure and lesser complexity.From the experimental results,it is clearly observed that the proposed system provides efficient image retrieval for the given query image.展开更多
Feature selection(FS) refers to the process of selecting those input attributes that are most predictive of a given outcome. Unlike other dimensionality reduction methods,feature selectors preserve the original mean...Feature selection(FS) refers to the process of selecting those input attributes that are most predictive of a given outcome. Unlike other dimensionality reduction methods,feature selectors preserve the original meaning of the features after reduction. The benefits of FS are twofold:it considerably decreases the running time of the induction algorithm,and increases the accuracy of the resulting model. This paper analyses the FS process in mammogram classification using fuzzy logic and rough set theory. Rough set and fuzzy logic based Quickreduct algorithms are applied for the FS from the features extracted using gray level co-occurence matrix(GLCM) constructed over the mammogram region. The predictive accuracy of the features is tested using NaiveBayes,Ripper,C4.5,and ant-miner algorithms. The results show that the ant-miner produces significant result comparing with others and the number of features selected using fuzzy-rough quick reduct algorithm is minimum,too.展开更多
In order to improve the quality of clinker produced by pellet rotary kiln, flame temperature that it is a very important factor of affecting on the quality of clinker is studied. The flame images collected from pellet...In order to improve the quality of clinker produced by pellet rotary kiln, flame temperature that it is a very important factor of affecting on the quality of clinker is studied. The flame images collected from pellet rotary kiln are decomposed into three gray images by the method of RGB, so we can get more information of flame. Taking advantage of gray level co-occurrence matrix, the monitoring model for flame temperature based on image texture is established with RGB channels. In order to test the universality of the algorithm, candle flame temperature is detected by this method. The maximum error of the model is less than 3%.展开更多
文摘Since the efficiency of treatment of thyroid disorder depends on the risk of malignancy, indeterminate follicular neoplasm (FN) images should be classified. The diagnosis process has been done by visual interpretation of experienced pathologists. However, it is difficult to separate the favor benign from borderline types. Thus, this paper presents a classification approach based on 3D nuclei model to classify favor benign and borderline types of follicular thyroid adenoma (FTA) in cytological specimens. The proposed method utilized 3D gray level co-occurrence matrix (GLCM) and random forest classifier. It was applied to 22 data sets of FN images. Furthermore, the use of 3D GLCM was compared with 2D GLCM to evaluate the classification results. From experimental results, the proposed system achieved 95.45% of the classification. The use of 3D GLCM was better than 2D GLCM according to the accuracy of classification. Consequently, the proposed method probably helps a pathologist as a prescreening tool.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.5147113 and 51505037)the Fundamental Research Funds for the Central Universities of Ministry of Education of China(Grant Nos.3102017zy029,310832163402,and 310832163403)
文摘The mechanical properties of materials greatly depend on the microstructure morphology. The quantitative characterization of material microstructures is essential for the performance prediction and hence the material design. At present,the quantitative characterization methods mainly rely on the microstructure characterization of shape, size, distribution,and volume fraction, which related to the mechanical properties. These traditional methods have been applied for several decades and the subjectivity of human factors induces unavoidable errors. In this paper, we try to bypass the traditional operations and identify the relationship between the microstructures and the material properties by the texture of image itself directly. The statistical approach is based on gray level Co-occurrence matrix(GLCM), allowing an objective and repeatable study on material microstructures. We first present how to identify GLCM with the optimal parameters, and then apply the method on three systems with different microstructures. The results show that GLCM can reveal the interface information and microstructures complexity with less human impact. Naturally, there is a good correlation between GLCM and the mechanical properties.
基金Supported by the Priming Scientific Research Foundation for the Junior Researcher in Beijing Tongren Hospital,Capital Medical University
文摘AIM: To develop an automatic tool on screening diabetic retinopathy(DR) from diabetic patients.METHODS: We extracted textures from eye fundus images of each diabetes subject using grey level co-occurrence matrix method and trained a Bayesian model based on these textures. The receiver operating characteristic(ROC) curve was used to estimate the sensitivity and specificity of the Bayesian model.RESULTS: A total of 1000 eyes fundus images from diabetic patients in which 298 eyes were diagnosed as DR by two ophthalmologists. The Bayesian model was trained using four extracted textures including contrast, entropy, angular second moment and correlation using a training dataset. The Bayesian model achieved a sensitivity of 0.949 and a specificity of 0.928 in the validation dataset. The area under the ROC curve was 0.938, and the 10-fold cross validation method showed that the average accuracy rate is 93.5%.CONCLUSION: Textures extracted by grey level cooccurrence can be useful information for DR diagnosis, and a trained Bayesian model based on these textures can be an effective tool for DR screening among diabetic patients.
基金This work is supported by the National Natural Science Foundation of China(No.U1736118)the Natural Science Foundation of Guangdong(No.2016A030313350)+3 种基金the Special Funds for Science and Technology Development of Guangdong(No.2016KZ010103)the Key Project of Scientific Research Plan of Guangzhou(No.201804020068)the Fundamental Research Funds for the Central Universities(No.16lgjc83 and No.17lgjc45)the Science and Technology Planning Project of Guangdong Province(Grant No.2017A040405051).
文摘In recent years,binary image steganography has developed so rapidly that the research of binary image steganalysis becomes more important for information security.In most state-of-the-art binary image steganographic schemes,they always find out the flippable pixels to minimize the embedding distortions.For this reason,the stego images generated by the previous schemes maintain visual quality and it is hard for steganalyzer to capture the embedding trace in spacial domain.However,the distortion maps can be calculated for cover and stego images and the difference between them is significant.In this paper,a novel binary image steganalytic scheme is proposed,which is based on distortion level co-occurrence matrix.The proposed scheme first generates the corresponding distortion maps for cover and stego images.Then the co-occurrence matrix is constructed on the distortion level maps to represent the features of cover and stego images.Finally,support vector machine,based on the gaussian kernel,is used to classify the features.Compared with the prior steganalytic methods,experimental results demonstrate that the proposed scheme can effectively detect stego images.
基金Funded by Ningbo Natural Science Foundation (No.2006A610016)
文摘Classifying the texture of granules in 2D images has aroused manifold research atten-tion for its technical challenges in image processing areas.This letter presents an aggregate texture identification approach by jointly using Gray Level Co-occurrence Probability(GLCP) and BP neural network techniques.First, up to 8 GLCP-associated texture feature parameters are defined and computed, and these consequent parameters next serve as the inputs feeding to the BP neural network to calculate the similarity to any of given aggregate texture type.A finite number of aggregate images of 3 kinds, with each containing specific type of mineral particles, are put to the identification test, experimentally proving the feasibility and robustness of the proposed method.
基金Project supported by the Science and Technology Commission of Shanghai Municipality(Grant No.09530708600)the Shanghai AM Foundation(Grant No.09700714000)
文摘The paper puts forward a method on controlling the AM-OLED panel to display image with high gray scale levels. It also gives an ASIC design sample to implement this method. A twenty sub-fields scan scheme has been taken into use in the chip to display 256 gray scale levels on a QVGA resolution AM-OLED display screen. The functions of image scaling and rotating have also been implemented for multiply application. The simulation and chip test result show that the chip design has met the design requirements.
文摘The macula is an imperative part present in our human visual system which is most responsible for clear and colour vision. For the people suffering from diabetes, the various parts of the body including the retina of the eye are affected. These retinal damages cause swelling and other abnormalities nearby macula. The pathologies in macula due to diabetes are called Diabetic Macular oEdema (DME). It affects patients’ vision that may lead to vision loss. It can be overcome by advance identification of causes for swelling. The major causes for the swelling are neovascularization and other abnormalities occurring in the blood vessels nearby the macula. The aim of this work is to avoid vision loss by detecting the presence of abnormalities in macula in advance. The pathologies present in the abnormal images are detected by image segmentation technique viz. Fuzzy K-means algorithm. The classification is done by two different classifiers namely Cascade Neural Network and Partial Least Square which are employed to identify whether the image is normal or abnormal. The results of both the classifiers are compared with respect to classifier accuracy, sensitivity and specificity. The classifier accuracies of Cascade Neural Network and Partial Least Square are 96.84% and 94.36%, respectively. The information about the severity of the disease and the localization of pathologies are very useful to the ophthalmologist for diagnosing the disease and apply proper treatments to the patients to avoid the formation of any lesion and prevent vision loss.
基金supported by the Scientific Research Staring Foundation of University of Electronic Science and Technology of China(No.ZYGX2015KYQD049)
文摘Seismic texture attributes are closely related to seismic facies and reservoir characteristics and are thus widely used in seismic data interpretation.However,information is mislaid in the stacking process when traditional texture attributes are extracted from poststack data,which is detrimental to complex reservoir description.In this study,pre-stack texture attributes are introduced,these attributes can not only capable of precisely depicting the lateral continuity of waveforms between different reflection points but also reflect amplitude versus offset,anisotropy,and heterogeneity in the medium.Due to its strong ability to represent stratigraphies,a pre-stack-data-based seismic facies analysis method is proposed using the selforganizing map algorithm.This method is tested on wide azimuth seismic data from China,and the advantages of pre-stack texture attributes in the description of stratum lateral changes are verified,in addition to the method's ability to reveal anisotropy and heterogeneity characteristics.The pre-stack texture classification results effectively distinguish different seismic reflection patterns,thereby providing reliable evidence for use in seismic facies analysis.
基金the National Natural Science Foundation of China(No.51134024/E0422)for the financial support
文摘Based on the stability and inequality of texture features between coal and rock,this study used the digital image analysis technique to propose a coal–rock interface detection method.By using gray level co-occurrence matrix,twenty-two texture features were extracted from the images of coal and rock.Data dimension of the feature space reduced to four by feature selection,which was according to a separability criterion based on inter-class mean difference and within-class scatter.The experimental results show that the optimized features were effective in improving the separability of the samples and reducing the time complexity of the algorithm.In the optimized low-dimensional feature space,the coal–rock classifer was set up using the fsher discriminant method.Using the 10-fold cross-validation technique,the performance of the classifer was evaluated,and an average recognition rate of 94.12%was obtained.The results of comparative experiments show that the identifcation performance of the proposed method was superior to the texture description method based on gray histogram and gradient histogram.
基金This work was supported in part by national science foundation project of P.R.China under Grant No.61701554State Language Commission Key Project(ZDl135-39)+1 种基金First class courses(Digital Image Processing:KC2066)MUC 111 Project,Ministry of Education Collaborative Education Project(201901056009,201901160059,201901238038).
文摘With the development of satellite technology,the satellite imagery of the earth’s surface and the whole surface makes it possible to survey surface resources and master the dynamic changes of the earth with high efficiency and low consumption.As an important tool for satellite remote sensing image processing,remote sensing image classification has become a hot topic.According to the natural texture characteristics of remote sensing images,this paper combines different texture features with the Extreme Learning Machine,and proposes a new remote sensing image classification algorithm.The experimental tests are carried out through the standard test dataset SAT-4 and SAT-6.Our results show that the proposed method is a simpler and more efficient remote sensing image classification algorithm.It also achieves 99.434%recognition accuracy on SAT-4,which is 1.5%higher than the 97.95%accuracy achieved by DeepSat.At the same time,the recognition accuracy of SAT-6 reaches 99.5728%,which is 5.6%higher than DeepSat’s 93.9%.
基金supported by National "973" Program (No. 2013CB228600)
文摘The first generation coherence algorithm (the C1 algorithm) that calculates the coherence of seismic data in-line and cross-line was developed using statistical cross-correlation theory, and it has the limitation that the technique can only be applied to horizons. Based on the texture technique, the texture coherence algorithm uses seismic information in different directions and differences among multiple traces. It can not only calculate seismic coherence in in-line and cross-line directions but also in all other directions. In this study, we suggested first an optimization method and a criterion for constructing the gray level co-occurrence matrix of the seismic texture coherence algorithm. Then the co-occurrence matrix was prepared to evaluate differences among multiple traces. Compared with the C1 algorithm, the seismic texture coherence algorithm suggested in this paper is better than the C1 in its information extraction and application. Furthermore, it implements the multi-direction information fusion and it, also has the advantage of simplicity and effectiveness, and improves the resolution of the seismic profile. Application of the method to field data shows that the texture coherence attribute is superior to that of C 1 and that it has merits in identification of faults and channels.
文摘Melanoma is of the lethal and rare types of skin cancer.It is curable at an initial stage and the patient can survive easily.It is very difficult to screen all skin lesion patients due to costly treatment.Clinicians are requiring a correct method for the right treatment for dermoscopic clinical features such as lesion borders,pigment networks,and the color of melanoma.These challenges are required an automated system to classify the clinical features of melanoma and non-melanoma disease.The trained clinicians can overcome the issues such as low contrast,lesions varying in size,color,and the existence of several objects like hair,reflections,air bubbles,and oils on almost all images.Active contour is one of the suitable methods with some drawbacks for the segmentation of irre-gular shapes.An entropy and morphology-based automated mask selection is pro-posed for the active contour method.The proposed method can improve the overall segmentation along with the boundary of melanoma images.In this study,features have been extracted to perform the classification on different texture scales like Gray level co-occurrence matrix(GLCM)and Local binary pattern(LBP).When four different moments pull out in six different color spaces like HSV,Lin RGB,YIQ,YCbCr,XYZ,and CIE L*a*b then global information from different colors channels have been combined.Therefore,hybrid fused texture features;such as local,color feature as global,shape features,and Artificial neural network(ANN)as classifiers have been proposed for the categorization of the malignant and non-malignant.Experimentations had been carried out on datasets Dermis,DermQuest,and PH2.The results of our advanced method showed super-iority and contrast with the existing state-of-the-art techniques.
基金This research was funded by Deputyship for Research&Innovation,Ministry of Education in Saudi Arabia for funding this research work through the project number RI-44-0190.
文摘Brain neoplasms are recognized with a biopsy,which is not commonly done before decisive brain surgery.By using Convolutional Neural Networks(CNNs)and textural features,the process of diagnosing brain tumors by radiologists would be a noninvasive procedure.This paper proposes a features fusion model that can distinguish between no tumor and brain tumor types via a novel deep learning structure.The proposed model extracts Gray Level Co-occurrence Matrix(GLCM)textural features from MRI brain tumor images.Moreover,a deep neural network(DNN)model has been proposed to select the most salient features from the GLCM.Moreover,it manipulates the extraction of the additional high levels of salient features from a proposed CNN model.Finally,a fusion process has been utilized between these two types of features to form the input layer of additional proposed DNN model which is responsible for the recognition process.Two common datasets have been applied and tested,Br35H and FigShare datasets.The first dataset contains binary labels,while the second one splits the brain tumor into four classes;glioma,meningioma,pituitary,and no cancer.Moreover,several performance metrics have been evaluated from both datasets,including,accuracy,sensitivity,specificity,F-score,and training time.Experimental results show that the proposed methodology has achieved superior performance compared with the current state of art studies.The proposed system has achieved about 98.22%accuracy value in the case of the Br35H dataset however,an accuracy of 98.01%has been achieved in the case of the FigShare dataset.
文摘One of the most important methods that finds usefulness in various applications, such as searching historical manuscripts, forensic search, bank check reading, mail sorting, book and handwritten notes transcription, is handwritten character recognition. The common issues in the character recognition are often due to different writing styles, orientation angle, size variation(regarding length and height), etc. This study presents a classification model using a hybrid classifier for the character recognition by combining holoentropy enabled decision tree(HDT) and deep neural network(DNN). In feature extraction, the local gradient features that include histogram oriented gabor feature and grid level feature, and grey level co-occurrence matrix(GLCM) features are extracted. Then, the extracted features are concatenated to encode shape, color, texture, local and statistical information, for the recognition of characters in the image by applying the extracted features to the hybrid classifier. In the experimental analysis, recognition accuracy of 96% is achieved. Thus, it can be suggested that the proposed model intends to provide more accurate character recognition rate compared to that of character recognition techniques used in the literature.
基金Project 20050290010 supported by the Doctoral Foundation of Chinese Education Ministry
文摘It is very important to accurately recognize and locate pulverized and block coal seen in a coal mine's infrared image monitoring system. Infrared monitor images of pulverized and block coal were sampled in the roadway of a coal mine. Texture statistics from the grey level dependence matrix were selected as the criterion for classification. The distributions of the texture statistics were calculated and analysed. A normalizing function was added to the front end of the BP network with one hidden layer. An additional classification layer is joined behind the linear layer. The recognition of pulverized from block coal images was tested using the improved BP network. The results of the experiment show that texture variables from the grey level dependence matrix can act as recognizable features of the image. The innovative improved BP network can then recognize the pulverized and block coal images.
文摘The use of massive image databases has increased drastically over the few years due to evolution of multimedia technology.Image retrieval has become one of the vital tools in image processing applications.Content-Based Image Retrieval(CBIR)has been widely used in varied applications.But,the results produced by the usage of a single image feature are not satisfactory.So,multiple image features are used very often for attaining better results.But,fast and effective searching for relevant images from a database becomes a challenging task.In the previous existing system,the CBIR has used the combined feature extraction technique using color auto-correlogram,Rotation-Invariant Uniform Local Binary Patterns(RULBP)and local energy.However,the existing system does not provide significant results in terms of recall and precision.Also,the computational complexity is higher for the existing CBIR systems.In order to handle the above mentioned issues,the Gray Level Co-occurrence Matrix(GLCM)with Deep Learning based Enhanced Convolution Neural Network(DLECNN)is proposed in this work.The proposed system framework includes noise reduction using histogram equalization,feature extraction using GLCM,similarity matching computation using Hierarchal and Fuzzy c-Means(HFCM)algorithm and the image retrieval using DLECNN algorithm.The histogram equalization has been used for computing the image enhancement.This enhanced image has a uniform histogram.Then,the GLCM method has been used to extract the features such as shape,texture,colour,annotations and keywords.The HFCM similarity measure is used for computing the query image vector's similarity index with every database images.For enhancing the performance of this image retrieval approach,the DLECNN algorithm is proposed to retrieve more accurate features of the image.The proposed GLCM+DLECNN algorithm provides better results associated with high accuracy,precision,recall,f-measure and lesser complexity.From the experimental results,it is clearly observed that the proposed system provides efficient image retrieval for the given query image.
文摘Feature selection(FS) refers to the process of selecting those input attributes that are most predictive of a given outcome. Unlike other dimensionality reduction methods,feature selectors preserve the original meaning of the features after reduction. The benefits of FS are twofold:it considerably decreases the running time of the induction algorithm,and increases the accuracy of the resulting model. This paper analyses the FS process in mammogram classification using fuzzy logic and rough set theory. Rough set and fuzzy logic based Quickreduct algorithms are applied for the FS from the features extracted using gray level co-occurence matrix(GLCM) constructed over the mammogram region. The predictive accuracy of the features is tested using NaiveBayes,Ripper,C4.5,and ant-miner algorithms. The results show that the ant-miner produces significant result comparing with others and the number of features selected using fuzzy-rough quick reduct algorithm is minimum,too.
文摘In order to improve the quality of clinker produced by pellet rotary kiln, flame temperature that it is a very important factor of affecting on the quality of clinker is studied. The flame images collected from pellet rotary kiln are decomposed into three gray images by the method of RGB, so we can get more information of flame. Taking advantage of gray level co-occurrence matrix, the monitoring model for flame temperature based on image texture is established with RGB channels. In order to test the universality of the algorithm, candle flame temperature is detected by this method. The maximum error of the model is less than 3%.